
amaGama Documentation
Release 0.0.0

Translate.org.za

March 24, 2016

Contents

1 Installing amaGama 3

2 amaGama settings 7

3 Managing amaGama 9

4 Importing translations 11

5 Running amaGama 13

6 Integrating amaGama with Virtaal 15

7 Developers 17

i

ii

amaGama Documentation, Release 0.0.0

amaGama is a web service implementing a large-scale translation memory. A translation memory is a database of
previous translations which can be searched to find good matches to new strings.

amaGama is implemented in Python on top of PostgreSQL. There are currently no releases of the software, but the
source code is available at Github.

A public deployment of amaGama is available, providing both a public API and a web search interface on top of the
API, and is usable from Virtaal and Pootle.

amaGama is the Zulu word for words.

Contents 1

https://github.com/translate/amagama
https://amagama-live.translatehouse.org/api/v1/en/af/unit/Computer
https://amagama-live.translatehouse.org/
http://virtaal.org
http://pootle.translatehouse.org

amaGama Documentation, Release 0.0.0

2 Contents

CHAPTER 1

Installing amaGama

Want to try amaGama? This will guide you through installing amaGama and its requirements.

1.1 Dependencies

amaGama requires the following dependencies:

• Python 2: 2.6 or later.

• PostgreSQL: Tested on 8.3 and 8.4.

There are also some dependencies that we strongly recommend to use, but are optional:

• git: Necessary to get amaGama.

• virtualenv: Provides an isolated environment or virtualenv.

• virtualenvwrapper: To ease handling virtualenvs.

Consult the specifics for your operating system in order to get each above package installed successfully.

1.2 Setting up a virtualenv

The use of virtualenvs allows to install all the requirements at specific versions without interfering with system-wide
packages. To create a virtualenv just run:

$ mkvirtualenv amagama

1.3 Getting amaGama

There is no package for amaGama, so you will need to run it from a git checkout:

(amagama) $ git clone https://github.com/translate/amagama.git
(amagama) $ cd amagama

3

amaGama Documentation, Release 0.0.0

1.4 Installing the requirements

Then install the requirements:

(amagama) $ pip install -r requirements/recommended.txt

After installing the amaGama requirements, you can safely start amaGama installation.

1.5 Creating the database

amaGama requires a PostgreSQL database to store translations. So create an empty database, for example doing the
following:

$ su root
su postgres
$ createdb -E UTF-8 amagama

Note: You might see an error like:

createdb: database creation failed: ERROR: new encoding (UTF8) is
incompatible with the encoding of the template database (SQL_ASCII)

This could happen because the database was installed in the “C” locale. This might be fixed by doing the following:

$ createdb -E UTF-8 -T template0 amagama

1.6 Adjusting the settings

The next step is to adjust amaGama settings to include the right database connection configuration, and perhaps change
any other setting. Check the amaGama settings documentation in order to know how to do it.

Note: One simple change that you should most likely make on a toy installation is to set:

DB_HOST = "localhost"

This is a side effect of how Postgres is installed on Ubuntu and other systems.

1.7 Making the commands accessible

Since amaGama is not installed we need to make accessible its commands:

$ export PATH=$(pwd)/bin:$PATH
$ export PYTHONPATH=$(pwd):$PYTHONPATH

4 Chapter 1. Installing amaGama

amaGama Documentation, Release 0.0.0

1.8 Preparing the database

The first step after editing the settings is to prepare database tables for each source language you will use (you can add
more languages later):

$ amagama-manage initdb -s en -s fr

1.9 Next steps

Now that you have managed to install amaGama you will probably want to know how to:

• Manage amaGama

• Import translations to amaGama

• Run amaGama

1.8. Preparing the database 5

amaGama Documentation, Release 0.0.0

6 Chapter 1. Installing amaGama

CHAPTER 2

amaGama settings

amaGama has some settings that allow to tune how it behaves. Below you can see a detailed description for each
setting and its default values.

amaGama settings are stored in amagama/settings.py.

2.1 Global settings

Settings to define amaGama server behavior.

DEBUG Default: False

Indicates if the debug mode is enabled.

SECRET_KEY Default: foobar

Indicates the secret key to use for keeping the sessions secure.

ENABLE_WEB_UI Default: False

Indicates if the web interface is enabled.

ENABLE_DATA_ALTERING_API Default: False

Indicates if the part of the amaGama API that allows data to be altered is enabled.

This doesn’t affect to the part of the API that is used to perform queries that don’t alter the data. For example
retrieving translations is always enabled.

2.2 Database settings

Settings used for connecting to the amaGama database.

DB_HOST Default: "localhost"

Hostname of the server where the amaGama database is located.

DB_NAME Default: "amagama"

amaGama database name.

DB_PASSWORD Default: ""

Password for the amaGama database user.

7

amaGama Documentation, Release 0.0.0

DB_PORT Default: "5432"

Port number where the database server holding the amaGama database is listening.

DB_USER Default: "postgres"

User name for connecting to the amaGama database.

2.3 Database pool settings

Settings for the database pool.

