
Pootle Documentation
Release 2.5.1.3

Translate.org.za

September 16, 2015

Contents

1 All you need to know 3
1.1 User’s guide . 3
1.2 Features . 5
1.3 Administering a server . 28
1.4 Developers . 66
1.5 Pootle API . 90

2 Additional Notes 113
2.1 Changelog . 113
2.2 Release Notes . 115
2.3 External documentation . 129
2.4 License . 130

i

ii

Pootle Documentation, Release 2.5.1.3

Pootle is an online tool that makes the process of translating so much simpler. It allows crowd-sourced translations,
easy volunteer contribution and gives statistics about the ongoing work.

Pootle is built using the powerful API of the Translate Toolkit and the Django framework. If you want to know more
about these, you can dive into their own documentation.

• Translate Toolkit Documentation

• Django Documentation

Contents 1

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/
https://docs.djangoproject.com/

Pootle Documentation, Release 2.5.1.3

2 Contents

CHAPTER 1

All you need to know

The following pages cover the documentation of Pootle from a wide variety of perspectives, including user’s, server
administrator’s, and developer’s view.

1.1 User’s guide

1.1.1 Getting started

Pootle is a web portal that allows you to translate more easily. The name stands for PO-based Online Translation /
Localization Engine, but you may need to read this. Pootle is GPL licensed Free Software, and you can download it
and run your own copy if you like.

You can also help participate in the development in many ways (you don’t have to be able to program).

The Pootle project itself is hosted at http://pootle.translatehouse.org where you can find details about source code,
mailing lists, etc.

Registration

While everybody can view the files, only registered users can edit them and receive credit for their effort, so unless
your server uses LDAP authentication, the first thing you should do in order to translate, is to register.

You can register in the register page (accessible by clicking Register in the menubar) following two simple steps,
providing you have a current e-mail address.

1. Fill in your desired user name, a valid e-mail account, and enter your password twice for verification. Then
choose Register and an you will receive a message with an activation link in the e-mail address you have
provided.

2. When you receive the activation message by e-mail, just click on the activation link and your account will be
activated.

Login and user settings setup

Now that you are a registered user, you can login to Pootle by following the Login link on the top menubar and filling
in your credentials.

Once you have logged in, your account’s dashboard will be shown, which includes links to your selected languages
and projects.

3

http://www.thechestnut.com/flumps.htm
http://pootle.translatehouse.org

Pootle Documentation, Release 2.5.1.3

The first time you log in, no links will be shown since you haven’t chosen any before. You can click on the link
provided to change your settings and select your preferred languages and projects. You can set more settings within
the same page as well.

Browsing the files tree

Now that your dashboard is set up, you can reach the desired files for translation directly through the links in it.

Another way to find the file you wish to translate is through the main page. The main page displays two categories:
languages and projects. Choosing a language will give you the list of projects available for translation into this
language; choosing a project will give you the list of languages to which it can be translated.

Once you have chosen both the project and the language, you’ll be presented with the files and directories available
for translation.

Heading to translating

If you click on a filename it will start showing all the entries on the file, independently whether the entries are translated
or not. This is also known as Translate All.

Alternatively, if the translation for a file is not complete, you can click on the summary text (eg, 27 words need
attention), which will give you through all the untranslated or fuzzy entries on the file. This mode is also named as
Quick Translate.

In both cases you’ll be presented with a two-column table, with the strings to be translated on the left, and the current
translation on the right.

The current edited entry will appear as a text box with the options Skip and Suggest or Submit below it. Naturally you
can enter text in the text box and submit it or skip to the next entry.

You can also directly access any of the other entries presented by clicking on the numbers on the left-hand side.

Other aids from Pootle

Pootle’s editor also helps translators by displaying Terminology related to the entry currently being edited.

Another helpful feature is the Alternative source language, which displays how the current entry has been translated
into other languages. In order for this to work, you must select your desired alternative source languages in you
account’s settings.

In addition to the above, you can also download the translation file, work offline with your favourite editor and upload
the file. For multi-file projects, you can download a ZIP file with all the files for a directory and upload the ZIP file
with the translated files.

1.1.2 Administration

In default Pootle installations, an admin account (the password matches the username) is created with superuser
privileges which can be used to administer the whole site.

Note: It’s highly recommended that you change the password for the default admin account on your first login, or
even delete the account and assign superuser rights to another user.

4 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Administration scope

Users with administration privileges will have an extra Admin element within the main navigation bar, which gives
direct access to the administration functions of the site.

Administrators can change the general settings for the site (such as the server title or description), as well as add, edit,
and remove users, languages, and translation projects. They are also able to define the default permissions that will
apply to the whole site unless otherwise noted.

Apart from that, administrators have full rights over all the translation projects, so they can do whatever can be done:
translate, suggest, upload new files, update VCS checkouts, ...

Adding new site administrators

If you want to assign site administration permissions to an already existing user, just go to the Users tab within the
Administration page, check the Superuser status checkbox for the user you want to make administrator and click on
Save Changes. That’s all!

Language administrators

Administration rights can be delegated for all tasks within a language. This allows the language administrator to set
permissions in the language, set permissions in certain projects in the language, manage files, etc.

To appoint a language administrator, visit the language page, and add the administration right on the Permissions tab.

1.2 Features

1.2.1 Backends and storage

Authentication Backends

LDAP Authentication

LDAP configuration can be enabled by appending the ’pootle.core.auth.ldap_backend.LdapBackend’
to the list of AUTHENTICATION_BACKENDS. The settings page lists all the configuration keys available for LDAP.

Below a brief example of a working configuration is showcased.

The mail addresses are john.doe@website.org, the LDAP server is your.ldapserver.org. In this case, we need a specific
user account to search in our LDAP server, this user/password is admin/pootle. The LDAP accounts are based on the
mail addresses: these are the uids. Finally, John Doe is part of the branch employees on the LDAP.

Authenticate first with an LDAP system and then fall back to Django's
authentication system.
AUTHENTICATION_BACKENDS = [

#: Uncomment the following line for enabling LDAP authentication
'pootle.core.auth.ldap_backend.LdapBackend',
'django.contrib.auth.backends.ModelBackend',

]

The LDAP server. Format: protocol://hostname:port
AUTH_LDAP_SERVER = 'ldap://your.ldapserver.org:389'
Anonymous Credentials : if you don't have a super user, don't put cn=...
AUTH_LDAP_ANON_DN = 'cn=admin,dc=website,dc=org'

1.2. Features 5

http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-AUTHENTICATION_BACKENDS

Pootle Documentation, Release 2.5.1.3

AUTH_LDAP_ANON_PASS = 'pootle'
Base DN to search
AUTH_LDAP_BASE_DN = 'ou=employees,dc=website,dc=org'
What are we filtering on? %s will be the username (must be in the string)
In this case, we filter on mails, which are the uid.
AUTH_LDAP_FILTER = 'uid=%s'

This is a mapping of Pootle field names to LDAP fields. The key is
Pootle's name, the value should be your LDAP field name. If you don't use the
field or don't want to automatically retrieve these fields from LDAP comment
them out. The only required field is 'dn'. givenName, sn and uid are the names
of the LDAP fields.
AUTH_LDAP_FIELDS = {

'dn': 'dn',
'first_name':'givenName',
'last_name':'sn',
'email':'uid'

}

File formats

Pootle supports many file formats through the powerful Translate Toolkit API. The Toolkit also provides several format
converters for other formats, this will allow you to host a lot of translatable content on Pootle.

All these formats can be downloaded for offline use/or translation (for example in Virtaal). We recommend Virtaal for
offline translation. They can also be downloaded in XLIFF format.

Bilingual formats

These formats are translation files that include the source and target language in one file.

• Gettext PO

• XLIFF

New in version 2.0.3.

• Qt TS

• TBX

• TMX

Monolingual formats

New in version 2.1.

These files contain only one language in the file. Pootle supports formats without conversion.

• Java properties

• Mac OSX strings

• PHP arrays

• Subtitles in many formats

6 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html#formats
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/index.html#commands-converters
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/index.html#commands-converters
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html#po
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html#xliff
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html#ts
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/tbx.html#tbx
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/tmx.html#tmx
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html#properties
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html#strings
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html#php
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/subtitles.html#subtitles

Pootle Documentation, Release 2.5.1.3

Monolingual files need special attention in order to provide translators with good workflow and to assist to perform
good translation. Read more in the localization guide.

The main difference between monolingual and bilingual projects in Pootle is that for monolingual projects a translation
template is required. Pootle cannot meaningfully import strings from monolingual files unless the original text is
present.

Either the source language or the special Templates language must be added to the project and their files uploaded
before other languages are added. Files found in either will be considered template files (in the case where both
templates and source language exist templates will be used).

What users will see when translating monolingual file is a matching between strings in the templates file and strings in
the target language files. The matching is format specific (for example in subtitles the matching is based on timestamps,
for Java properties it is based on keys, etc.)

While Pootle supports uploading translations in the monolingual format this should be limited to importing old trans-
lations. Users who want to translate offline should download the XLIFF version.

When tracking monolingual files with version control, if the file structure changes (e.g. new strings are added) then
source files must be updated first.

Apart from these considerations monolingual projects will feel and behave the same as bilingual projects, all of Pootle’s
features are available to administrators and translators.

You can still use the format converters from the Translate Toolkit to host these monolingual file formats as a Gettext
PO project. This has the advantage that files in version control always have the source and target strings together and
you are able to integrate with external PO tools.

Hooks

Pootle supports hooks to customize its behavior at various points in its interaction with Version Control Systems,
translation update, and translation initialization.

Hooks are Python scripts and can do things like checking or converting formats before commit.

Note: Changed in version 2.5.

Because VCS checkouts and commits are performed in a separate VCS_DIRECTORY , hooks performing VCS oper-
ations themselves may need to use functions in apps.pootle_misc.versioncontrol to copy files between
that directory and the PODIRECTORY containing translation files. As part of this change, pathnames passed to hooks
are relative to PODIRECTORY , not absolute paths.

Implementing a hook

Hooks are Python scripts stored in the pootle/scripts directory with the same name as a project. Thus, hello.py for
a project called hello.

The project hook should implement functions for each needed hooktype.

1.2. Features 7

Pootle Documentation, Release 2.5.1.3

Available hooktypes

Hooktype Arguments Return
initialize projectdir,

languagecode
unused

precommit file, author, message array of strings indicating what files to commit
postcommit file, success unused
preupdate file pathname of file to update
postupdate file unused
pretemplateupdate file boolean indicating whether file should be updated from

template

initialize

This hook is called when a language is added to a project. It can be used to set up any additional files that may
be needed (e.g. alternate formats) or even handle repositories with special directory layouts, by adding appropriate
symlinks in the VCS_DIRECTORY .

The first parameter is the path to the project directory. It’s up to this script to know any internal structure of the
directory (in particular whether standard, GNU, or a special tree style is used).

The second parameter is the code for the language (e.g. nl, pt-BR, sr_RS@latin etc.) that is being added to the
project.

precommit

This hook is called when a translation file for a project is committed to VCS (possibly as a result of an update against
templates that added a new file, in which case it is called after the pretemplateupdate hook). It can be used to
perform conversion to another format and other pre-commit checks and fixups.

The first parameter is the path to the file that will be committed. The second parameter is the author what will be used
for the commit, and the third argument is the commit message.

This hook should return an array (possibly empty) of filenames that should also be commmitted together with the
translation file.

postcommit

This hook is called under the same circumstances as the precommit hook, after the commit operation has been
attempted. It can be used to do logging or cleanup of resources created by the precommit hook.

The first parameter is the path to the file that will be committed. The second parameter is a boolean indicating whether
the commit was successful.

preupdate

This hook is called when a translation file for a project is updated from VCS. It can be used to set up for conversion
from another format in the project source files.

The first (and only) parameter is the path to the translation file that will be updated.

8 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

This hook should return the filename that will be updated. Normally this should be identical to the filename parameter
passed to the hook, but if format conversion is needed, this can be another (project source) file to be updated instead,
so that the postupdate hook can use it to generate the Pootle translation file.

postupdate

This hook is called under the same circumstances as the preupdate hook, after the update has been completed (if
the update fails, a VersionControlError is raised and this hook is not called). It can be used to do format conversion to
generate Pootle translation files from project source formats as well as other logging.

The first parameter is the path to the file that was updated.

Note: If a preupdate hook changes the file to be updated (by returning a string other than the filename it is passed)
the original filename, not the modified one it returns, will be passed to the postupdate hook, if there is one.

pretemplateupdate

New in version 2.5.1.

This hook is called when a translation file for a project is updated against templates to get new source strings (and
mark removed strings as obsolete). It can be used to customize the handling of new or obsolete strings or to prevent
updating against templates for any reason.

The first parameter is the path to the template file that will be used to update the translation file. If the hook returns
false, that template file will not be used to generate updates for translation files

Translation statistics

Pootle gives translators and project developers an easy way to see progress on the translation work. Progress is
indicated by a coloured graph to easily see how much work is complete, and how much work remains. Pootle can also
give detailed statistics about the progress in translation work.

Statistics report on both the progress in the number of messages, and in the number of words. The number of words
gives a much better impression of how much work is involved, and allows for more accurate time estimation.

Pootle also assists in translation quality assurance, by performing several Quality checks on the translations which can
help in review. These quality checks correspond to the quality checks performed by pofilter from the Translate Toolkit.

Translation templates

Translation templates are translation files that contain only the source text (original text). These files are used as a
template to create target files for each language.

Users familiar with Gettext know translation templates as POT files. For other bilingual formats (like XLIFF) untrans-
lated files with the same extension will be used as templates. For Monolingual formats the files representing the source
language are used as templates.

The “Templates” language

Pootle has a special language called templates. This is not strictly speaking a language but rather a place to store
translation templates for a project.

1.2. Features 9

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html#pofilter-tests
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html#pofilter

Pootle Documentation, Release 2.5.1.3

If the templates language is absent from a project, Pootle will assume files under the project’s source language are
translation templates.

Gettext PO projects should always use a templates project where POT files can be uploaded. For simple projects (and
most monolingual formats) it will be simpler to use the source language.

Starting a new translation

When adding a new language to a project, Pootle will first scan the file system and look for translation files for that
language. If none are present a fresh copy will be generated based on the templates files (in a manner similar to
pot2po).

Updating against templates

When the document or software being translated is updated, Pootle helps you retain old translation through the trans-
lation templates feature.

The templates files should be replaced with new versions (i.e. upload the new versions to the templates language).
Users with admin permission in the project can use the Update against templates checkbox in the project admin page
to update languages to the newer version.

Users with admin permissions over a language can update this single language from the files tab for the translation
project.

This will update both the files and the database retaining old translations and using fuzzy matching to match transla-
tions when the source text had minor changes (in a manner similar to pot2po). Fuzzy matched strings will be marked
as fuzzy.

Integration with Version Control Systems

Pootle has the ability to integrate with version control systems (also called revision control systems). Read more on
Wikipedia for a general overview of what a Version Control System is.

Supported systems

System Status
CVS Supported
Subversion Supported
Darcs Supported
Git Supported
Bazaar Supported
Mercurial Supported

It should be possible to add other systems fairly easily. Interested programmers can look at the versioncontrol module.

Preparation

Note: Changed in version 2.5: VCS_DIRECTORY was introduced for separating version control directories. Previ-
ously your PODIRECTORY contained your files from version control. Separation allows Pootle to work reliably on
Distributed Version Control Systems (Git, Mercurial, etc).

10 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html#pot2po
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Apache_Subversion
http://en.wikipedia.org/wiki/Darcs
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Bazaar_(software)
http://en.wikipedia.org/wiki/Mercurial
https://github.com/translate/translate/tree/master/translate/storage/versioncontrol

Pootle Documentation, Release 2.5.1.3

Note: The setup of version control has to be done outside of the Pootle admin interface.

To have any sort of integration with version control from within Pootle, it is necessary to construct the correct file
system structure in the VCS_DIRECTORY as defined in the settings. Any projects integrating with a version control
system have to follow a layout that corresponds to the PODIRECTORY . The VCS_DIRECTORY is pootle/repos by
default and should contain one directory for each project on the server that is either a clone/checkout for the corre-
sponding Pootle project, or a symlink (or a directory with symlinks) to the repo somewhere else on the file system.

The PODIRECTORY therefore contains the translation files used during normal operation of Pootle, and the
VCS_DIRECTORY contains “clean” versions (with no uncommitted changes) that enables the version control in-
tegration. The meta files for the version control system (CVS/, .svn/, .hg, .git, etc.) therefore should be present in
VCS_DIRECTORY for Pootle to perform the integration.

An example layout:

.../
|-- po
| `-- project1
| |-- de.po
| |-- fr.po
| `-- pt_BR.po
`-- repos

`-- project1
|-- de.po
|-- fr.po
`-- pt_BR.po

Here VCS_DIRECTORY is .../repos and PODIRECTORY is .../po. The directory .../repos/project1
contains a clean checkout of the translations from version control. This is where Pootle will perform any version
control actions such as updates and commits.

The VCS_DIRECTORY should never contain uncommitted changes. Pootle will bring in changes from the upstream
VCS and rely on it succeeding without conflicts.

Example
$ cd pootle/repos/
$ svn co https://translate.svn.sourceforge.net/svnroot/translate/src/trunk/Pootle/po/pootle

Now you have the directory pootle containing a translation project. If that directory is now one of your projects
registered on the server, the version control functions should appear for all users with the necessary privileges. Look
for the functions under the actions on the overview page.

Note: The summary of steps to add a new project which will use a VCS are:

1. Create a local copy of the repository in VCS_DIRECTORY (for example using svn checkout in Subversion,
or git clone in Git),

2. Copy the newly created directory, which holds the translation files for the new project, from VCS_DIRECTORY
to PODIRECTORY ,

3. Add the project via the administration panel. Remember that the project code should match the project directory
name both in VCS_DIRECTORY and PODIRECTORY .

The project will be automatically imported by Pootle.

1.2. Features 11

Pootle Documentation, Release 2.5.1.3

How to treat special directory layouts

There exists some conventions for directories.

Convention Directory structure
Standard convention PODIRECTORY /project_name/language_code/files.po
GNU convention PODIRECTORY /project_name/language_code.po

Is the directory structure for the language files of your project different from the default structure found in the source
project?

If yes, then you might consider using symlinking every single language file to the expected location. The version
control support of Pootle will follow these links. Thus the meta directories of your version control system (e.g.: .svn/
or CVS/) do not necessarily have to be below your VCS_DIRECTORY (see your settings for the value of this setting).
In this case, everything under VCS_DIRECTORY for this project must be outside of the clone/checkout for the project.

You can use an initialize hook script to automate the creation of these symlinks whenever languages are added to your
project.

If you use symlinks, ensure that the resulting structure under VCS_DIRECTORY corresponds to the structure under
PODIRECTORY .

Working with VCS integrated projects

Once you have added a project with VCS integration to Pootle, if you have the necessary privileges, you will be able
to perform the different version control functions from the actions section on the translation project overview page.

Updating If you want to update the Pootle copy of the translations with the version that is currently in version
control, a contributor with the ‘update’ right can click on the Update link for a file which will then perform the update
process. The project administrator needs to assign the “update” right.

When updating from version control there is the possibility that a third party could have changed the file (another
translator accessing the version control directly could have made a change). Traditionally in version control this
would create a file with conflicts. Those familiar with version control conflicts will understand that we can’t afford
to have that as we won’t be able to resolve them. Therefore Pootle will be conservative and will consider the version
control system to be the authority and any conflicts in the local file get be converted to suggestions. These suggestions
then need to be reviewed by a translator with review rights.

Committing You can commit translation files from within Pootle. In the case where authentication is required to
submit the translation to version control (probably almost all relevant systems), there needs to be a non-blocking
authentication method. Pootle will not be able to commit if a password is necessary to complete the action. This
unfortunately means that it will probably not be realistic for Pootle to commit with the project admin’s credentials, as
this will require his/her private key(s) to be on the Pootle server.

This usage scenario is more useful for people hosting their own Pootle server where they are able to setup one com-
mit account on the version control server, or perhaps one account for each team. A typical commit message when
committing from Pootle will look something like this:

Commit from GNOME Pootle by user Sipho. 80 of 100 messages translated (7
fuzzy).

So it is still possible to see who submitted what and when, and actually provides some useful statistics in the com-
mit message. A user must be assigned ‘commit’ privileges by the project administrator. If the user has the correct
privileges, they will see a “submit” link next to each file.

12 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Version Control Authentication To access the repository of version controlled files (especially for submitting), it is
necessary to configure a non-interactive authentication. This enables the Pootle server to connect to the version control
server and to submit changes with the appropriate privileges.

The following examples should help the pootle administrator to configure this authentication properly.

Subversion (HTTP)

• Add a new user with appropriate privileges to the subversion server, if necessary (e.g. read subversion autho-
rization)

• Make sure, that the pootle user has write access for ~/.subversion/ to store authentication tokens. The pootle
user is whichever user is running the Pootle application. When running behind a webserver this might be the
webserver user. Thus on some systems using Apache that user is www-data.

• Do a real svn commit with the uid of the pootle user in order to:

– Import (possibly) an SSL certificate

– Store the username and password in the subversion authentication cache (by default, the option
store-passwords is enabled in ~/.subversion/config)

• If you start Pootle from an init script, make sure that all necessary environment variables are set. $HOME will
be needed to obtain your cached authentication information, for example.

From now on, the pootle user should use these stored access credentials when uploading commits for this repository.

Adding New in version 2.5.

When a language is initialized from templates, Pootle will check if it is inside a version control checkout/clone. If it
is, it will add the new files as initialized from the templates, and commit these initial versions. The same is done when
updating against templates at a later stage – if this introduced any new files, these will be added to the configured
version control system.

A typical commit message when adding from Pootle will look something like this:

New files added from Labs Translation Server based on templates

1.2.2 Online translation editor

Alternative source language

Pootle has the ability to display alternative source languages while translating. Thus, translators who know another
language better than English can take part in the translation project. Also, it provides a way to disambiguate terminol-
ogy by seeing how other languages have translated the same string.

1.2. Features 13

http://svnbook.red-bean.com/nightly/en/svn.serverconfig.httpd.html#svn.serverconfig.httpd.authz
http://svnbook.red-bean.com/nightly/en/svn.serverconfig.httpd.html#svn.serverconfig.httpd.authz

Pootle Documentation, Release 2.5.1.3

Setup

Users who want to use the functionality need to specify the desired alternative source languages in their account
configuration. Alternatively, Pootle will try to guess the user’s alternative source language by looking at the browser’s
Accept-Lang header.

Note: If the selected project doesn’t have translations in the alternative source language then no alternative will be
displayed.

This feature is enabled by default.

Matching criteria

In order to show suggestions from another language, the following is needed:

• The alternative languages must be visible in Pootle and added to the same project.

• The string must be translated in the alternative language (not incomplete or untranslated).

• The file names need to be identical (identical strings from different files are not matched).

• The source text for both translations need to be identical.

Special characters

Pootle can display clickable characters to help people insert characters which might be difficult to type. For many
languages using the Latin alphabet with diacritics, this helps a lot, especially where keyboard layouts are not always
common.

This page allows people to specify which characters might be useful for translators. This does not solve the input
needs for all languages, but has been a very useful help for many languages, especially in translate@thons.

For people using non-Latin scripts, consider if it will be useful to perhaps include things that can’t be easily typed by
translators in your language. We will probably need to limit the number of characters, but hopefully we can find a
reasonable compromise that will help many people.

14 Chapter 1. All you need to know

mailto:translate@thons

Pootle Documentation, Release 2.5.1.3

If you edit this page, please ensure that you use a browser that supports UTF-8 encoding so that the existing text is
kept intact. Note that you might not be able to see all the characters on this page if you do not have the appropriate
fonts installed. Please take care not to edit something inadvertently.

The characters

Afrikaans áéíóúý äëïöü âêîôû è

Northern Sotho šŠ

Tswana šŠ êô

Venda

old orthography: áéíóú aeiou

Vietnamese (vi) àãáăâèéêìíòõóôùúýd̄₫«» ÀÃÁĂÂÈÉÊÌÍÒÕÓÔÙÚÝÐ

You could prioritize by excluding the characters covered by the Latin-1 codeset, which are available via most
standard keyboards.

Since Vietnamese is mostly composed of accented vowels as above, the priority should be to help users acquire
the appropriate input systems and keyboard layouts. Relying on clicking each character from a palette would
slow down translation severely. However, it would make translation possible in the short term for those who
can’t yet input our language, or for those accessing computers which for some reason won’t use the correct input
software.

Quality checks

Pootle provides a powerful way of reviewing translations for quality. It exposes most of the pofilter tests that can test
for several issues that can affect the quality of your translations.

If Pootle indicates a possible problem with a translation, it doesn’t mean that the translation is necessarily wrong,
just that you might want to review it. Pootle administrators should indicate the correct project type (GNOME, KDE,
Mozilla, etc.) in the administration pages. This will improve the accuracy of the quality checks.

To review the quality checks you need to have translation rights for the project. To find the results, click on the
“Review” tab. Clicking on the name of a test will step you through the translations that fail the test.

To understand the meaning of each test, Pootle displays the failing tests on the top-right corner of the translation page
with a link to the online documentation. You can also read the detailed descriptions of the pofilter tests.

Overriding Quality Checks

New in version 2.1.

It is possible to override the quality check if the translation is correct. Reviewers are able to remove the check for a
certain string to indicate that the string is correctly translated. This avoids having to recheck the same checks multiple
times.

If the translation is changed, this information is discarded to ensure that the new translation is tested again for any
possible issues.

1.2. Features 15

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html#pofilter-tests
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html#test-description

Pootle Documentation, Release 2.5.1.3

Translation Memory

Changed in version 2.5.

Pootle provides suggested translations to the current string. Translator can use these suggestions for the translation.

Suggestions are based on previous translations of similar strings. These Translation Memory (TM) matches mean that
you can speed up your translation and ensure consistency across your work.

Using Translation Memory

Translation Memory suggestions are automatically retrieved when you enter a new translation unit. These are dis-
played below the editing widget. You can insert a TM suggestion by clicking on the suggestion row.

The differences between the current string and the suggested string are highlighted, this allows you to see how the two
differ and helps you make changes to the suggestion to make it work as the current translation.

Configuring Translation Memory

Translation Memory will work out of the box with a default Pootle installation. By default Pootle will query Translate’s
Amagama Translation Memory server, which hosts translations of an extensive collection of Opensource software.

If you want to setup and connect to your own TM server then the AMAGAMA_URL will allow you to point to a private
TM server.

Machine Translation

New in version 2.1.

Pootle has the ability to use online Machine Translation (MT) Services to give suggestions to translators. This feature
has to be enabled by the server administrators.

Using Machine Translation

Note: Machine Translations are not meant to replace human translations but to give a general idea or understanding
of the source text. It can be used as suggestion of a translation, but don’t forget to review the suggestion given.

If the server administrator has enabled machine translation then an icon will be displayed for each source text
(English or alternative source language) next to the Copy button. Clicking the relevant buttons will retrieve translation
suggestions from the online services and will mark the current string as fuzzy to indicate that review is required.

Enabling Machine Translations

To enable a certain Machine Translation Service, edit your configuration file and add the desired service within the
MT_BACKENDS setting.

Each line is a tuple which has the name of the service and an optional API key. Some services may not require API
keys but others do, so please take care of getting an API key when necessary.

16 Chapter 1. All you need to know

http://amagama.translatehouse.org

Pootle Documentation, Release 2.5.1.3

Available Machine Translation Services

Supported Services:

Google Translate

Apertium

Google Translate is widely used and supports a number of languages. It is a paid service requiring an account and API
key.

On the other hand, Apertium is best suited for close language pairs. Especially for those languages spoken in the
Iberian Peninsula that are similar.

Offline translation

Pootle’s strength is making translation management easy, allowing large teams to collaborate while ensuring quality
and consistency through features like quality checks and Terminology, opening the door for casual contributions and
crowd-sourcing through Translation suggestions.

However experienced translators might still prefer to use a dedicated desktop translation application.

Offline translation using whatever tool the user prefers can be integrated within Pootle’s workflow easily through
downloading and uploading translation files.

We recommend Virtaal for offline translation, as it supports the same formats that Pootle supports, has all of Pootle’s
features and power and more.

Downloading

From the Translate tab in the translation project page users can download files for offline translations.

Files are available in the original format and in XLIFF format. Bilingual formats are suitable for offline translation,
but Monolingual formats should be treated as just an export. If you want to translate files offline from a monolingual
project, it is best to download the file as XLIFF.

XLIFF export will include all of the information in Pootle’s database (like suggestions, fuzzy, translators comment)
even if the original format doesn’t support representing this information.

In case you want to work with multiple files at once, you can download the whole translation project or the contents
of a subdirectory as a ZIP archive.

Uploading

From the translation project page you can upload translations to Pootle. Translations from the uploaded file will be
merged with existing translations in the database, the merge process depends on the merging method the user selects,
and the User permissions the user has.

Merging methods

Merge Translations in the uploaded file are accepted for currently untranslated strings. In case of conflict between
the current file and the uploaded file, the new translations are turned into suggestions. The file structure will not
change, new strings will be ignored. This requires the “translate” permission.

1.2. Features 17

https://developers.google.com/translate/v2/using_rest#language-params
https://developers.google.com/translate/v2/pricing
http://www.apertium.org/?id=whatisapertium&lang=en
http://virtaal.org
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html#xliff

Pootle Documentation, Release 2.5.1.3

Suggest No translation is accepted, all new translations are added as suggestions. This requires the suggest permis-
sion.

Overwrite The current file is replaced with the uploaded version. All the current translations on Pootle are lost. The
structure of the file may change with new strings introduced and some existing strings deleted. This requires the
“overwrite” permission.

Advanced uploading Most of the time, you’ll be uploading files you directly downloaded from Pootle — either in
the original format or as XLIFF export. Pootle will match the uploaded file with an existing file based on filename.

In case a file got renamed or you want to merge translations from a different file (for example a translation compendium
created by pocompendium) use the Upload to field to specify which existing file to merge with.

Users with admin permissions can introduce new files by just uploading them. When uploading a new file, the merge
method is irrelevant.

Users can mass upload files using a ZIP archive. Pootle expects a ZIP file similar to the one it exports. The selected
merge method will apply to the content of the archive on a file by file basis.

If a ZIP archive is selected, the Upload to field can be used to specify the subdirectory to merge with.

Caveats Users with admin permissions should be very careful when uploading ZIP archives. Mistakes in naming or
incorrect Upload to choice can lead to introduction of many spurious files.

Users with overwrite permissions should be careful when uploading ZIP archives, as all files will be overwritten
including ones that they may not have translated. When overwriting, it is better to do it one file at a time.

Files of a different format can be uploaded, and will be converted on the fly, but the merging behaviour is format
specific and not always predictable. This also applies to XLIFF files generated outside of Pootle. It is preferable to
always use the original format or the XLIFF file exported by Pootle.

Monolingual files can be uploaded, but this is not recommended for normal use. To merge translations, a corresponding
template file is required. The uploaded file and the template file should have exactly the same structure. If their versions
differ, incorrect translations may be introduced. This is why we recommend never using monolingual files for offline
translations. Uploading monolingual files should be used only when initially importing existing work.

Searching in Pootle

Pootle provides a searching functionality that allows translators and reviewers to search through translations for some
text. The search box is shown close to the top of the page. Searching can be used to find specific things you want to
work on, see how issues were solved before, or to verify consistency in your translations.

Search results are up to date, and will reflect the current translations in Pootle.

Search domain

It is important to realize that when a new search term is entered, searching will take place inside the currently
viewed domain. If you are currently at the top level of your project, the whole project will be searched. If you are
viewing a directory, only files in that directory will be searched. If you are already viewing/translating a file, only that
file will be searched.

The first result will be shown in context in the file where it is found. When you click “Skip”, “Suggest” or “Translate”
it will provide the next match to the search (in the original domain) until all matches were presented. Remember that
if you edit the search query while viewing search results in a specific file, your new query will only search in that
specific file.

18 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocompendium.html#pocompendium

Pootle Documentation, Release 2.5.1.3

Advanced search

The search function improved in Pootle 1.2. Next to the search textbox, there’s an arrow icon that when clicked will
toggle some options for the search to be done.

At this stage, the advanced search option allows searching in specific fields. It is possible to select to search for text
in source and target texts as well as in comments and locations. Any combination of these options is accepted.

As a default, it will search for source and target strings. If a non-default search is performed, the search widget will
slightly change its background colour.

Backend The basic searching uses pogrep which will look for the substring in the source and target text. It supports
Unicode normalization. Alternatively, a Pootle server might be installed with an indexing engine (PyLucene or Xapian)
to speed up searching. Search results can differ slightly from the normal search, based on the indexing that engine
uses.

Some basic query in Lucene syntax is also possible. More information on Lucene queries.

Keyboard shortcuts

New in version 2.5.

Global

Action Shortcut
Content Zoom Out Ctrl+Shift+-
Reset Content Zoom Ctrl+Shift+0
Content Zoom In Ctrl+Shift+"+"

Editing

Action Current shortcut Proposed shortcut
Submit and move to next translation Ctrl+Enter
Toggle the ‘Needs work’ flag Ctrl+Space
Toggle the suggest/submit mode Ctrl+Shift+Space
Copy the contents from the original language Alt+Down
Focus on comments field Ctrl+Shift+C

Navigation

Action Shortcut Alternative Shortcut
Move to previous string Ctrl+Up Ctrl+,
Move to next string Ctrl+Down Ctrl+.
Move to the first string Ctrl+Shift+Home
Move to the last string Ctrl+Shift+End
Move up 10 strings Ctrl+Shift+Page Up Ctrl+Shift+,
Move down 10 strings Ctrl+Shift+Page Down Ctrl+Shift+.
Select search box Ctrl+Shift+S
Select page number Ctrl+Shift+N

1.2. Features 19

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html#pogrep
http://lucene.apache.org/java/docs/queryparsersyntax.html

Pootle Documentation, Release 2.5.1.3

Translation suggestions

Pootle has the ability to optionally allow users to provide suggestions that need to be reviewed before they are accepted
into the real translation files. Who is allowed to do what, is determined by the configuration of User permissions for
the project or the server.

This allows for a team to form with different roles for different team members, and makes it possible to have a more
explicit review step that requires suggestions to be checked before they become the real translations. This also allows
the collection of different ideas for translating a single string.

Viewing and making suggestions

When translating, suggestions are shown inline so they’re always visible. If a user wants to view all the suggestions
within a project scope, it just needs to go to the “Review” tab and click on the “View Suggestions” link. Users with
rights to translate will be shown a “Review Suggestions” link and will be able to accept and reject suggestions.

Users with rights for making suggestions will see a “Suggest” button next to “Submit”. Making a suggestions is as
easy as clicking the button – hey, did you expect more steps involved?

Reviewing suggestions

In order to review suggestions, users must have privileges to translate. There are two ways for reviewing suggestions:
going through all of them, or reviewing while translating.

To go through all of them, the reviewer must click on “Review Suggestions” within the “Review” tab of the project.
This would guide her/him through all the suggestions available for the current view.

The second method is straightforward, since suggestions are shown throughout the translation process. Additionally,
buttons for accepting and rejecting the suggestions are displayed.

While reviewing a suggestion, a coloured difference between the current translation and the suggestion is displayed.
If available, the username is provided of the user that gave the suggestion.

A click on the green tick icon approves the selected suggestion while the red cross rejects the selected suggestion. A
suggestion approval doesn’t imply the rejection of the remaining suggestions.

Terminology

Pootle can help translators with terminology. Terminology can be specified to be global per language, and can be
overridden per project for each language. A project called terminology (with any full name) can contain any files that
will be used for terminology matching. Alternatively a file with the name pootle-terminology.po (in a PO project)
can be put in the directory of the project, in which case the global one (in the terminology project) will not be used.
Matching is done in real time.

Ideally, the source term should be the shortest, simplest form of a word. Therefore cat, dog, house are good, but cats,
dogged and housing are bad.

Context indicators are allowed in the source text, in brackets after the term, but keep them short, eg file (noun), view
(verb), etc.

The ideal is therefore that the target term be something that you’d like the translator to be able to insert... but strictly
speaking the target text can be anything, including a definition.

If the terminology PO file has translator comments, they will be displayed as a tooltip in Pootle.

20 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

What does it do?

If our glossary has an entry: file->lêer, and we translate a sentence like The file was not found, we can suggest the
glossary entry file->lêer as relevant to the translation, even if we don’t have any TM entry that is related to the complete
sentence that is available for translation.

Say our glossary has an entry category->kategorie and we translate a sentence like Please enter the categories for
this photo, we can suggest the glossary entry category->kategorie, even though the letters category doesn’t occur
anywhere in the original string.

Limits

Currently a single term entry can be up to 30 characters long (including context information), and the first 500 charac-
ters of each translation are scanned. Terms can consist of many words, but consider making them as general or simple
as possible for maximum impact.

If these limits prove too restrictive, feel free to point out use cases where this is not sufficient.

Since the terminology matching is performed in real-time, you might want to keep an eye on the size of your terminol-
ogy project to ensure that performance is not affected too much by having too many terms. This is highly dependent
on your server abilities and the nature of what you are translating.

Generating terminology

New in version 2.1.

Project administrators can generate a list of frequently occurring terms from the Terminology tab in the Pootle interface,
which can help to quickly standardize some frequently occurring terms. It is also possible to add extra entries. This is
based on the poterminology tool from the Translate Toolkit.

Extension Actions

New in version 2.5.1.

Extension actions are used to add custom action links to Pootle. Extension actions are Python scripts that can perform
tasks such as generating language packs, provide downloads, or performing checks across several languages and
returning a report.

Implementing an extension action

Extension actions are Python classes in module files stored in the pootle/scripts/ext_actions directory. The names of
modules or classes are not important, but only classes derived from the subclasses of ExtensionAction will actually
create extension actions.

There are several subclasses of ExtensionAction defined, depending on the scope of the action.

• ProjectAction – an action that will apply to all or part of a project.

• LanguageAction – an action that will apply to a language across multiple projects.

• TranslationProjectAction – an action that will apply to a single language within a project.

• StoreAction – an action that will apply only to a single translation file (store) within a specific language and
project.

1.2. Features 21

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poterminology.html#poterminology

Pootle Documentation, Release 2.5.1.3

Extension Action properties

Every extension action has a category and a title. The category is used to group related actions together, and is
displayed as a small text label on the left margin of the Actions section of the relevant Pootle screens. The built-in
actions for downloading and uploading translation files and archives use the category ‘Translate offline’ but extension
actions can use any category they wish to. The title of the extension action is the text of the link that is displayed to the
right of the category label, and clicking on that link will invoke the action with the current project, language, and/or
store.

Extension action tooltips

The docstring for an extension action class is used as the tooltip (mouseover text) for the link created. Like all the
other strings in an extension actions module, it too is implicitly internationalized, and can be localized by creating
translation files and importing them into Pootle.

Localization of categories and titles

It may be desirable to have the category and title text displayed in different languages depending on the preferences of
users. If either property is a string that is already in the Pootle localization (e.g. ‘Translate offline’) it will be displayed
using the standard Pootle localization for the current locale selected by the user preferences.

Titles and categories that are not already localized (or for which a different localization is desired) should be ex-
tracted from the extension action module using the i18n script located in the pootle/scripts/ext_actions
directory:

$ cd $POOTLE_HOME/pootle/scripts/ext_actions
$ ls
hello.py i18n
$./i18n hello
$ ls
hello.pot hello.py i18n

The generated module.pot file is a translation template file that can be moved to a templates subdirectory (and copied to
a language subdirectory as a PO file). These directories would be pootle/scripts/locale/templates and
e.g. pootle/scripts/locale/fr. The PO file can be localized using Pootle, Virtaal, or any other translation
tool that works with PO files.

Tags

New in version 2.5.1.

Pootle supports tags that can be used as a way to group and filter related items.

Note: Currently tags are only available for translation projects and individual files. We expect this to expand in future
versions.

Managing tags

Tags are hidden by default, and can be shown by clicking on the tag icon near the top of the page (in pages that

allow showing the tags like project overview, translation project overview, and so on). Clicking on it again will
hide the tags.

22 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

When tags are shown, the add tag icon will be displayed (for users who have enough permissions to add tags).
Clicking on the icon will allow you to add a new tag to the item. If the tag does not exist then one will be created and
applied to the current item.

Note: Tag names are case insensitive (they will be automatically converted to lowercase).

Warning: Tags must be composed of only letters and numbers, and can have spaces, colons, hyphens, underscores,
slashes or periods in the middle, but not at start or at the end.

Hovering over any of the tags with the mouse will show the “x” icon that can be clicked to remove the tag.

Filtering tags

On the project overview page, translation projects can be filtered based on their tags. Clicking on the filter icon
(near the top of the page), will activate tag filtering. Use the tag filtering area to filter the list of translation projects.

Clicking on the icon again will hide the filtering widget and reset the filters.

Goals

New in version 2.5.1.

Goals provide a way to group work based on any criteria. They can be prioritized to allow translators to focus on the
most important work.

By using project goals goals can be applied to the same file across all the languages in the project.

Note: Currently goals can only be applied to individual files.

Regular goals vs project goals

Pootle supports two types of goals:

1. Regular goals (or just goals)

2. Project goals

Project goals are available in all languages. They are applied to files in the template translation project. This allows
project managers to easily define a goal shared across all languages in the project.

The goal type can easily be changed using the goal editing form.

Project goals are shown below regular goals in the goals tab.

The statistics for a goal in a translation project will only include files that are part of that goal, and won’t be displayed
at all if the goal doesn’t have any matching files in the current directory of the project.

Goals tab

The goals tab is shown on the overview page for any translation project with goals applied to any of its files. When
shown, the goals tab provides a comprehensive list of all the goals in that translation project, including statistics for
each goal and links for working on the translations.

1.2. Features 23

Pootle Documentation, Release 2.5.1.3

The goals tab is also displayed on any directory, if there is any goal applied to files inside that directory and its
subdirectories.

Drill down into a goal It is possible to drill down into each goal on the goals tab to see the files and directories that
belong to a goal. This works like the regular files view with some small differences:

• In the upper level .. will return you to the list of goals,

• Breadcrumbs includes a reference to the current goal,

• Every translate link in the table points to a translate view restricted to the goal that is currently being viewed.

Adding and removing files from a goal

Goals are special tags which start with goal: (including the colon) and that have some additional attributes.

Note: Like tag names, the goal names are case insensitive (they are automatically converted to lowercase), and must
be composed of only letters and numbers, and can have spaces, colons, hyphens, underscores, slashes or periods in the
middle, but not at start or at the end.

Note: If you create a goal without the goal: prefix then an ordinary tag will be created instead.

Goals can be added and removed from a file as you would add and remove tags. If the goal did not previously exist
then a bew goal is created. While if you remove a goal from a file it will simply remove the association of that file to
the goal, the goal itself will not be removed.

Editing goals

To modify the properties of goals go to the goals tab and drill down into the goal. Use the form in the Description
section to modify any of the goal properties.

Note: Remember that if the goal is not applied to any files then it is not possible to edit the goal, as you won’t have
access to it in the goals tab. Simply add a file to the goal and you will be able to edit the goal.

You can modify the goal description and turn it into a project wide goal as needed.

Translating goals

The goals tab and goals drill down views provide translation links as in the normal file view that will take you to the
translation editor. Each link allows you to translate strings limited to the current goal.

Once in the translation editor the different filters are restricted to the stores in the given path that belong to the chosen
goal, thus allowing you to focus on the work in the current goal.

1.2.3 Administrative features

Captcha Support

New in version 2.0.5.

24 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

With Pootle’s flexible permissions several ways of interacting with your translation community are possible. If you
have a very open Pootle server, you might want to ensure that spammers don’t abuse it by enabling captchas.

Configuration

Changed in version 2.1: Captchas are now enabled by default.

If you have no need for captchas, e.g. at a translation sprint, you might want to remove captcha support. To disable it,
set USE_CAPTCHA in your configuration file to False. Restart your server for the setting to take effect.

Customization

The captchas can be customized. Look at the captcha template and code:

• pootle/templates/captcha.html and

• pootle/middleware/captcha.py

and make the changes you need.

News

Pootle provides the ability to access useful information about your language and projects. These can be read on Pootle,
or through your RSS reader.

Project administrators can write notices, and Pootle will also generate entries automatically for these events:

• New languages

• New projects

• New projects added to languages

• Project updated from version control

• Project updated to templates

• File committed to version control

• File uploaded to project

• Archive uploaded to project

• File reached 100%

Notifications

Pootle has RSS feeds for notifications about concrete translation projects, languages or even the whole site. Pootle’s
front page will show the latest events on the site.

Types of notifications

Notifications can either be manual or automatic.

Manual notifications are written by the language or translation project administrators and are shown in the relevant
pages within the “News” tab.

1.2. Features 25

http://en.wikipedia.org/wiki/CAPTCHA

Pootle Documentation, Release 2.5.1.3

When certain events occur, events will automatically be notified in the relevant feeds. The events that generate notices
include:

• New languages added

• New projects added

• New projects added to languages

• Project updated from version control

• Project updated against templates

• File committed to version control

• File uploaded to project

• Archive uploaded to project

• File reached 100%

• User registers in a language

• User registers in a project

If you want to receive all events for a language (including sub-projects) or absolutely everything on the whole server,
add ?all=True to the end of the URL for the RSS feed. (This is not currently advertised on Pootle due to possible
performance impact.)

User permissions

There are several rights which can be assigned to users or to a group of users, such as to all logged in users. The
default site-wide permissions are configured by the server administrator. These are the permissions that will be used
in each project unless other permissions are configured.

Permissions precedence

Permissions can be customized server-wide, per-language, per-project or language/project combination (translation
project).

Permissions apply recursively, so server-wide permissions will apply to all languages and projects unless there is a
more specific permission. Language permission applies to all translation projects under that language, etc.

Special users

Pootle has two special users, nobody and default, which are used to assign permissions to more than one user at once.
The user nobody represents any non-logged in user, and default represents any logged in user.

If a user has permissions assigned to her user account they override any default permissions even those applied to more
specific objects (i.e. a user who has specific rights on a language will override default rights on translation projects).

Server administrators can be specified in the users page of the admin section. Server administrators have full rights on
all languages and projects and override all permissions.

Available permissions

The following permissions may be set for the server or per language, or language-project combination:

view Limits access to project of language but does not limit it’s visibility.

26 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

suggest The right to suggest a translation for a specific string, also implies the right to upload file using suggest only
method.

review The right to review the suggested translations and accept or reject them, as well as the right to reject false
positive quality checks

translate The right to supply a translation for a specific string or to replace the existing one. This implies the right to
upload files using the merge method.

archive The right to download archives (ZIP files) of a project or directory.

overwrite The right to entirely overwrite a file at the time of upload (instead of the default behaviour of merging
translations)

administrate The right to administrate the project or language including administer permissions and delegating rights
to users (this is not the same as the site administrator)

commit The right to update or commit a file to the version control system (if the files are configured for Integration
with Version Control Systems integration)

Permissions interface

Users with administrative rights for languages or translation projects can access the permissions interface by clicking
on the Permissions tab on the language or translation project index pages.

Pootle administrators will find the default permissions interface on the administration page, at the “Permissions” tab.

The current rights are listed as they are assigned. The user “nobody” refers to any user that is not logged in (an
anonymous, unidentified user). The user “default” refers to the rights that all logged in users will have by default,
unless other specific rights were assigned to them. The rest of the users are users of the Pootle server for which
non-default rights were assigned.

Changing permissions In the list of permissions, you can simply select which rights must be assigned to that user
or class of users. You might need to hold down the Ctrl key of you keyboard to select multiple rights. Changes will
be updated when you submit the form.

Adding a user To set permissions for a specific user, select the user in the dropdown list and set the specific rights
for that user. This is only necessary if the user does not yet have their own set of rights defined.

Users who selected the language or project in their profile settings will be listed as the project or language team. After
that follows a list of all registered users.

Removing a user To reset a user’s rights to the default rights, select the tick box next to their name and permissions
list. When you submit, their rights will be reset to the default rights.

Warning: A user with administrative rights can remove his own administrative rights.

1.2. Features 27

Pootle Documentation, Release 2.5.1.3

1.3 Administering a server

1.3.1 Installation

Installation

Want to try Pootle? This guide will guide you through installing Pootle and its requirements in a virtual environment.

Before proceeding, consider installing these first:

• At least Python 2.6

• python-pip

If you only want to have a sneak peek of Pootle, the default configuration and the built-in server will suffice. But
in case you want to deploy a real world server, installing optional packages, using a real database and a proper web
server is highly recommended.

Note: The easiest way to test and install Pootle is by using pip. However, installations can be done straight from git
sources or be automated by using fabric deployment scripts.

Hardware Requirements

Your Pootle installation will need to be flexible enough to handle the translation load. The recommended hardware
depends highly on the performance you expect, the number of users you want to support, and the number and size of
the files you want to host.

Whatever hardware you have, you will still benefit from performance improvements if you can optimize your system.

Your disk space should always be enough to store your files and your Pootle database, with some extra space available.

Setting up the Environment

In order to install Pootle you will first create a virtual environment. This allows you to keep track of dependencies
without messing up with system packages. For that purpose you need to install the virtualenv package. You might
already have it, but in case you haven’t:

$ pip install virtualenv

Now create a virtual environment on your location of choice by issuing the virtualenv command:

$ virtualenv /var/www/pootle/env/

This will copy the system’s default Python interpreter into your environment. For activating the virtual environment
you must run the activate script:

$ source /var/www/pootle/env/bin/activate

Every time you activate this virtual environment, the Python interpreter will know where to look for libraries. Also
notice the environment name will be prepended to the shell prompt.

Installing Pootle

After creating the virtual environment, you can safely ask pip to grab and install Pootle by running:

28 Chapter 1. All you need to know

http://www.pip-installer.org/

Pootle Documentation, Release 2.5.1.3

(env) $ pip install "Pootle==2.5.1.3"

This will fetch and install the minimum set of required dependencies as well.

Note: If you run into trouble while installing the dependencies, it’s likely that you’re missing some extra packages
needed to build those third-party packages.

For example, lxml needs a C compiler.

lxml also require the development packages of libxml2 and libxslt.

If everything went well, you will now be able to access the pootle command line tool within your environment.

(env) $ pootle --version
Pootle 2.5.1.2
Translate Toolkit 1.10
Django 1.4.10

Initializing the Configuration

Once Pootle has been installed, you will need to initialize a configuration file for it. This is as easy as running:

(env) $ pootle init

By default it writes the configuration file at ~/.pootle/pootle.conf but if you want you can pass an alternative
path as an argument to the init command. If the desired path exists, you will be prompted for whether to overwrite
the old configuration. Passing the --noinput flag assumes a negative answer.

Warning: This default configuration is enough to initially experiment with Pootle but it’s highly discouraged
and unsupported to use this configuration in a production environment.

Also, the default configuration uses SQLite, which shouldn’t be used for anything more than testing purposes.

The initial configuration includes the settings that you’re most likely to change. For further customization, you can
also check for the full list of available settings.

Setting Up the Database

Before your run Pootle for the first time, you need to create the schema for the database and populate it with initial
data. This is done by executing the setup management command:

(env) $ pootle setup

Note: If you are installing directly from the code then you must also build the assets after running the previous
command:

(env) $ pootle collectstatic --noinput
(env) $ pootle assets build

Running Pootle

By default Pootle provides a built-in CherryPy server that will be enough for quickly testing the software. To run it,
just issue:

1.3. Administering a server 29

http://lxml.de/installation.html
http://www.cherrypy.org/

Pootle Documentation, Release 2.5.1.3

(env) $ pootle start

And the server will start listening on port 8000. This can be accessed from your web browser at
http://localhost:8000/.

Setting up a Reverse Proxy

By default the Pootle server runs on port 8000 and you will probably be interested on binding it to the usual port 80.
Also, it’s highly recommended to have all the static assets served by a proper web server, and setting up a web proxy
is the simplest way to go.

The Running under a Web Server section has further information on setting up a web server that proxyes requests to
the application server.

If you want to omit a reverse proxy and rather prefer to use a web server for serving both dynamic and static content,
you can also setup such a scenario with Apache and mod_wsgi for example.

Running Pootle as a Service

If you plan to run Pootle as a system service, you can use whatever software you are familiar with for that purpose.
For example Supervisor, Circus or daemontools might fit your needs.

Further Configuration and Tuning

This has been a quickstart for getting you up and running. If you want to continue diving into Pootle, you should first
consider making some optimizations to your setup — don’t forget to switch your database backend! After that you
should also adjust the application configuration to better suit your specific needs.

For additional scripting and improved management, Pootle also provides a set of management commands to ease the
automation of common administration tasks.

Automated deployment using Fabric

Pootle can be deployed using Fabric automation scripts. There are other methods to deploy Pootle, but using Fabric
with these scripts allows automated deployments and simplifies maintenance tasks and the upgrade to newer versions.

The sample scripts bundled with Pootle allow you to deploy a Pootle server using a Python virtualenv, running on a
Apache server with mod_wsgi using MySQL as database server on Debian-based systems. These sample scripts can
be modified to perform different deployments.

To see a comprehensive list of all Fabric commands available to deploy Pootle check the Fabric commands reference.

Preparing the remote server

Before performing an automated deployment using Fabric, make sure the server where Pootle is going to be deployed
has the required software.

Installing required software on the remote server Before proceeding, install the following software (if absent) on
the remote server:

• Python 2.5, 2.6, or 2.7

30 Chapter 1. All you need to know

http://supervisord.org/
http://circus.io
http://cr.yp.to/daemontools.html

Pootle Documentation, Release 2.5.1.3

• python-pip

• Git distributed version control system

• Apache web server

• MySQL database server

• OpenSSH server

• C compiler (to install Pootle’s Python dependencies – can be removed later)

Note: Currently only Debian-based (e.g. Ubuntu) servers are supported.

Note: If you have problems installing the dependencies during the bootstrap you are probably missing other packages
needed to build those third-party Python modules. For example, lxml needs development files for libxml2 and libxslt1
(as well as the C compiler mentioned above).

Note: Also consider installing optional packages for optimal performance.

Hardware requirements Check the Hardware requirements on Installation docs.

Preparing Fabric deployment

Before performing a deployment you will need to install some software on the local computer and configure the
necessary settings to connect to the remote server.

Installing required software on the local computer The first step is to install the necessary software on the local
computer.

Note: We strongly recommend using a virtual environment (virtualenv). Check the Setting up the Environment docs
for information about virtualenvs.

$ pip install Fabric

Getting Pootle Fabric files Pootle is bundled with sample scripts for deploying using Fabric. The relevant files are:

• fabfile.py

• Files inside the deploy/ directory

You can get those files from the Pootle GitHub repository. The rest of the Pootle files are not necessary for this kind
of deployment.

Setting up Fabric The deploy/ directory contains sample files that can be used in combination with the
fabfile.py file for deploying Pootle servers.

There are two different deployment environments. Each one has a directory inside deploy/:

• Staging environment: deploy/staging/ directory

• Production environment: deploy/production/ directory

1.3. Administering a server 31

http://www.pip-installer.org/
http://lxml.de/installation.html
https://github.com/translate/pootle

Pootle Documentation, Release 2.5.1.3

This way server administrators can separate their testing and real-world Pootle servers.

For deploying a Pootle server using one of the environments it is necessary to put some configuration files in place:

• deploy/pootle.wsgi WSGI script that will be used to run Pootle.

• deploy/ENVIRONMENT/fabric.py Module with settings that will be used in Fabric.

• deploy/ENVIRONMENT/settings.conf Pootle-specific settings for the server (it will override the de-
faults). For example, the settings for connecting to the database will go here.

• deploy/ENVIRONMENT/virtualhost.conf Apache VirtualHost configuration file.

In the previous paths ENVIRONMENT is the directory name for the chosen environment (production or staging).

All the settings defined in the deploy/ENVIRONMENT/fabric.py module will populate the Fabric env
dictionary, making the configuration keys available in the deploy/ENVIRONMENT/settings.conf and
deploy/ENVIRONMENT/virtualhost.conf files. You can use basic Python string formatting to access the
configuration values.

Note: Sample configuration files are provided for reference under the deploy/ directory. Put them in the desired
environment directory, and adapt them to your needs before running any Fabric commands.

Check pootle/settings/90-local.conf.sample to see settings that you might want to use in
deploy/ENVIRONMENT/settings.conf.

Note: If it is necessary you can adapt the deploy/pootle.wsgi file to meet your needs.

Once you make your changes to the settings you are ready to run the Fabric commands.

Note: For security, please make sure you change the db_password setting – using the example one could make
your server vulnerable to exploits. The db_password setting is used both to properly configure Pootle, as well as to
set up the database user access for the deployment.

The db_root_password setting, on the other hand, is only used to configure the MySQL options file, if you choose
to do this, and is only needed when creating the database (if the normal user does not have the necessary permissions).
Leaving this with default setting will have no security impact.

How to run Fabric commands

In order to run Fabric commands for Pootle it is necessary that the directory containing the fabfile.py file and the
deploy subdirectory be included in the PYTHONPATH. If it is not, then add it using:

$ export PYTHONPATH=`pwd`:$PYTHONPATH

The fabric commands need to know the type of environment in which they are going to work, e.g. if the deployment
will be for the production environment. The Fabric commands for Pootle support two environments: production
and staging. To select the environment for running a command just add it before the command like this:

$ fab production bootstrap # Use the 'production' environment
$ fab staging bootstrap # Or use the 'staging' environment

Note: It is necessary to install Fabric in order to be able to run the fab command.

32 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Provide arguments Some commands do accept arguments – the argument name is followed by a colon (:) and the
value for the argument (with no spaces):

$ fab production load_db:dumpfile=backup_mysql.sql # Call load_db providing a database dump to load

The previous call runs the load_db command providing the value backup_mysql.sql for its dumpfile argu-
ment.

Tweak the environment One possible use for arguments is to tweak the environment when setting it, before calling
the commands:

$ fab production:branch=stable/2.5.0 bootstrap # Run bootstrap for a branch

In the previous example bootstrap is run after setting the environment using production but changing the branch to
work on, to be the value stable/2.5.0 passed to the branch argument.

Run several commands in a row It is possible to run several commands in a row with a single call:

$ # Run several commands in a row using a single call to fab
$ fab production:branch=stable/2.5.0 bootstrap create_db load_db:dumpfile=backup_mysql.sql

The previous call will run production followed by bootstrap, create_db and load_db, in that exact order.

Note: If you want to know more about Fabric, please read its documentation.

See the Fabric commands reference for a comprehensive list of all Fabric commands available for deploying Pootle,
with detailed descriptions of each command.

Configuring passwordless access

While it is not required, it is much easier to perform deployment operations without interactive prompts for login,
sudo, or MySQL database passwords:

• You can eliminate the need for an SSH login password by adding your public SSH key(s) to the
~/.ssh/authorized_hosts file of the user on the remote server.

• You can eliminate the need for sudo passwords by adding in the /etc/sudoers.d/ directory on the remote
server, a file (with permissions mode 440) containing the line:

username ALL = (ALL) NOPASSWD: ALL

where username must be replaced with the user configured in the fabric.py settings file.

• You can eliminate the need for MySQL passwords by configuring the database password(s) in the fabric.py
settings file, running the mysql_conf fabric command to create a MySQL options file for the remote user:

$ fab production mysql_conf # Set up MySQL options file

and then modifying the fabric.py settings file to un-comment the alternate value for db_password_opt
(and optionally db_root_password_opt, if db_root_password is configured).

Typical Usage Example

A typical usage example is included here in order to provide a more easy to understand example on how to use this
deployment method and the available commands.

1.3. Administering a server 33

http://docs.fabfile.org/en/latest/

Pootle Documentation, Release 2.5.1.3

Bootstrapping the environment You can install the Pootle software, configuration files, and directory tree(s) with
the bootstrap command.

$ export PYTHONPATH=`pwd`:$PYTHONPATH
$ fab production:branch=stable/2.5.0 bootstrap # Install Pootle 2.5

Setting Up the Database When setting up the database there are several possible scenarios:

• If creating a new database from scratch:

$ fab production create_db # Creates Pootle DB on MySQL
$ fab production update_config # Uploads the settings
$ fab production setup # Creates the DB tables and populates the DB

• If creating a blank database and populating with a (local) database backup:

$ fab production create_db # Creates Pootle DB on MySQL
$ fab production load_db:dumpfile=backup_mysql.sql # Populate DB from local dump

Note: The dumpfile (for load_db and dump_db) is local to the system where Fabric runs, and is automatically
copied to/from the remote server.

• If updating a previous version database (possibly just loaded with load_db) to the latest version of the schema:

$ fab production update_config # Uploads the settings
$ fab production setup # Updates the DB to the latest version

Enabling the web server
$ fab production:branch=stable/2.5.0 deploy

Available Fabric commands

New in version 2.5: Starting in this release, Pootle includes Fabric deployment scripts.

Introduction

The sample Fabric scripts provide several commands that you can use to easily deploy your Pootle site.

Note: Most of the examples in this section will use the production environment, but remember that other envi-
ronments can be used as well.

Please read first the How to run Fabric commands section in order to know how this commands can be run. Reading
the Typical Usage Example section might be helpful as well.

Available commands

bootstrap This command:

• Creates the required directories, asking to remove them first if they already exist

• Creates a virtual environment (virtualenv) and activates it

• Clones the Pootle repository from GitHub

34 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

• Checks out the specified branch, using master if no branch is specified

• Installs the deployment requirements as listed in requirements/, including the base requirements as well

Note: While running it may ask for the remote server root password, or more likely the sudo password, which is
the standard password for the remote user configured in the environment.

Note: Changed in version 2.5.1: Added support for bootstrapping from a given branch on Pootle repository.

Examples:

$ fab production bootstrap # Call that will use the default 'master' branch
$ fab production:branch=stable/2.5.0 bootstrap # Call which provides a branch

compile_translations This command:

• Compiles the MO files for Pootle translations

Examples:

$ fab production compile_translations

create_db New in version 2.5.1.

This command:

• Creates a new blank database using the settings provided to Fabric in the chosen environment

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment) as well as the specified db_user and/or database root password. See
the mysql_conf command for a way to eliminate the need for database password prompting.

Note: This command will try to create a database on MySQL, which will fail if MySQL is not installed or the settings
don’t provide configuration data for creating the database.

Examples:

$ fab production create_db

deploy This command:

• Calls the update_code command

• Calls the syncdb command

• Calls the migratedb command

• Calls the deploy_static command

• Calls the install_site command

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment).

Note: Changed in version 2.5.1: Added support for deploying from a given branch on Pootle repository.

1.3. Administering a server 35

Pootle Documentation, Release 2.5.1.3

Examples:

$ fab production deploy # Call that will use the default 'master' branch
$ fab production:branch=stable/2.5.0 deploy # Call which provides a branch

deploy_static This command:

• Creates pootle/assets/ directory if it does not exist

• Runs collectstatic –noinput –clear to collect the static files

• Runs assets build to create the assets

Examples:

$ fab production deploy_static

disable_site This command:

• Disables the Pootle site on Apache using the Apache a2dissite command

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment).

Examples:

$ fab production disable_site

drop_db New in version 2.5.1.

This command:

• Drops a database (losing all data!) using the settings provided to Fabric in the chosen environment

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment) as well as the specified db_user and/or database root password. See
the mysql_conf command for a way to eliminate the need for database password prompting.

Examples:

$ fab production drop_db

dump_db New in version 2.5.1.

This command:

• Dumps the database to the provided filename using the mysqldump command

• Downloads the dumpfile to the local computer

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment) as well as the specified db_user and/or database root password. See
the mysql_conf command for a way to eliminate the need for database password prompting.

Note: This commands can be used to perform periodic backups, that can be imported later using the load_db com-

36 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

mand.

Available arguments:

dumpfile The local filename for the file where the database will be dumped.

Default: pootle_DB_backup.sql.

Examples:

$ fab production dump_db # Call that will use the default filename
$ fab production dump_db:dumpfile=backup_mysql.sql # Call which provides a filename

enable_site This command:

• Enables the Pootle site on Apache using the Apache a2ensite command

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment).

Examples:

$ fab production enable_site

initdb New in version 2.5.1.

This command:

• Runs initdb to initialize the database

Examples:

$ fab production initdb

install_site This command:

• Calls the update_config command

• Calls the enable_site command

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment).

Examples:

$ fab production install_site

load_db New in version 2.5.1.

This command:

• Uploads the given SQL dump file to the remote server

• Imports it to the database specified on Fabric settings using the mysql command

1.3. Administering a server 37

Pootle Documentation, Release 2.5.1.3

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment) as well as the specified db_user and/or database root password. See
the mysql_conf command for a way to eliminate the need for database password prompting.

Note: You must first create the database you will import (e.g. using the create_db command) before calling this
command,

Available arguments:

dumpfile The local SQL dump filename that will be uploaded to the remote server and imported into an existing
database on the remote server. This file can be created using the dump_db command.

Note: This is a required argument.

Examples:

$ fab production create_db # Remember to create the DB first
$ fab production load_db:dumpfile=backup_mysql.sql

migratedb New in version 2.5.1.

This command:

• Runs migrate to update the 2.5 or later database schema to the latest version

Examples:

$ fab production migratedb

mysql_conf New in version 2.5.1.

This command creates a .my.cnfMySQL options file on the remote system with the password(s) for database access
stored in them (the passwords are taken from the fabric.py settings file). Once you have done this, you can un-
comment the alternate db_password_opt and db_root_password_opt settings in fabric.py, which will
eliminate the need for password prompting on all MySQL operations.

Examples:

$ fab production mysql_conf

production This command:

• Sets up the configuration for the production environment in Fabric settings

Note: This command is useless unless it is called before another command or commands.

Note: This command allows changing the settings. To do so just pass it any of its arguments when calling it.

Note that some commands might require passing any or all of these arguments to this command in order to overwrite
the default settings before calling those commands. For example the command stage_feature requires passing
branch, repo and feature.

Note: Changed in version 2.5.1: Added support for altering the settings based on the passed arguments.

38 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Available arguments:

branch A specific branch to check out in the repository.

repo A repository URL to clone from.

This allows to checkout from a fork repository (not necessarily on GitHub) and try new features developed on
that repository. It must be an URL that the git clone command is able to clone.

feature Allows specifying if the deployment is for a feature-staging server. Such servers are used by Pootle devel-
opers in order to allow quick test of new features using a live Pootle server.

Examples:

$ fab production bootstrap

In the previous example production is called to set up the environment for calling bootstrap afterwards.

$ fab production:branch=feature/extension-actions bootstrap

In the previous example production is called to set up the environment for calling bootstrap afterwards.

The branch argument overwrites the default branch in the settings, which are then used for all the subsequent
commands (just bootstrap in this example).

$ fab production:branch=feature/extension-actions,repo=git://github.com/unho/pootle.git bootstrap

In the previous example production is called to set up the environment for calling bootstrap afterwards.

The branch and repo arguments overwrite the default settings, which are then used for all the subsequent commands
(just bootstrap in this example).

$ fab production:branch=feature/extension-actions,repo=git://github.com/unho/pootle.git,feature=yes stage_feature

This example is like the previous one, with the addition of the feature argument that triggers the altering of several
settings. That altering is necessary for working with feature-staging servers.

setup New in version 2.5.1.

This command:

• Runs setup to create or upgrade the database as required

Examples:

$ fab production setup

setup_db New in version 2.5.1.

This command:

• Runs syncdb –noinput to create the database schema

• Runs initdb to populate the standard schema objects

• Runs migrate to bring the database schema up to the latest version

Examples:

$ fab production setup_db

1.3. Administering a server 39

Pootle Documentation, Release 2.5.1.3

stage_feature New in version 2.5.1.

This command:

• Calls the bootstrap command

• Calls the create_db command

• Copies the data in the specified source DB into the DB that will be used for the deployed Pootle

• Calls the update_db command

• Calls the deploy_static command

• Calls the install_site command

Note: While running it may ask for the remote server root password and the specified db_user password.

Note: This command is intended primarily for deploying ad-hoc Pootle servers for easing the test of feature branches
during Pootle development.

Warning: This command might require changing the source_db field in the
deploy/ENVIRONMENT/fabric.py file. Note that the database specified on this field must exist.

Warning: This command requires using the staging environment passing to it the feature argument, the
desired branch and optionally a repository URL.

Examples:

$ fab staging:branch=feature/extension-actions,feature=yes stage_feature
$ fab staging:branch=feature/extension-actions,repo=git://github.com/unho/pootle.git,feature=yes stage_feature

staging This command:

• Sets up the configuration for the staging environment in Fabric settings

Note: This command is useless unless it is called before another command or commands.

Note: This command allows changing the settings. To do so just pass it any of its arguments when calling it.

Note that some commands might require passing any or all of these arguments to this command in order to overwrite
the default settings before calling those commands. For example the command stage_feature requires passing
branch, repo and feature.

Note: Changed in version 2.5.1: Added support for altering the settings based on the passed arguments.

Available arguments:

branch A specific branch to check out in the repository.

repo A repository URL to clone from.

This allows to checkout from a fork repository (not necessarily on GitHub) and try new features developed on
that repository. It must be an URL that the git clone command is able to clone.

feature Allows specifying if the deployment is for a feature-staging server. Such servers are used by Pootle devel-
opers in order to allow quick test of new features using a live Pootle server.

40 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Examples:

$ fab staging bootstrap

In the previous example staging is called to set up the environment for calling bootstrap afterwards.

$ fab staging:branch=feature/extension-actions bootstrap

In the previous example staging is called to set up the environment for calling bootstrap afterwards.

The branch argument overwrites the default branch in the settings, which are then used for all the subsequent
commands (just bootstrap in this example).

$ fab staging:branch=feature/extension-actions,repo=git://github.com/unho/pootle.git bootstrap

In the previous example staging is called to set up the environment for calling bootstrap afterwards.

The branch and repo arguments overwrite the default settings, which are then used for all the subsequent commands
(just bootstrap in this example).

$ fab staging:branch=feature/extension-actions,repo=git://github.com/unho/pootle.git,feature=yes stage_feature

This example is like the previous one, with the addition of the feature argument that triggers the altering of several
settings. That altering is necessary for working with feature-staging servers.

syncdb New in version 2.5.1.

This command:

• Runs syncdb –noinput to create the database schema

Examples:

$ fab production syncdb

touch This command:

• Reloads daemon processes by touching the WSGI file

Examples:

$ fab production touch

unstage_feature New in version 2.5.1.

This command:

• Calls the disable_site command

• Calls the drop_db command

• Removes the configuration files created by the update_config command

• Removes the directories created during the deployment, including the ones holding the translation files and the
repositories for those translation files

Note: While running it may ask for the remote server root password and the specified db_user password.

Note: This command is intended for removing Pootle deployments performed using the stage_feature command.

1.3. Administering a server 41

Pootle Documentation, Release 2.5.1.3

Warning: This command requires using the staging environment passing to it the feature argument and the
desired branch.

Examples:

$ fab staging:branch=feature/extension-actions,feature=yes unstage_feature

update_code This command:

• Updates the Pootle repository from GitHub

• Checks out the specified branch, using master if no branch is specified

• Updates the deployment requirements as listed in requirements/, including the base requirements as well

Note: Changed in version 2.5.1: Added support for updating code from a given branch on Pootle repository.

Examples:

$ fab production update_code # Call that will use the default 'master' branch
$ fab production:branch=stable/2.5.0 update_code # Call which provides a branch

update_config This command:

• Will upload the configuration files included in the chosen environment to the remote server:

– Configure VirtualHost using the provided virtualhost.conf

– Configure WSGI application using the provided pootle.wsgi

– Configure and install custom settings for Pootle using the provided settings.conf

Note: While running it may ask for the remote server root password or the sudo password (standard password for
the remote user configured in the environment).

Examples:

$ fab production update_config

update_db This command:

• Runs updatedb and migrate to update the database schema to the latest version

Examples:

$ fab production update_db

upgrade New in version 2.5.1.

This command:

• Runs upgrade to apply any special post-schema-upgrade actions (including changes needed for updated Trans-
late Toolkit version). This would typically be performed after running the update_code command. If you haven’t
just upgraded Pootle or the Translate Toolkit to a new release, this isn’t generally required, so there is no need
to run it unless release notes or other instructions direct you to do so.

Examples:

42 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

$ fab production upgrade

Running under a Web Server

Running Pootle under a proper web server will improve performance, give you more flexibility, and might be better
for security. It is strongly recommended to run Pootle under Apache, Nginx, or a similar web server.

Note: Note that translation files must be served directly by the web server. These files are in the location indicated by
the Pootle PODIRECTORY setting.

Running under Apache

You can use Apache either as a reverse proxy or straight with mod_wsgi.

Proxying with Apache If you want to reverse proxy through Apache, you will need to have mod_proxy installed
for forwarding requests and configure it accordingly.

ProxyPass / http://localhost:8000/
ProxyPassReverse / http://localhost:8000/

Apache with mod_wsgi Make sure to review your global Apache settings (something like /etc/apache2/httpd.conf
or /etc/httpd/conf/httpd.conf) for the server-pool settings. The default settings provided by Apache are too high for
running a web application like Pootle. The ideal settings depend heavily on your hardware and the number of users
you expect to have. A moderate server with 1GB memory might set MaxClients to something like 20, for example.

Make sure Apache has read access to all of Pootle’s files and write access to the PODIRECTORY directory.

Note: Most of the paths present in the examples in this section are the result of deploying Pootle using a Python
virtualenv as told in the Setting up the Environment section from the Quickstart installation instructions.

If for any reason you have different paths, you will have to adjust the examples before using them.

For example the path /var/www/pootle/env/lib/python2.7/site-packages/ will be different if you
have another Python version, or if the Python virtualenv is located in any other place.

First it is necessary to create a WSGI loader script:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import os
import site
import sys

You probably will need to change these paths to match your deployment,
most likely because of the Python version you are using.
ALLDIRS = [

'/var/www/pootle/env/lib/python2.7/site-packages',
'/var/www/pootle/env/lib/python2.7/site-packages/pootle/apps',

]

Remember original sys.path.

1.3. Administering a server 43

https://httpd.apache.org/docs/current/mod/mod_proxy.html

Pootle Documentation, Release 2.5.1.3

prev_sys_path = list(sys.path)

Add each new site-packages directory.
for directory in ALLDIRS:

site.addsitedir(directory)

Reorder sys.path so new directories at the front.
new_sys_path = []

for item in list(sys.path):
if item not in prev_sys_path:

new_sys_path.append(item)
sys.path.remove(item)

sys.path[:0] = new_sys_path

Set the Pootle settings module as DJANGO_SETTINGS_MODULE.
os.environ['DJANGO_SETTINGS_MODULE'] = 'pootle.settings'

Set the WSGI application.
def application(environ, start_response):

"""Wrapper for Django's WSGIHandler().

This allows to get values specified by SetEnv in the Apache
configuration or interpose other changes to that environment, like
installing middleware.
"""
try:

os.environ['POOTLE_SETTINGS'] = environ['POOTLE_SETTINGS']
except KeyError:

pass

from django.core.wsgi import get_wsgi_application
_wsgi_application = get_wsgi_application()
return _wsgi_application(environ, start_response)

Place it in /var/www/pootle/wsgi.py. If you use a different location remember to update the Apache configu-
ration accordingly.

A sample Apache configuration with mod_wsgi might look like this:

WSGIRestrictEmbedded On
WSGIPythonOptimize 1

<VirtualHost *:80>
Domain for the Pootle server. Use 'localhost' for local deployments.
#
If you want to deploy on example.com/your-pootle/ rather than in
my-pootle.example.com/ you will have to do the following changes to
this sample Apache configuration:
#
- Change the ServerName directive to:
ServerName example.com
- Change the WSGIScriptAlias directive to (note that /your-pootle must
not end with a slash):
WSGIScriptAlias /your-pootle /var/www/pootle/wsgi.py
- Change the Alias and Location directives for 'export', and the Alias
directive for 'assets' to include the '/your-pootle'.
- Include the following setting in your custom Pootle settings:

44 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

STATIC_URL = '/your-pootle/assets/'
ServerName my-pootle.example.com

Set the 'POOTLE_SETTINGS' environment variable pointing at your custom
Pootle settings file.
#
If you don't know which settings to include in this file you can use
the file '90-local.conf.sample' as a starting point. This file can be
found at '/var/www/pootle/env/lib/python2.7/site-packages/pootle/settings/'.
#
Another way to specify your custom settings is to comment this
directive and add a new '90-local.conf' file (by copying the file
'90-local.conf.sample' and changing the desired settings) in
'/var/www/pootle/env/lib/python2.7/site-packages/pootle/settings/'
(default location for a pip-installed Pootle, having Python 2.7).
#
This might require enabling the 'env' module.
SetEnv POOTLE_SETTINGS /var/www/pootle/your_custom_settings.conf

The following two optional lines enable the "daemon mode" which
limits the number of processes and therefore also keeps memory use
more predictable.
WSGIDaemonProcess pootle processes=2 threads=3 stack-size=1048576 maximum-requests=500 inactivity-timeout=300 display-name=%{GROUP} python-path=/var/www/pootle/env/lib/python2.7/site-packages
WSGIProcessGroup pootle

Point to the WSGI loader script.
WSGIScriptAlias / /var/www/pootle/wsgi.py

Turn off directory listing by default.
Options -Indexes

Set expiration for some types of files.
This might require enabling the 'expires' module.
ExpiresActive On

ExpiresByType image/jpg "access plus 2 hours"
ExpiresByType image/png "access plus 2 hours"

ExpiresByType text/css "access plus 10 years"
ExpiresByType application/x-javascript "access plus 10 years"

Optimal caching by proxies.
This might require enabling the 'headers' module.
Header set Cache-Control "public"

Directly serve static files like css and images, no need to go
through mod_wsgi and Django. For high performance consider having a
separate server.
Alias /assets /var/www/pootle/env/lib/python2.7/site-packages/pootle/assets
<Directory /var/www/pootle/env/lib/python2.7/site-packages/pootle/assets>

Order deny,allow
Allow from all

</Directory>

Allow downloading translation files directly.
This location must be the same in the Pootle 'PODIRECTORY' setting.
Alias /export /var/www/pootle/env/lib/python2.7/site-packages/pootle/po

1.3. Administering a server 45

Pootle Documentation, Release 2.5.1.3

<Directory /var/www/pootle/env/lib/python2.7/site-packages/pootle/po>
Order deny,allow
Allow from all

</Directory>

<Location /export>
Compress before being sent to the client over the network.
This might require enabling the 'deflate' module.
SetOutputFilter DEFLATE

Enable directory listing.
Options Indexes

</Location>

</VirtualHost>

You can find more information in the Django docs about Apache and mod_wsgi.

.htaccess If you do not have access to the main Apache configuration, you should still be able to configure things
correctly using the .htaccess file.

More information on configuring mod_wsgi (including .htaccess)

Running under Nginx

Running Pootle under a web server such as Nginx will improve performance. For more information about Nginx and
WSGI, visit Nginx’s WSGI page

A Pootle server is made up of static and dynamic content. By default Pootle serves all content, and for low-latency
purposes it is better to get other webserver to serve the content that does not change, the static content. It is just the
issue of low latency and making the translation experience more interactive that calls you to proxy through Nginx.
The following steps show you how to setup Pootle to proxy through Nginx.

Proxying with Nginx The default Pootle server runs at port 8000 and for convenience and simplicity does ugly
things such as serving static files — you should definitely avoid that in production environments.

By proxying Pootle through nginx, the web server will serve all the static media and the dynamic content will be
produced by the app server.

server {
listen 80;
server_name pootle.example.com;

access_log /path/to/pootle/logs/nginx-access.log;

charset utf-8;

location /assets {
alias /path/to/pootle/env/lib/python2.6/site-packages/pootle/assets/;
expires 14d;
access_log off;

}

location /export {
alias /path/to/pootle/env/lib/python2.6/site-packages/pootle/po/;
expires 14d;

46 Chapter 1. All you need to know

https://docs.djangoproject.com/en/dev/howto/deployment/wsgi/modwsgi/
http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines
http://wiki.nginx.org/NginxNgxWSGIModule

Pootle Documentation, Release 2.5.1.3

access_log off;
}

location / {
proxy_pass http://localhost:8000;
proxy_redirect off;

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}
}

Proxying with Nginx (FastCGI) Run Pootle as a FastCGI application:

$ pootle runfcgi host=127.0.0.1 port=8080

There are more possible parameters available. See:

$ pootle help runfcgi

And add the following lines to your Nginx config file:

server {
listen 80; # port and optionally hostname where nginx listens
server_name example.com translate.example.com; # names of your site
Change the values above to the appropriate values

location ^~ /assets/ {
root /path/to/pootle/;

}

location ^~ /export/ {
root /path/to/pootle/;

}

location / {
fastcgi_pass 127.0.0.1:8000;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param REQUEST_URI $request_uri;
fastcgi_param DOCUMENT_URI $document_uri;
fastcgi_param DOCUMENT_ROOT $document_root;
fastcgi_param SERVER_PROTOCOL $server_protocol;
fastcgi_param REMOTE_ADDR $remote_addr;
fastcgi_param REMOTE_PORT $remote_port;
fastcgi_param SERVER_ADDR $server_addr;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SERVER_NAME $server_name;
fastcgi_pass_header Authorization;
fastcgi_intercept_errors off;
fastcgi_read_timeout 600;

}
}

Note: The fastcgi_read_timeout line is only relevant if you’re getting Gateway Timeout errors and you find

1.3. Administering a server 47

Pootle Documentation, Release 2.5.1.3

them annoying. It defines how long (in seconds, default is 60) Nginx will wait for response from Pootle before giving
up. Your optimal value will vary depending on the size of your translation project(s) and capabilities of the server.

Note: Not all of these lines may be required. Feel free to remove those you find useless from this instruction.

1.3.2 Upgrading

Upgrading

Here are some points to take into account while performing Pootle upgrades.

Checklist

Before upgrading Pootle to a newer version, make sure to go through this checklist.

• Familiarize yourself with important changes in Pootle over the versions.

• If you want to change databases, which might be needed when upgrading from Pootle 1.x to Pootle 2.x, or from
Pootle 2.0.x to 2.1.x, then have a look at the database migration page first, although some of the issues on this
page could still be relevant.

• Check the installation instructions for the newer version, and ensure that you have all the dependencies for the
newer version.

• Always make backups of all your translation files (your whole PODIRECTORY) and your custom settings file.
You can synchronize all your translation files with the database using the sync_stores command before you make
your backups.

• Make a backup of your complete database using the appropriate dump command for your database system. For
example mysqldump for MySQL, or pg_dump for PostgreSQL.

• If you are upgrading from a version of Pootle that uses localsettings.py then you want to make sure your config-
uration file is read when Pootle starts. For more information, read about customizing settings.

• You might want to look for any new available settings in the new version that you might want to configure.

• After a successful upgrade, consider clearing your cache. For users of memcached it is enough to restart mem-
cached. For users of the default database cache, you can drop the pootlecache table and recreate it with:

$ pootle createcachetable pootlecache

• Finally run the collectstatic and assets build commands to update the static assets:

$ pootle collectstatic --clear --noinput
$ pootle assets build

Performing the Database Upgrade

Changed in version 2.5.1.

Once you have the new code configured to in your server using the correct settings file, you will be ready to run the
database schema and data upgrade procedure.

Since the database upgrade procedures have been growing in complexity in the last releases it was necessary to provide
a simple way to upgrade Pootle using a single command. The old procedure is still available, mostly for debugging
failing upgrades, but the new procedure is now the preferred one.

48 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Simplified database upgrade Warning: Always make database backups before running any upgrades.

This is now the preferred way to upgrade the database.

The procedure is easy, just run:

$ pootle setup

Step by step database upgrade Warning: Always make database backups before running any upgrades.

Note: Use this procedure only if the Simplified database upgrade procedure doesn’t work for you.

The step by step database upgrade procedure lets you control the upgrade process and tweak it. This is useful for
debugging purposes.

Note: If you are upgrading from a Pootle version older than 2.5.0, you will need an extra step at the beginning (before
running syncdb --noinput):

$ pootle updatedb

The updatedb command upgrades the database schema to the state of Pootle 2.5.0. This is necessary due to the changes
made to the database schema migration mechanisms after the 2.5.0 release.

In the first step, the syncdb command will create any missing database tables that don’t require any migrations:

$ pootle syncdb --noinput

For this specific version (Pootle 2.5.1), and due to Pootle’s transitioning to South, you will need to run a fake migration
action in order to let South know which is your current database schema. You can execute the fake migration by running
the following commands:

$ pootle migrate pootle_app --fake 0001
$ pootle migrate pootle_language --fake 0001
$ pootle migrate pootle_notifications --fake 0001
$ pootle migrate pootle_profile --fake 0001
$ pootle migrate pootle_project --fake 0001
$ pootle migrate pootle_statistics --fake 0001
$ pootle migrate pootle_store --fake 0001
$ pootle migrate pootle_translationproject --fake 0001

Note: If you are upgrading from Pootle 2.5.0 you also have to run:

$ pootle migrate staticpages --fake 0001

The next step will perform any pending schema migrations. You can read more about the migrate command in South’s
documentation.

$ pootle migrate

Lastly, the upgrade command will perform any extra operations needed by Pootle to finish the upgrade and will record
the current code build versions for Pootle and the Translate Toolkit. Before running this command please check if you
are interested on running it using any of its available flags.

1.3. Administering a server 49

http://south.readthedocs.org/en/latest/commands.html#commands

Pootle Documentation, Release 2.5.1.3

$ pootle upgrade

Custom Changes

If you made any changes to Pootle code, templates or styling, you will want to ensure that your upgraded Pootle
contains those changes. How hard that is will depend entirely on the details of these changes.

Changes made to the base template are likely to work fine, but changes to details will need individual inspection to see
if they can apply cleanly or have to be reimplemented on the new version of Pootle.

Since Pootle 2.5 customization of style sheets and templates have become much easier to seperate from the standard
code. If you are migrating to Pootle 2.5+ then use this opportunity to move your code to the correct customization
locations.

Database Migration

The default configuration for Pootle uses SQLite which is not really suited for production use. If you started using
SQLite and want to migrate to another database system such as MySQL or PostgreSQL without recreating existing
data, you can perform a database migration using the steps described on this page.

Note: A database migration is possible since Pootle 2.1.1. It is possible to do the database migration using the version
2.0.6, which was specifically added to allow database migration. This migration will only work with Django 1.2 or
later.

Detailed Migration Process

Note: Pootle 2.1.x and 2.5.x database can be very large. Dumping and loading data will take long and will require
lots of RAM. If you have a 2.0 install it is better to migrate the database first and then upgrade to 2.5, since the 2.0
database is relatively small.

The steps to migrate between databases are as follows:

1. Make complete backups of all your files, settings and databases.

2. Ensure that you have:

(a) At least Pootle 2.0.* or Pootle 2.1.*.

(b) At least Django 1.2.0.

3. Don’t change the version of Pootle at any stage during this process.

4. Read about how to run management commands.

5. Stop the Pootle server to avoid data changing while you migrate.

6. Leave current settings intact.

7. Dump the data to a JSON file using the dumpdata command. Note the -n option.

$ pootle dumpdata -n > data.json

8. Create a new database for Pootle.

9. Change your settings to point at this new database.

50 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

10. Initialize the new database using the syncdb command.

Note: Sometimes not removing records introduced by syncdb can create problems. So if you experience any
failure during loaddata execution that can’t be solved by any other mean, then remove all the records from
the new database while keeping the tables intact.

11. Load the data from the JSON file in the new database using the loaddata command:

$ pootle loaddata ./data.json

Note: If you experience any problem during loaddata execution, you may find it helps to instead export the
data with:

$ pootle dumpdata > data.json

avoiding the use of -n or --natural options.

12. Restart the server; you should be running under the new database now.

Note: Some other problems reported during database migration may be solved by commenting all signal calls in
Pootle code during the database migration process. If you do so, remember to uncomment them after the migration.

1.3.3 Performance tuning and managing the server

Settings

You will find all the Pootle-specific settings in this document.

If you have upgraded, you might want to compare your previous copy to the one distributed with the Pootle version
for any new settings you might be interested in.

Customizing Settings

When starting Pootle with the pootle runner script, by default it will try to load custom settings from the ~/.poo-
tle/pootle.conf file. These settings will override the defaults set by Pootle.

An alternative location for the settings file can be specified by setting the -c </path/to/settings.conf/>
flag when executing the runner. You can also set the POOTLE_SETTINGS environment variable to specify the path
to the custom configuration file. The environment variable will take precedence over the command-line flag.

If instead of an installation you deployed Pootle straight from the git repository, you can either set the
POOTLE_SETTINGS environment variable or put a file under the pootle/settings/ directory. Note that the files in this
directory are read in alphabetical order, and creating a 90-local.conf file is recommended (files ending in -local.conf
will be ignored by git).

Available Settings

This is a list of Pootle-specific settings grouped by the file they’re contained and ordered alphabetically.

1.3. Administering a server 51

Pootle Documentation, Release 2.5.1.3

10-base.conf This file contains base configuration settings.

DESCRIPTION Description of the Pootle server.

TITLE The name of the Pootle server.

20-backends.conf Backend and caching settings.

OBJECT_CACHE_TIMEOUT Default: 2500000

Time in seconds the Pootle’s statistics cache will last.

POOTLE_TOP_STATS_CACHE_TIMEOUT Default: 86400

Time in seconds the Pootle’s top statistics cache will last.

30-site.conf Site-specific settings.

CAN_CONTACT Default: True

Controls whether users will be able to use the contact form. The address to receive messages is controlled by
CONTACT_EMAIL.

CAN_REGISTER Default: True

Controls whether user registrations are allowed or not. If set to False, administrators will still be able to create
new user accounts.

CONTACT_EMAIL Default: info@YOUR_DOMAIN.com

Address to receive messages sent through the contact form. This will only have effect if CAN_CONTACT is set
to True.

40-apps.conf Configuration settings for applications used by Pootle.

API_LIMIT_PER_PAGE Default: 0

New in version 2.5.1.

Number of records Pootle API will show in a list view. 0 means no limit.

CUSTOM_TEMPLATE_CONTEXT Default: {}

New in version 2.5.

Custom template context dictionary. The values will be available in the templates as {{ custom.<key> }}.

EMAIL_SEND_HTML Default: False

By default Pootle sends only text emails. If your organization would prefer to send mixed HTML/TEXT emails,
set this to True, and update activation_email.txt and activation_email.html in the templates/registration/ direc-
tory.

Note: Password reset emails will still be sent in plain text. This is a limitation of the underlying system.

FUZZY_MATCH_MAX_LENGTH Default: 70

New in version 2.5.

Maximum character length to consider when doing fuzzy matching. The default might not be enough for long
texts. Please note this affects all fuzzy matching operations, so bear in mind this might affect performance.

52 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

FUZZY_MATCH_MIN_SIMILARITY Default: 75

New in version 2.5.

Minimum similarity to consider when doing fuzzy matching. Please note this affects all fuzzy matching opera-
tions, so bear in mind this might affect performance.

LEGALPAGE_NOCHECK_PREFIXES Default: (’/accounts’, ’/admin’, ’/api’, ’/contact’,
’/django_admin’, ’/jsi18n’, ’/pages’,)

New in version 2.5.1.

List of path prefixes where the LegalAgreementMiddleware will check if the current logged-in user has
agreed all the legal documents defined for the Pootle instance. Don’t change this unless you know what you’re
doing.

MIN_AUTOTERMS Default: 60

When building the terminology, the minimum number of terms that will be automatically extracted.

MARKUP_FILTER Default: (None, {})

New in version 2.5.

Two-tuple defining the markup filter to apply in certain textareas.

• Accepted values for the first element are textile, markdown, restructuredtext and None

• The second element should be a dictionary of keyword arguments that will be passed to the markup func-
tion

Examples:

MARKUP_FILTER = (None, {})

MARKUP_FILTER = ('markdown', {'safe_mode': 'escape'})

MARKUP_FILTER = ('restructuredtext', {'settings_overrides': {
'report_level': 'quiet',
}

})

MAX_AUTOTERMS Default: 600

When building the terminology, the maximum number of terms that will be automatically extracted.

POOTLE_ENABLE_API Default: False

New in version 2.5.1.

Enable Pootle API.

TASTYPIE_DEFAULT_FORMATS Default: [’json’]

New in version 2.5.1.

List defining the allowed serialization formats for Pootle API. Check Tastypie docs for all the available formats
and its dependencies (see in Installation section).

TOPSTAT_SIZE Default: 5

The number of rows displayed in the top contributors table.

USE_CAPTCHA Default: True

Enable spam prevention through a captcha.

1.3. Administering a server 53

http://django-tastypie.readthedocs.org/en/latest/settings.html#settings-tastypie-default-formats
http://django-tastypie.readthedocs.org/en/latest/tutorial.html#ref-tutorial

Pootle Documentation, Release 2.5.1.3

51-ldap.conf Optional LDAP configuration settings. To enable the LDAP authentication back-
end, you’ll need to append ’pootle.core.auth.ldap_backend.LdapBackend’ to the list of
AUTHENTICATION_BACKENDS.

AUTH_LDAP_ANON_DN Default: ’’

Anonymous credentials: Distinguished Name.

AUTH_LDAP_ANON_PASS Default: ’’

Anonymous credentials: password.

AUTH_LDAP_BASE_DN Default: ’’

Base DN to search

AUTH_LDAP_FIELDS Default: {’dn’: ’dn’}

A mapping of Pootle field names to LDAP fields. The key is Pootle’s name, the value should be your LDAP
field name. If you don’t use the field or don’t want to automatically retrieve these fields from LDAP comment
them out. The only required field is dn.

AUTH_LDAP_FILTER Default: ’’

What are we filtering on? %s will be the username, for example ’sn=%s’, or ’uid=%s’.

AUTH_LDAP_SERVER Default: ’’

The LDAP server. Format: protocol://hostname:port

60-translation.conf Translation environment configuration settings.

AMAGAMA_URL Default: http://amagama.locamotion.org/tmserver/

URL to an amaGama Translation Memory server. The default service should work fine, but if you have a custom
server set it here.

This URL must point to the public API URL which returns JSON. Don’t forget the trailing slash.

AUTOSYNC Default: False

Set this to True if you want translation files to be updated immediately.

Note: This negatively affects performance and should be avoided unless another application needs direct access
to the files.

Warning: This feature is not maintained anymore, use it at your own risk.

EXPORTED_DIRECTORY_MODE Default: 0755

On POSIX systems, exported directories will be assigned this permission. Use 0755 for publically-readable
directories or 0700 if you want only the Pootle user to be able to read them.

EXPORTED_FILE_MODE Default: 0644

On POSIX systems, exported files will be assigned this permission. Use 0644 for publically-readable files or
0600 if you want only the Pootle user to be able to read them.

LIVE_TRANSLATION Default: False

Live translation means that the project called Pootle is used to provide the localized versions of Pootle. Set this
to True to enable live translation of Pootle’s UI. This is a good way to learn how to use Pootle, but it has high
impact on performance.

54 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

LOOKUP_BACKENDS Default: [’wikipedia’] (Wikipedia enabled)

Enables backends for web-based lookups.

Available options: wikipedia.

MT_BACKENDS Default: [] (empty list)

This setting enables translation suggestions through several online services.

The elements for the list are two-element tuples containing the name of the service and an optional API key.

Available options are:

APERTIUM: Apertium service. For this service you need to set the API key. Get your key at
http://api.apertium.org/register.jsp

GOOGLE_TRANSLATE: Google Translate service. For this service you need to set the API key. Note that
Google Translate API is a paid service. See more at https://developers.google.com/translate/v2/pricing

PARSE_POOL_CULL_FREQUENCY Default: 4

When the pool fills up, 1/PARSE_POOL_CULL_FREQUENCY number of files will be removed from the pool.

PARSE_POOL_SIZE Default: 40

To avoid rereading and reparsing translation files from disk on every request, Pootle keeps a pool of already
parsed files in memory.

Larger pools will offer better performance, but higher memory usage (per server process).

PODIRECTORY Default: working_path(’po’)

The directory where the translation files are kept.

VCS_DIRECTORY Default: working_path(’repos’)

New in version 2.5.

The directory where version control clones/checkouts are kept.

Deprecated Settings

ENABLE_ALT_SRC Default: True

Deprecated since version 2.5: Alternate source languages are now on by default. This ensures that translators
have access to as much useful information as possible when translating.

Display alternate source languages in the translation interface.

Optimization

This page lists extra optional software you can install to improve Pootle’s performance. Some configuration tips are
given too.

Optional Software

By installing optional software you can gain performance and extra features.

1.3. Administering a server 55

http://api.apertium.org/register.jsp
https://developers.google.com/translate/v2/pricing

Pootle Documentation, Release 2.5.1.3

Database Backends You should really switch to a real database backend in production environments. Adjust the
DATABASES setting accordingly.

MySQL-python MySQL adapter for Python.

Psycopg2 PostgreSQL adapter for Python.

Caching Fast and efficient caching avoids hitting the DB when it’s not really needed. Adjust the CACHES setting
accordingly.

python-memcached Efficient caching.

Indexing Engines Installing an indexing engine will speed-up searches. Pootle will automatically pick one from
any of the available engines.

Xapian Python bindings for Xapian 1.

PyLucene Python bindings for Lucene.

Note

Web Servers You should really run Pootle behind a real web server, at least to serve static content. For generating
the dynamic content, you can also use alternative WSGI servers that might better suit your environment.

Apache Apache web server.

Nginx Ngninx web server.

gunicorn Python WSGI HTTP server.

Speed-ups and Extras

zip and unzip Fast (un)compression of file archives.

python-Levenshtein Provides speed-up when updating against templates.

iso-codes Enables translated language and country names.

raven Enables logging server exceptions to a Sentry server. If installed and configured, Pootle will automatically use
the raven client.

python-ldap Enables LDAP authentication. Be sure to check the LDAP settings.

Tips

With a few extra steps, you can support more users and more data. Here are some tips for performance tuning on your
Pootle installation.

• Ensure that Pootle runs under a proper web server.

• Be sure to use a proper database server like MySQL instead of the default SQLite. You can migrate an existing
installation if you already have data you don’t want to lose.

• Install memcached and enable it in the settings file.

1 Xapian versions before 1.0.13 are incompatible with Apache; Pootle will detect Xapian version and disable indexing when running under
mod_wsgi if needed.

Checking for Xapian relies on the xapian-check command, which is found in the xapian-tools package in Debian-based systems.

56 Chapter 1. All you need to know

http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-DATABASES
http://mysql-python.sourceforge.net/
http://initd.org/psycopg/
http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-CACHES
http://www.tummy.com/software/python-memcached/
http://xapian.org/docs/bindings/python/
https://lucene.apache.org/pylucene/
http://httpd.apache.org/
http://nginx.org/
http://gunicorn.org/
https://pypi.python.org/pypi/python-Levenshtein/
http://packages.debian.org/unstable/source/iso-codes
http://raven.readthedocs.org/
http://sentry.readthedocs.org/en/latest/
http://www.python-ldap.org/

Pootle Documentation, Release 2.5.1.3

• Install the latest recommended version of all dependencies. Django and the Translate Toolkit might affect
performance. Later versions of Pootle should also give better performance. You can upgrade to newer versions
of Pootle easily.

• Ensure LIVE_TRANSLATION is disabled.

• Ensure DEBUG mode is disabled.

• Ensure that the zip and unzip commands are installed on your server. These can improve the performance
during upload and download of large ZIP files.

• Ensure that you have an indexing engine installed with its Python bindings. This will improve the performance
of searching in big projects. PyLucene should perform better, although it might be harder to install.

• Ensure that you have python-levenshtein installed. This will improve the performance when updating against
templates.

• Increase the cache timeout for users who are not logged in.

• Increase your PARSE_POOL_SIZE if you have enough memory available.

• Enable ’django.contrib.sessions.backends.cached_db’.

• Disable swap on the server. Things should be configured so that physical memory of the server is never exceeded.
Swapping is bound to seriously degrade the user experience.

Apache For Apache, review your server settings so that you don’t support too many or too few clients. Supporting
too many clients increases memory usage, and can actually reduce performance.

No specific settings can be recommended, since this depends heavily on your users, your files, and your hardware.
However the default value for the MaxClient directive (usually 256) is almost always too high. Experiment with
values between 10 and 80.

MySQL Using MySQL is well tested and recommended. You can migrate your current database if you already have
data you don’t want to lose.

If using MySQL backend, for smaller installations it is suggested to go with MyISAM backend (which might result
in smaller memory usage and better performance). If high concurrency is expected, InnoDB is suggested to avoid
locking issues.

Fast PO implementation If you want better performance for your PO based operations, you can try to enable the fast
PO implementation. This implementation will be used if USECPO=2 is available in the operating system environment
variables. Note that this is different from the web server’s environment variables.

Your PO files will have to have character encodings specified, and be perfectly valid PO files (no duplicate messages
or other format errors). Be sure to test this extensively before you migrate your live server to this setup.

Caching System

Pootle uses a caching system to improve performance. It is an essential part of optimizing your Pootle installation. It
is based on Django’s caching system, and is used for various things:

• To serve cached (possibly slightly outdated) versions of most pages to anonymous users to reduce their impact
on server performance.

• To cache bits of the user interface, even for logged in users. Data will not be out of date but Pootle still tries to
use the cache to reduce the impact on server performance.

• To store the result of expensive calculations like translation statistics.

1.3. Administering a server 57

http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-DEBUG
https://dev.mysql.com/doc/refman/5.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://docs.djangoproject.com/en/dev/topics/cache/

Pootle Documentation, Release 2.5.1.3

• To keep track of last update timestamps to avoid unnecessary and expensive file operations (for example don’t
attempt to save translations before a download if there are no new translations).

Without a well functioning cache system, Pootle could be slow.

Cache Backends

Django supports multiple cache backends (methods of storing cache data). You can specify which backend to use by
overriding the value of CACHES in your configuration file.

Memcached
CACHES = {

'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',

}
}

Memcached is the recommended cache backend, it provides the best performance. And works fine with multipro-
cessing servers like Apache. It requires the python-memcached package and a running memcached server. Due to
extra dependencies it is not enabled by default.

Memcached on Unix sockets
CACHES = {

'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': 'unix:/path/to/memcached.sock',

}
}

If you don’t want Pootle using TCP/IP to access memcached then you can use Unix sockets. This is often a situation
in hardened installations using SELinux.

You will need to ensure that memcached is running with the -s option:

$ memcached -u nobody -s /path/to/memcached.sock -a 0777

Database
CACHES = {

'default': {
'BACKEND': 'django.core.cache.backends.db.DatabaseCache',
'LOCATION': 'my_cache_table',

}
}

Database caching relies on a table in the main Pootle database for storing the cached data, which makes it suitable
for multiprocessing servers, with the added benefit that the cached data remains intact after a server reboot (unlike
memcached) but it is considerably slower than memcached.

Changed in version 2.1.1.

This is the default cache backend. On new installs and upgrades the required database will be created.

Users of older versions need to create the cache tables manually if they would like to switch to the database cache
backend using this management command:

58 Chapter 1. All you need to know

http://docs.djangoproject.com/en/dev/topics/cache/#setting-up-the-cache
http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-CACHES
http://docs.djangoproject.com/en/dev/topics/cache/#memcached
http://docs.djangoproject.com/en/dev/topics/cache/#database-caching

Pootle Documentation, Release 2.5.1.3

$ pootle createcachetable pootlecache

Text indexing for Pootle

Pootle provides searching functionality, which is a great way to do searches over all files in a project. If there are
many strings to search through, then performance can be slow, but installing a text indexing library will speed things
up, allowing searching even in very large projects.

Supported indexing engines

The following indexing engines are supported:

• Lucene: This should be the fastest, but is not packaged for many Linux distributions, and is a bit harder to build.

• Xapian (v1.0 or higher): Note that you need at least version 1.0.13 to run under Apache with mod_wsgi or
mod_python.

Pootle’s usage of the indexing engine

The indexing database helps to speed up search queries performed from the Pootle interface.

Installation

If you want to use an indexing engine to speed up text searches, then you need to install one of the supported indexing
engines and its Python binding.

The indexing engine will be used, as soon as the required Python bindings are available.

See below for details.

Lucene

• Install the PyLucene package

– For debian: follow this Howto

Xapian

• Install the Python bindings for Xapian

– Debian: apt-get install python-xapian xapian-tools

– Other distributions and platforms

The Xapian tools packaged is required for the xapian-check command which is used to determines whether the Xapian
version is compatible with Pootle.

Note: If you are deploying using a virtualenv and want to make use of Xapian then you will need to, either:

1. Install your virtualenv with access to the system packages using the –system-site-packages option:

virtualenv --system-site-packages ENV

2. Compile the Python bindings

1.3. Administering a server 59

http://lucene.apache.org/
http://xapian.org
http://svn.xapian.org/*checkout*/tags/1.0.13/xapian-bindings/NEWS
http://lucene.apache.org/pylucene/
https://systemausfall.org/wikis/howto/PyLuceneOnDebian
http://xapian.org/docs/bindings/python/
http://xapian.org/download
http://www.virtualenv.org/en/latest/#the-system-site-packages-option
http://nomad.coop/blog/installing-xapian-in-virtualenv-django/

Pootle Documentation, Release 2.5.1.3

3. Symbolically link the Xapian bindings into your virtualenv, as follows on an Ubuntu system:

$ mkdir ${ENV}/lib/python2.6/dist-packages
$ cd ${ENV}/lib/python2.6/dist-packages
$ ln -s /usr/lib/python2.6/dist-packages/xapian.py
$ ln -s /usr/lib/python2.6/dist-packages/_xapian.so

Debugging

If you want to check which indexing engines are currently detected on your system you can execute the self-tests of
the indexing engine interface of Pootle:

python translate/search/indexing/test_indexers.py

This will display the installed engines and check if they work as expected.

Note: Please file a bug report if you encounter any errors when running these tests.

The actual test for xapian is xapian-check --version.

Management commands

The management commands are administration commands provided by Django, Pootle or any external Django app
being used with Pootle. You will usually run these commands by issuing pootle <command> [options].

For example, to get information about all available management commands, you will run:

$ pootle help

Note: If you run Pootle from a repository checkout you can use the manage.py file found in the root of the repository.

Running WSGI servers

There are multiple ways to run Pootle, and some of them rely on running WSGI servers that can be reverse proxied to
a proper HTTP web server such as nginx or lighttpd.

The Translate Toolkit offers a bundled CherryPy server but there are many more options such as gunicorn, flup, paste,
etc.

run_cherrypy New in version 2.5.

This command runs the CherryPy server bundled with the Translate Toolkit.

Available options:

--host The hostname to listen on.

Default: 127.0.0.1.

--port The TCP port on which the server should listen for new connections.

Default: 8080.

60 Chapter 1. All you need to know

http://bugs.locamotion.org/enter_bug.cgi?product=Pootle&component=Pootle

Pootle Documentation, Release 2.5.1.3

--threads The number of working threads to create.

Default: 1.

--name The name of the worker process.

Default: socket.gethostname().

--queue Specifies the maximum number of queued connections. This is the the backlog argument to
socket.listen().

Default: 5.

--ssl_certificate The filename of the server SSL certificate.

--ssl_privatekey The filename of the server’s private key file.

Managing Pootle projects

These commands will go through all existing projects performing maintenance tasks. The tasks are all available
through the web interface but on a project by project or file by file basis.

All commands in this category accept a --directory command line option that limits its action to a path relative
to the po/ directory.

Changed in version 2.1.2.

The commands target can be limited in a more flexible way using the --project --language command line
options. They can be repeated to indicate multiple languages or projects. If you use both options together it will only
match the files that match both languages and projects selected.

If you need to limit the commands to certain files or subdirectories you can use the --path-prefix option, path
should be relative to project/language pair.

For example, to refresh_stats for the tutorial project only, run:

$ pootle refresh_stats --project=tutorial

To only refresh a the Zulu and Basque language files within the tutorial project, run:

$ pootle refresh_stats --project=tutorial --language=zu --language=eu

refresh_stats This command will go through all existing projects making sure calculated data is up to date. Running
refresh_stats immediately after an install, upgrade or after adding a large number of files will make Pootle feel
faster as it will require less on-demand calculation of expensive statistics.

refresh_stats will do the following tasks:

• Update the statistics cache (this only useful if you are using memcached).

• Calculate quality checks so that they appear on the expanded overview page without a delay.

• Update full text search index (Lucene or Xapian).

sync_stores This command will save all translations currently in the database to the file system, thereby bringing
the files under the PODIRECTORY directory in sync with the Pootle database.

Note: For better performance Pootle keeps translations in database and doesn’t save them to disk except on demand
(before file downloads and major file level operations like version control updates).

1.3. Administering a server 61

http://docs.python.org/2.7/library/socket.html#socket.gethostname

Pootle Documentation, Release 2.5.1.3

You must run this command before taking backups or running scripts that modify the translation files directly on the
file system, otherwise you might miss out on translations that are in database but not yet saved to disk.

When the --overwrite option is specified, the sync operation will not be conservative and it will overwrite the
existing files on disk, making strings obsolete and updating the file’s structure.

With the --skip-missing option, files that are missing on disk will be ignored, and no new files will be created.

New in version 2.5.

With the --modified-since option it is possible to give a change identifier (from the output of latest_change_id)
to specifically indicate which changes need to be synced to disk. This will override Pootle on what has/hasn’t been
synced to disk, and specifically those changes will be synced. Note that bulk changes (from uploads and version
control actions) don’t yet record fine-grained changes, and these will therefore not be synced to disk. However, these
should already be on disk, since those actions always sync to disk anyway.

update_stores This command is the opposite of sync_stores. It will update the strings in database to reflect what is
on disk, as Pootle will not detect changes in the file system on its own.

It will also discover and import any new files added to existing languages within the projects.

You must run this command after running scripts that modify translation files directly on the file system.

update_stores has an extra command line option --keep that will prevent it from overwriting any existing
translation in the database, thus only updating new translations, removing obsolete strings and discovering new files
and strings.

Changed in version 2.5.1.

Note that --keep doesn’t keep obsolete units around anymore, they are either deleted in case the string is untranslated
or marked as obsolete in case the string was translated.

Changed in version 2.5.

Along with --keep, the --modified-since option can be used to control the set of translations that will be
updated: translations with a change ID greater than the given value will be kept.

To illustrate the results of these two options, the following table emulates the behavior of a pootle
update_stores --modified-since=5 --keep run:

File on disk DB before (change ID) DB after (result)
New string appeared in existing file <none> String added
Existing string changed in existing file <none> String updated
Existing string changed in existing file 2 String updated
Existing string changed in existing file 5 String updated
Existing string changed in existing file 8 String kept
New string in a new file <none> String added
String removed from the file 3 String removed
String removed from the file 10 String removed
File removed 4 Strings removed
File removed 12 Strings removed

By default, update_storeswill only update files that appear to have changed on disk since the last synchronization
with Pootle. To force all files to update, specify --force.

Warning: If files on the file system are corrupt, translations might be deleted from the database. Handle with
care!

62 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

update_against_templates Changed in version 2.5: The name of the command has been renamed from
update_from_templates.

Updates languages to match what is present in the translation templates.

This command is essentially an interface to the Translate Toolkit command pot2po with special Pootle specific routines
to update the database and file system to reflect the latest version of translation templates for each language in a project.

During the process, translations existing in the database will first be synced to disk (only in bilingual formats), then
they will be updated against the latest templates and after that the database will also be updated to reflect the latest
changes.

When updating existing translated files under a given language, the command will retain any existing translations,
fuzzy matching is performed on strings with minor changes, and unused translations will be marked as obsolete. New
template files will initialize new untranslated files.

It is unlikely you will ever need to run this command for all projects at once. Use the --directory, --project
or --language command line options to be specific about the project, language or project/language pair you want
to target.

Warning: If the template files are corrupt translations might be lost. If you generate templates based on a script
make sure they are in good shape.

update_translation_projects This command scans project directories looking for files matching languages not
added to the project then adds them. It basically repeats the discovery process done by Pootle when you create a
new project.

Using the --cleanup command line option, languages added to projects that no longer have matching files on the
filesystem will be deleted.

update_from_vcs New in version 2.5.

This command updates the specified files from their Version Control System(s). It supports the --directory,
--project, and --language parameters.

Pootle will take care to avoid version control conflicts, and will handle any conflicts on a string level, just like it would
if the update was done through the web front-end.

The command first syncs database contents to disk.

commit_to_vcs New in version 2.5.

This command commits the specified files to their Version Control System(s). It supports the --directory,
--project, and --language parameters.

A file needs to be up to date, otherwise the commit will fail. Files can be updated inside Pootle, or using the up-
date_from_vcs command. This is not done automatically, otherwise the merged version of the file will be committed
without review without anybody knowing.

list_languages New in version 2.5.

This command prints all the language codes on the server. This might be useful for automation.

Accepts the --modified-since parameter to list only those languages modified since the change id given by
latest_change_id.

The option --project limits the output to one or more projects. Specify the option multiple times for more than
one project.

1.3. Administering a server 63

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html#pot2po

Pootle Documentation, Release 2.5.1.3

list_projects New in version 2.5.

This command prints all the project codes on the server. This might be useful for automation.

Accepts the --modified-since parameter to list only those projects modified since the change id given by lat-
est_change_id.

latest_change_id New in version 2.5.

This command prints the ID of the latest change (submission) made on the server. This is mostly useful in combination
with other commands that operate with these IDs.

Goals

These commands allow you to perform tasks with goals from the command line.

add_project_goals This command allows you to create project goals for a given project reading them from a
phaselist file.

Such file has several lines where each line consists on two fields separated by a tab. The first field specifies a goal
name and the second one is the path of a file:

user1 ./browser/branding/official/brand.dtd.pot
other ./browser/chrome/browser/aboutCertError.dtd.pot
user1 browser/chrome/browser/aboutDialog.dtd.pot
user2 browser/chrome/browser/aboutSessionRestore.dtd.pot
developer ./browser/chrome/browser/devtools/appcacheutils.properties.pot
developer browser/chrome/browser/devtools/debugger.dtd.pot
user2 browser/chrome/browser/downloads/downloads.dtd.pot
user3 browser/chrome/browser/engineManager.dtd.pot
install browser/chrome/browser/migration/migration.dtd.pot
install ./browser/chrome/browser/migration/migration.properties.pot

The goals are created if necessary. If the goal exists and has any relationship to any store, that relationships are deleted
to make sure that the goals specified on the phaselist file are only applied to the specified stores.

After all goals are created then they are tied to the files on template translation project for the project as they are
specified on the phaselist file. If any specified file does not exist for the template translation project on the given
project then it is skipped.

This command has two mandatory options: --project and --filename.

$ pootle add_project_goals --project=tutorial --filename=phaselist.txt

Manually Installing Pootle

These commands expose the database installation and upgrade process from the command line.

setup New in version 2.5.1.

This command either initializes a new DB or upgrades an existing DB, as required.

64 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

syncdb Originally, syncdb was a generic Django management command that creates empty database tables. It has
been customized for Pootle to create everything required for a bare bones install for releases up to 2.5.0. This includes
database tables, default permissions, some default objects used internally by Pootle (like the “default” and “nobody”
user profiles) and the special Terminology project and Templates language.

For releases up to 2.5.0, if you just run syncdb you will have a usable Pootle install but you will need to create all
languages manually, and you will not have a tutorial project to play with. For releases after 2.5.0, syncdb is not
sufficient to create the database schema; it will remain incomplete and unusable until you apply all migrations to the
database schema by running the migrate command.

migrate New in version 2.5.1.

Note: Since the addition of the setup management command it is not necessary to directly run this command. Please
refer to the Upgrading or Installation instructions to see how to run the setup management command in those
scenarios.

This is South’s migrate command, which applies migrations to bring the database up to the latest schema revision. It
is required for releases after 2.5.0, even for a fresh install where you are not upgrading from a previous release.

initdb This is Pootle’s install process, it creates the default admin user, populates the language table with several
languages with their correct fields, initializes several terminology projects, and creates the tutorial project.

initdb can only be run after syncdb and migrate.

Note: initdb will not import translations into the database, so the first visit to Pootle after initdb will be very
slow. It is best to run refresh_stats immediately after initdb.

updatedb Changed in version 2.5.1.

This is a command line interface to Pootle’s database schema upgrade process.

This will only perform schema upgrades to version 2.5 from Pootle versions older than 2.5. To upgrade to version
2.5.1 and later South’s migrate command must be used, after upgrading to version 2.5.

For detailed instructions on upgrading, read the Upgrading section of the documentation.

upgrade New in version 2.5.1.

Performs post schema upgrade actions that are necessary to leave all the bits in place. It also serves as a trigger for
any changes needed by Translate Toolkit version upgrades.

Optionally, the command accepts the --calculate-stats flag, which will calculate full translation statistics after
doing the upgrade.

Also, the --flush-checks flag forces flushing the existing quality checks. This is useful when new quality checks
have been added or existing ones have been updated, but take into account that this operation is very expensive.

For detailed instructions on upgrading, read the Upgrading section of the documentation.

collectstatic Running the Django admin collectstatic command finds and extracts static content such as im-
ages, CSS and JavaScript files used by the Pootle server, so that they can be served separately from a static webserver.
Typically, this is run with the --clear --noinput options, to flush any existing static data and use default answers
for the content finders.

1.3. Administering a server 65

http://south.readthedocs.org/en/latest/commands.html#commands
http://south.readthedocs.org/en/latest/commands.html#commands
http://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#django-admin-collectstatic

Pootle Documentation, Release 2.5.1.3

assets Pootle uses the Django app django-assets interface of webassets to minify and bundle CSS and JavaScript;
this app has a management command that is used to make these preparations using the command assets build.
This command is usually executed after the collectstatic one.

Useful Django commands

changepassword
$ pootle changepassword <username>

This can be used to change the password of any user from the command line.

createsuperuser This creates a new admin user. It will prompt for username, password and email address.

dbshell This opens a database command prompt with the Pootle database already loaded. It is useful if you know
SQL.

Warning: Try not to break anything.

shell This opens a Python shell with the Django and Pootle environment already loaded. Useful if you know a bit of
Python or the Django models syntax.

Running Commands in cron

If you want to schedule certain actions on your Pootle server, using management commands with cron might be a
solution.

The management commands can perform certain batch commands which you might want to have executed periodically
without user intervention.

For the full details on how to configure cron, read your platform documentation (for example man crontab). Here
is an example that runs the refresh_stats command daily at 02:00 AM:

00 02 * * * www-data /var/www/sites/pootle/manage.py refresh_stats

Test your command with the parameters you want from the command line. Insert it in the cron table, and ensure that
it is executed as the correct user (the same as your web server) like www-data, for example. The user executing the
command is specified in the sixth column. Cron might report errors through local mail, but it might also be useful to
look at the logs in /var/log/cron/, for example.

If you are running Pootle from a virtualenv, or if you set any custom PYTHONPATH or similar, you might need to
run your management command from a bash script that creates the correct environment for your command to run
from. Call this script then from cron. It shouldn’t be necessary to specify the settings file for Pootle — it should
automatically be detected.

1.4 Developers

If you are a developer and are willing to hack on Pootle or contribute in some other way, make sure to read through
this part.

66 Chapter 1. All you need to know

http://elsdoerfer.name/docs/django-assets/

Pootle Documentation, Release 2.5.1.3

1.4.1 Contributing

There are several ways you can contribute to improve Pootle, even if you don’t know programming! Want to know
how? Please keep reading.

• You can give us feedback about things that annoy you or about areas you see for improvement. You can reach
us in our mailing list or on IRC in the #pootle channel in FreeNode.

• Found a bug? Report it in our Bugzilla tracker. If you don’t want to create an account you can always contact
us on IRC. Make sure to read more about how to report bugs.

• Translate the User Interface into your own language. Pootle is translated into nearly 50 languages. Is your
language missing? Have you found any errors in the translation? Learn how to contribute translating.

• Suggest documentation improvements by fixing mistakes and adding new sections.

• In case you have coding skills and are willing to contribute patches, fixes, or new features, read how you can
hack on Pootle.

Requesting features

Sometimes Pootle doesn’t quite meet your expectations or you have an idea for a great new feature.

It might help to understand how Pootle developers evaluate new features:

1. Is it generally useful? i.e. will it be useful for a large number of people?

2. Does it follow the ethos of Pootle? e.g. does it keep the interface clean, is it intuitive and non-technical?

3. How long would it take to implement?

(a) Does it require fundamental changes to how Pootle works? i.e. long, or

(b) Is this just a simple change of layout or a simple feature? i.e. short

4. Is this something a developer is passionate about? Does this meet their itch or are they convinced it is a winning
feature?

How can I make a winning feature request?

If you really do want your feature to succeed here are some options to help you when reporting or requesting the
feature.

1. Have you thought about this and provided a clear use case?

• Using a real use case would be good.

• Make it clear why you think this feature is important, don’t assume it is obvious.

2. Have you made some mockups of the UI?

• Isn’t it a bit unfair that you expect a volunteer coder to create the mockup for your feature?

3. Did you have some discussion on the mailing list or on #pootle?

• Drive-by feature requests usually don’t get attention. But if you have built a case and some links to
developers, i.e. they know you, then they will listen. Proposing your idea in these forums could be helpful
for your case.

4. Can you code?

• If you can code the feature yourself that will always win some acceptance. But realise that someone does
need to review your code and your code still needs to meet the acceptance criterion. So discuss early.

1.4. Developers 67

https://lists.sourceforge.net/lists/listinfo/translate-pootle
http://bugs.locamotion.org
http://pootle.locamotion.org/projects/pootle/

Pootle Documentation, Release 2.5.1.3

• If you can’t code, commission someone to write it for you. Or spend a lot more time making sure that you
use the volunteers’ free time to your best advantage, i.e. you need to work hard to make the feature clear
and easy to implement.

Reporting bugs

In order to best solve the problem we need good bug reports. Reports that do not give a full picture or which coders
are unable to reproduce, end up wasting a lot of time. If you, the expert in your bug, spend a bit of time you can make
sure your bug gets fixed.

First see if the bug is not already reported. Perhaps someone already reported it and you can provide some extra
information in that bug report. You can also add yourself in the CC field so that you get notified of any changes to the
bug report.

If you could not find the bug, you should report it. Look through each of the following sections and make sure you
have given the information required.

Be verbose

Tell us exactly how came to see this bug. Don’t say:

Suggesting doesn't work

Rather say:

In a translation project with proper permissions when I try to suggest I
get a 404 error.

So we need to know:

1. What procedure you followed

2. What you got, and

3. What you expected to get

Steps to reproduce

Tell us exactly how to reproduce the error. Mention the steps if needed, or give an example. Without being able to
reproduce the error, it will not easily get fixed.

Include tracebacks

If you are a server administrator you can get this information from the web server’s error log. In case you’re hacking
on Pootle, the traceback will be displayed both in the console and the browser.

A traceback will give a much better clue as to what the error might be and send the coder on the right path. It may be
a very simple fix, may relate to your setup or might indicate a much more complex problem. Tracebacks help coders
get you information quicker.

Be available

If you can be on IRC on #pootle or the mailing list to answer questions and test possible fixes then this will help to get
your problem fixed quickly.

68 Chapter 1. All you need to know

https://lists.sourceforge.net/lists/listinfo/translate-pootle

Pootle Documentation, Release 2.5.1.3

Translating

Pootle’s User Interface translations are kept in the official Pootle server. If you have a user in that server, you can start
translating right away. Otherwise, just create a new user and start translating.

If your language already has a translation and you want to further improve or complete it, you can contribute sugges-
tions that will later be reviewed by the language administrators.

If you can’t find your language and want to have that added or have concerns of any other means, contact us on our
mailing list or on IRC.

Although desirable, it’s not mandatory to use the official Pootle server to translate Pootle itself. In case you feel more
comfortable working with files and offline tools, just head to the code repository at GitHub, create your localization
based on the latest template and submit it to us by opening a bug or by sending us a pull request.

Documentation

You can help us documenting Pootle by just mentioning typos, providing reworded alternatives or by writing full
sections.

Pootle’s documentation is written using reStructuredText and Sphinx.

If you intend to build the documentation yourself (it’s converted from reST to HTML using Sphinx), you may want to
setup a development environment for that.

1.4.2 Pootle Development Roadmap

This is the Pootle roadmap for the next few iterations. Don’t look here for small improvements, we’re only tracking
larger bits of work.

Estimated release April 2014

• Move to Django 1.5/1.6 – remove anything keeping us on Django 1.4.

• Live cross project Translation Memory.

• Stats speedup – work on Stats speedups.

• Concordance searching.

• amaGama – automate updating of resources.

• Translation editor improvements:

– Highlight placeable – terms, variables and other things in source text and allow them to be copied easily
using the keyboard.

– Live Quality Assurance checks – at the moment these happen after the translation editor has left the unit,
performing them while editing will help to reduce errors.

• Developer centric changes:

– Adding a UI test framework.

– Automatic tests for most important parts of Pootle to prevent the risk of regressions.

• Mozilla specific features:

– Proper plural forms handling in Pootle for Firefox Desktop.

– Integration of compare-locale errors to the translator error page.

1.4. Developers 69

http://pootle.locamotion.org/
https://lists.sourceforge.net/lists/listinfo/translate-pootle
https://github.com/translate/pootle/
http://bugs.locamotion.org
http://docs.translatehouse.org/projects/pootle/en/latest/
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://docs.google.com/document/d/1qW5r_17nkco8YGMgKKT_ex1fIprx5NS232EKrj37JcQ/edit?usp=sharing

Pootle Documentation, Release 2.5.1.3

• Contributions by a translator to a given project and language.

Estimated release October 2014

• Substring matching in TM.

• Variable abstraction so that we can leverage translations from other projects that might not match because of
differences in variables placeable e.g. %s vs &brandShortName;.

• Management statistical reporting – project, language and user statistical reporting.

• A dashboard (health report) that allows l10n managers to check on the health of a language.

• Social interventions:

– Social sharing of projects, strings, etc for community building and community input.

– Social/Persona authentication to make it easier for users to login and contribute.

– OpenBadges – implement badges to reward team members contributions.

• Team review of translations.

• Easing team management:

– Improve our rights display.

– Request a new language.

– Request to join a translation team.

Sometime in the future

Things we’d love to do sooner but they are hard or need a sponsor.

• Get rid of actions for pushing, merging and retrieving translations. Do these actions in the background with no
human intervention at all to reduce errors, improve scale.

• Manage all setup from version control files.

• Monoligual files – make Pootle work more reliably directly on monolingual files.

1.4.3 Hacking

Want to fix a bug in Pootle? Want to change the behaviour of an existing feature or add new ones? This section is all
about hacking on Pootle, so if you are interested on the topic, keep reading.

Before doing anything

Before starting any actual work on the source code, make sure that:

• There is nobody working on the bug you are trying to fix. See the existing bug reports and the existing pull
requests. In the situation where somebody else is working on a fix, you can always offer your help.

• If you plan to develop a new feature and want to include it upstream, please first discuss it with the developers
on IRC or in the translate-pootle mailing list so that it doesn’t interfere in current development plans. Also note
that adding new features is relatively easy, but keeping them updated is harder.

70 Chapter 1. All you need to know

http://bugs.locamotion.org/buglist.cgi?list_id=983&resolution=---&query_format=advanced&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&product=Pootle
https://github.com/translate/pootle/pulls
https://github.com/translate/pootle/pulls
https://lists.sourceforge.net/lists/listinfo/translate-pootle

Pootle Documentation, Release 2.5.1.3

Setting up the development environment

The minimum software packages you need for setting up a development environment include git and a Python in-
terpreter along with the pip installer. Consult the specifics for your operating system in order to get each package
installed successfully.

Once you have the basic requirements in place, you will need to install Pootle’s dependencies, which come in shape
of Python packages. Instead of installing them system-wide, we recommend using virtualenv (and virtualenvwrapper
for easing the management of multiple virtualenvs). This way you can install all the dependencies at specific versions
without interfering with system-wide packages. You can test on different Python/Django versions in parallel as well.

Detailed setup

For installing the dependencies in an isolated environment, we will use virtualenv – more specifically virtualenvwrap-
per, which eases the process of managing and switching between multiple virtual environments. Installing virtualen-
wrapper will pull in virtualenv as a dependency.

$ sudo pip install virtualenvwrapper

virtualenvwrapper will need to be configured in order to specify where to store the created environments.

$ export WORKON_HOME=~/envs
$ mkdir -p $WORKON_HOME
$ source /usr/local/bin/virtualenvwrapper.sh # Or /usr/bin/virtualenvwrapper.sh

Note: You may want to add the above-mentioned commands in your .bashrc file (or whatever file your shell uses
for initializing user customizations).

Now the commands provided virtualenv and virtualenvwrapper are available, so we can start creating our virtual
environment.

$ mkvirtualenv <env-name>

Replace <env-name> with a meaningful name that describes the environment you are creating. mkvirtualenv
accepts any options that virtualenv accepts. We could for example specify to use the Python 2.6 interpreter by
passing the -p python2.6 option.

Note: After running mkvirtualenv, the newly created environment is activated. To deactivate it just run:

(env-name) $ deactivate

To activate a virtual environment again simply run:

$ workon <env-name>

Time to clone Pootle’s source code repository. The main repository lives under translate/pootle in GitHub. If you have
a GitHub account, the best idea is to fork the main repository and to clone your own fork for hacking. Once you know
which way you want to continue forward, just move to a directory where you want to keep the development files and
run git clone by passing the repository’s URL.

(env-name) $ git clone https://github.com/translate/pootle.git

This will create a directory named pootle where you will find all the files that constitute Pootle’s source code.

Note: If you have a GitHub account, fork the main translate/pootle repository and replace the repository
URL by your own fork.

1.4. Developers 71

http://git-scm.org
http://www.python.org
http://www.python.org
http://www.pip-installer.org/
http://www.virtualenv.org
http://www.doughellmann.com/projects/virtualenvwrapper/
https://github.com/translate/pootle/

Pootle Documentation, Release 2.5.1.3

Before running the development server, it’s necessary to install the software dependencies/requirements by using
pip. For this matter there are some pip requirements files within the requirements directory. We will install the
requirements defined in requirements/dev.txt, which apart from the minimum will pull in some extras that
will ease the development process.

(env-name) $ cd pootle
(env-name) $ pip install -r requirements/dev.txt

Note: Some dependencies might need to build or compile source code in languages other than Python. You may
need to install extra packages on your system in order to complete the build process and the installation of the required
packages.

With all the dependencies installed within the virtual environment, Pootle is almost ready to run. In development
environments you will want to use settings that vastly differ from those used in production environments.

For that purpose there is a sample configuration file with settings adapted for development scenarios,
pootle/settings/90-dev-local.conf.sample. Copy this file and rename it by removing the .sample
extension:

(env-name) $ cp pootle/settings/90-dev-local.conf.sample pootle/settings/90-dev-local.conf

Note: To learn more about how settings work in Pootle head over the Settings section in the documentation.

Once the configuration is in place, you’ll need to setup the database schema and add initial data.

(env-name) $ python manage.py syncdb --noinput
(env-name) $ python manage.py migrate
(env-name) $ python manage.py initdb

Finally, just run the development server.

(env-name) $ python manage.py runserver

Once all is done, you can start the development server anytime by enabling the virtual environment (using the workon
command) and running the manage.py runserver command.

Happy hacking!!

Workflow

Any time you want to fix a bug or work on a new feature, create a new local branch:

$ git checkout -b <my_new_branch>

Then safely work there, create the needed commits and once the work is ready for being incorporated upstream, either:

• Push the changes to your own GitHub fork and send us a pull request, or

• Create a patch against the HEAD of the master branch using git diff or git format-patch and attach
it to the affected bug.

Commits

When creating commits take into account the following:

72 Chapter 1. All you need to know

http://www.pip-installer.org/en/latest/requirements.html

Pootle Documentation, Release 2.5.1.3

What to commit As far as possible, try to commit individual changes in individual commits. Where different changes
depend on each other, but are related to different parts of a problem / solution, try to commit them in quick
succession.

If a change in the code requires some change in the documentation then all those changes must be in the same
commit.

If code and documentation changes are unrelated then it is recommended to put them in separate commits,
despite that sometimes it is acceptable to mix those changes in the same commit, for example cleanups changes
both in code and documentation.

Commit messages Begin the commit message with a single short (less than 50 character) line summarizing the
change, followed by a blank line and then a more thorough (and sometimes optional) description.

Cleanups

Another example:

Factor out common behavior for whatever

These reduces lines of code to maintain, and eases a lot the maintenance
work.

Also was partially reworked to ease extending it in the future.

If your change fixes a bug in Bugzilla, mention the bug number. This way the bug is automatically closed after
merging the commit.

Docs: Update code for this thing

Now the docs are exact and represent the actual behavior introduced in
commits ef4517ab and abc361fd.

Fixes bug #2399

If you are reverting a previous commit, mention the sha1 revision that is being reverted.

Revert "Fabric: Cleanup to use the new setup command"

This reverts commit 5c54bd4.

1.4.4 Customizing the look

In some cases it might be desirable to customize the styling of Pootle to fit in with your other websites or other aspects
of your identity. It might also be required to add a common header or footer for proper visual integration. Before you
start editing the CSS of Pootle, have a look at our styling guidelines for developers.

Custom changes are kept separate from the distributed files, so that upgrades are unlikely to affect your customizations.

Rebuilding assets after customization

Warning: After doing any customization, please execute the following commands to collect and build static
content such as images, CSS and JavaScript files that are served by Pootle server.

$ python manage.py collectstatic --noinput --clear
$ python manage.py assets build

1.4. Developers 73

http://translate.sourceforge.net/wiki/developers/styling

Pootle Documentation, Release 2.5.1.3

Customizing CSS

Edit the file in static/css/custom/custom.css to override any rules from the main CSS file. That CSS file will be included
in every page.

Customizing images

Any custom images can be placed in static/css/custom/. The custom.css file can refer to it directly by
name, including any paths relative to static/css directory, for example: url(’custom/image.png’) to
refer to static/css/custom/image.png.

Customizing the favicon

The favicon can be customized by editing the base template directly templates/base.html). This has the downside that
you have to reimplement this on upgrades if the base template is replaced. Alternatively the base template can be
overridden as a whole with the favicon customized to your needs (see the next section).

Customizing templates

In case you need to change a template, copy it into templates/custom/ with the same name as it had before. Make sure
that you have a complete copy of the template and then make any changes you require.

If you edit any templates, keep in mind that any changes to the text could result in untranslated text for users of the
non-English user interface.

On upgrades, it would be ideal to ensure that any changes to the distributed templates are reflected in your customized
versions of them, to ensure all features and improvements are present.

1.4.5 Testing

Warning: This page needs expanding and updating.

This page contains notes about Pootle’s unit tests and how they should be used, interpreted and expanded. See the
Translate Toolkit testing docs for notes on writing tests.

Pootle’s unit tests use the Django testing framework, and can be executed with:

$ python manage.py test pootle_store pootle_app pootle_translationproject

Although you can run tests for all applications, several of the external applications are not passing their tests which
renders this less useful.

Tests could be run with py.test using pytest-django or alternately by adding a django-pytest app to Pootle (con-
ceivably both could be done) – however this is not currently supported or implemented.

1.4.6 Release Process

This document describes the release process Pootle follows starting from version 2.5.

74 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/testing.html#testing
http://pypi.python.org/pypi/pytest-django/
http://github.com/buchuki/django-pytest#readme

Pootle Documentation, Release 2.5.1.3

Principles

• Align Pootle releases with Django releases, keeping compatibility with the latest version of the framework and
avoiding the use, and maintenance headache, of deprecated code.

• Time-based feature releases every six months, this ensures that users, who don’t want to run from master, and
packagers have regular features updates.

• Master is always stable, this ensures that anyone can run a production server from master. It also reduces our
effort of maintaining multiple branches in development. Lastly, it helps create a discipline of landing stable
features.

Rules

The principles above extended into these rules.

1. Feature releases are made every six months.

2. Feature releases (as distinct from a bug fix release) are only against the latest Django version that Pootle supports
i.e. we won’t backport features.

3. Security fixes are made to the last two time-based releases.

4. Older time-based releases are no longer supported.

5. Pootle should run on Django N and N-1.

6. master is always releasable.

7. All schema related and major changes are made in feature branches.

8. One month before a time-based release, when master is in a stabilising period, schema and feature changes
should not landed on master.

Version Numbering

A Pootle version number consists of Major-Minor-Point-Bugfix as in 2.5.0 or 2.6.1.2

Pootle’s minor number is changed to indicate the latest version of Django that is supported. Thus when the latest
version of Django is released, and Pootle gains support for this version, then the Pootle minor number will change.

Note: Pootle 2.5.0 is an exception to this rule. It did not not support Django 1.5 at the time of release.

Every six months, when a new release train is ready to be shipped, Pootle’s point version will be incremented.

Any critical security fixes will automatically result in a new bugfix release.

Examples

Understanding the number and release train with some examples:

Django 1.5 is the latest version of Django:

• Pootle is named 2.5 and should support Django 1.5.

• Pootle 2.5.0 is released as the first time-based release.

• Next time-based release would be 2.5.1.

A security issue is detected in Pootle 2.5.0

1.4. Developers 75

Pootle Documentation, Release 2.5.1.3

• The first security release 2.5.0.1 is made

• Next time-based release is still 2.5.1

Django 1.6 is released:

• Current Pootle release is 2.5.4, next Pootle release will be 2.6.0

• When 2.6.0 is out we will support Pootle 2.6.0 and 2.5.4, all previous versions will be unsupported.

A security issue is discovered which impacts all our supported time-based releases:

• We release 2.6.0.1 and 2.5.4.1

Time-based release 2.6.1 is released six months after 2.6.0

• We now support 2.6.1 and 2.6.0

• Support is dropped for 2.5.4 which is now a year old.

The Release Train: Point Releases Every Six Months

Within the priciple that master is always deployable we aim to ensure a period of stability to allow easier release in
the month prior to a time-based release.

First-Fifth month All major work and features are allowed, strings may be broken.

Sixth month Feature work that doesn’t change the DB schema, bug fixes, refinements and translations. Strings are
frozen.

If for some reason there’s feature work that changes the schema during month six of the release train, the feature will
go in its own branch and won’t be merged until the next release train starts.

Security fixes are applied anytime in the release train.

Branching Strategy

The next Pootle version is always baked in the master branch. Exceptions are security fixes which are committed in
master and cherry-picked to the currently supported time-based release branches.

A new time-based release is made off of master, incrementing the point version. Every time a new release happens, a
new branch is created. These branches are named after their version numbers: if master is to become version 2.6.2,
then the new branch will be named stable/2.6.2. The actual release is also tagged, in this case as 2.6.2.

Security fixes are made on the relevant release branches. So the first security release on stable/2.6.2 would be tagged
as 2.6.2.1.

Features that produce schema changes or are quite invasive go into feature branches named feature/<feature-name>.
Once the feature is ready to be integrated within the first phase of the release train, they’re merged into master.

1.4.7 Glossary

Translation Store A file that stores translations (e.g. a PO file) — although it could also be used to refer to other
ways of storing translations.

Contains a number of Translation Units, which contain messages.

Translation Unit At the simplest level contains a single source string (the original message) and a single target string
(the translated message).

76 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

XLIFF refers to this as a unit, Gettext calls it a message or string. Some industry tools talk of segments. To
maintain consistency we refer to string in the GUI and unit in the code.

Monolingual formats (like .properties, OpenOffice SDF, DTD, HTML, etc.) only contain a source strings.

However when handling plurals the source may actually contain different variants of a message for different
plural forms (e.g. in English, the singular and plural), and the target as well (the number of variants in source
and target strings are often different because different languages handle plurals differently).

Language They refer to the languages translated into.

Project They refer to the different programs/sets of messages we translate.

Translation Project A set of translation stores translating a project into a language.

Template A translation file that contains only the source or original texts.

Translation States

Untranslated A unit that is not translated i.e. blank.

Incomplete See: Needs Attention i.e. Untranslated + Fuzzy

Translated The unit has a translation.

Fuzzy In Gettext PO fuzzy means that a unit will needs to be reviewed and will not be used in production. On Pootle
for the user we call this ‘Needs Work’ as the term fuzzy is either technical for some users, or confusing to those
who use the term fuzzy for Translation Memory, as in ‘fuzzy match’.

Needs work See: Fuzzy

Needs review Currently see: Fuzzy In the future this will actually mean that the translated string still requires review.

Needs attention Untranslated + Fuzzy

1.4.8 Styleguide

Pootle developers try to stick to some development standards that are gathered in this document.

Python and documentation

For Python code and documentation Pootle follows the Translate Styleguide adding extra clarifications listed below.

• Python style conventions

• Documentation style conventions

Pootle-specific