DB_MAX_CONNECTIONS Default: 20

Maximum number of connections that the pool database will handle.

DB_MIN_CONNECTIONS Default: 2

Number of connections to the database server that are created automatically in the database pool.

2.4 Levenshtein settings

Settings for Levenshtein algorithm. See Levenshtein distance for more information.

MAX_CANDIDATES Default: 5

The maximum number of results returned. This can be overridden by providing another value using a query
string.

MAX_LENGTH Default: 1000

Maximum length of the string. If the string length is higher then it won’t be matched neither returned in the
results.

MIN_SIMILARITY Default: 70

The minimum similarity between the string to be searched and the strings to match.

This can be overridden by providing another value using a query string, but there is a hardcoded minimum
possible value of 30. If a lower value is provided then 30 will be used.

8 Chapter 2. amaGama settings

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/levenshtein_distance.html#levenshtein-distance

CHAPTER 3

Managing amaGama

Note: Please make sure that the amagama-manage command is accessible in order to be able to use it.

amaGama is managed through the amagama-manage command. Try running it with no arguments for usage help:

$ amagama-manage

The amagama-manage command exposes several management subcommands, each having it’s own --help option
that displays its usage information:

$ amagama-manage SUBCOMMAND --help

See below for the available subcommands.

3.1 Available subcommands

These are the available management subcommands for amaGama:

3.1.1 benchmark_tmdb

This subcommand benchmarks the application by querying for all strings in the given file.

Note: For more information please check the help of this subcommand.

3.1.2 build_tmdb

This subcommand is used to import translations into amaGama from bilingual translation files. Please refer to the
importing translations section for a complete usage example.

3.1.3 deploy_db

This subcommand is used to optimize the database for deployment. It has no options:

9

amaGama Documentation, Release 0.0.0

$ amagama-manage deploy_db
This will permanently alter the database. Continue? [n] y
Succesfully altered the database for deployment.

3.1.4 dropdb

This subcommand is used to drop the tables for one or more source languages from the amaGama database:

$ amagama-manage dropdb -s fr -s de
This will permanently destroy all data in the configured database. Continue? [n] y
Succesfully dropped the database for 'fr', 'de'.

3.1.5 initdb

This subcommand is used to create the tables in the database for one or several source languages. It can be run several
times to specify additional source languages. The following example creates the tables for english and french:

$ amagama-manage initdb -s en -s fr
Succesfully initialized the database for 'en', 'fr'.

3.1.6 tmdb_stats

This subcommand is used to print out some figures about the amaGama database. It has no options:

$ amagama-manage tmdb_stats
Complete database (amagama): 400 MB
Complete size of sources_en: 234 MB
Complete size of targets_en: 160 MB
sources_en (table only): 85 MB
targets_en (table only): 66 MB
sources_en sources_en_text_idx 83 MB
targets_en targets_en_unique_idx 79 MB
sources_en sources_en_text_unique_idx 53 MB
targets_en targets_en_pkey 16 MB
sources_en sources_en_pkey 13 MB

10 Chapter 3. Managing amaGama

CHAPTER 4

Importing translations

Note: Please make sure that the amagama-manage command is accessible.

To populate the amaGama database the amagama-manage command build_tmdb subcommand should be used:

$ amagama-manage build_tmdb --verbose -s en -t ar -i foo.po
Importing foo.po
Succesfully imported foo.po

This will parse foo.po, assuming that source language is English (en) and target language is Arabic (ar), and will
populate the database accordingly.

The source and target language options only need to be specified if the file does not provide this information. But if
source and target language options are specified they will override the languages metadata in the translation file.

All bilingual formats supported by the Translate Toolkit are supported, including PO, TMX and XLIFF.

If a directory is passed to the -i option, then its content will be read recursively:

$ amagama-manage build_tmdb --verbose -s en -t gl -i translations/
Importing translations/foo.po
Importing translations/bar.po
Succesfully imported translations/

11

amaGama Documentation, Release 0.0.0

12 Chapter 4. Importing translations

CHAPTER 5

Running amaGama

Note: Please make sure that the amagama command is accessible.

The amagama command will try to use the best pure Python WSGI server to launch amaGama server listening on
port 8888.

$ amagama

After launching the server you can test that amaGama is working by visiting
http://localhost:8888/tmserver/en/ar/unit/file which should display a JSON representation of the Arabic transla-
tions for the English file word.

Note: For more options check:

$ amagama --help

13

http://localhost:8888/tmserver/en/ar/unit/file

amaGama Documentation, Release 0.0.0

14 Chapter 5. Running amaGama

CHAPTER 6

Integrating amaGama with Virtaal

Virtaal has a plugin for the public amaGama server since version 0.7 and it is enabled by default.

amaGama implements the same protocol as tmserver, and can be used with Virtaal’s remotetm plugin, or other software
that supports this.

In Virtaal go to Edit → Preferences → Plugins → Translation Memory → Configure to make sure the remote server
plugin is enabled and then close Virtaal.

Edit ~/.virtaal/tm.ini and make sure there is a remotetm section that looks like this:

[remotetm]
host = localhost
port = 8888

Note: If you are going to use a remote amaGama server this setting needs to be changed accordingly.

Run Virtaal again. You should start seeing results from amaGama (they will be marked as coming from remotetm).

15

amaGama Documentation, Release 0.0.0

16 Chapter 6. Integrating amaGama with Virtaal

CHAPTER 7

Developers

7.1 Contributing

We accept code contributions to amaGama, please use Github pull requests for your changes.

7.1.1 Preparations

You will need a local working copy of amaGama, the best way to achieve that is to follow the installation guidelines.

7.1.2 Coding style

Please follow the Translate Toolkit Style Guide.

7.1.3 TODO

An incomplete list of possible TODO items:

• Improve web interface

• Custom index config for source languages not supported by default PostgreSQL install

• Keep track of file’s mtime to avoid expensive reparses

• Use memcached to cache results

• Use more permanent caching of Levenshtein distances?

• Use PostgreSQL built-in Levenshtein functions?

• Full text search

• Other search methods and options

• Further documenting of API

• Document the commands

• Document how to deploy amaGama using Apache or other web server

17

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide

amaGama Documentation, Release 0.0.0

7.2 amaGama API

7.2.1 TM suggestion request

The URL structure for requesting TM suggestions is <SERVER>/tmserver/<SOURCE_LANGUAGE>/<TARGET_LANGUAGE>/unit/<QUERY>
where:

Placeholder Description
<SERVER> The URL of the amaGama server
<SOURCE_LANGUAGE> Source language code: de, en, en_GB
<TARGET_LANGUAGE> Target language: ar, es_AR, fr, hi
<QUERY> The URL escaped string to be queried

Note: <SOURCE_LANGUAGE> and <TARGET_LANGUAGE> should be language codes in the form of
LANG_COUNTRY where LANG is mandatory. LANG should be a language code from ISO 639 and COUNTRY a
country code from ISO 3166. The following are valid examples: ar, de, en, en_GB, es_AR, fr, gl, hi, tlh,...

For example:

http://amagama.locamotion.org/tmserver/en/af/unit/Computer

Providing options

It is possible to provide some options in the request URL by using a query string with one or more or the following
fields.

Option Description
min_similarityThe minimum similarity between the string to be searched and the strings to match. See Levenshtein

distance. Minimum possible value is 30. Default value is 70.
max_candidatesThe maximum number of results. Default value is 5.

For example:

http://amagama.locamotion.org/tmserver/en/gl/unit/window?min_similarity=31&max_candidates=500

7.2.2 TM suggestion results

The results from a TM suggestion request are provided in JSON format. It is a list containing zero or more results.
The results contain the following fields:

Field Description
source Matching unit’s source language text
target Matching unit’s target language test
quality A Levenshtein distance measure of quality as percent
rank ?

An example:

[
{
"source": "Computer",
"quality": 100.0,
"target": "Rekenaar",
"rank": 100.0

18 Chapter 7. Developers

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/ISO_3166-1
http://en.wikipedia.org/wiki/Query_string
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/levenshtein_distance.html#levenshtein-distance
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/levenshtein_distance.html#levenshtein-distance

amaGama Documentation, Release 0.0.0

},
{
"source": "Computers",
"quality": 88.888888888888886,
"target": "Rekenaars",
"rank": 100.0

},
{

"source": "&Computer",
"quality": 88.888888888888886,
"target": "Rekenaar",
"rank": 100.0

},
{

"source": "_Computer",
"quality": 88.888888888888886,
"target": "_Rekenaar",
"rank": 100.0

},
{

"source": "My Computer",
"quality": 72.727272727272734,
"target": "My Rekenaar",
"rank": 100.0

}
]

7.2. amaGama API 19

amaGama Documentation, Release 0.0.0

20 Chapter 7. Developers

Index

D
DB_HOST

setting, 7
DB_MAX_CONNECTIONS

setting, 8
DB_MIN_CONNECTIONS

setting, 8
DB_NAME

setting, 7
DB_PASSWORD

setting, 7
DB_PORT

setting, 7
DB_USER

setting, 8
DEBUG

setting, 7

E
ENABLE_DATA_ALTERING_API

setting, 7
ENABLE_WEB_UI

setting, 7

M
MAX_CANDIDATES

setting, 8
MAX_LENGTH

setting, 8
MIN_SIMILARITY

setting, 8

S
SECRET_KEY

setting, 7
setting

DB_HOST, 7
DB_MAX_CONNECTIONS, 8
DB_MIN_CONNECTIONS, 8
DB_NAME, 7

DB_PASSWORD, 7
DB_PORT, 7
DB_USER, 8
DEBUG, 7
ENABLE_DATA_ALTERING_API, 7
ENABLE_WEB_UI, 7
MAX_CANDIDATES, 8
MAX_LENGTH, 8
MIN_SIMILARITY, 8
SECRET_KEY, 7

21

	Installing amaGama
	amaGama settings
	Managing amaGama
	Importing translations
	Running amaGama
	Integrating amaGama with Virtaal
	Developers

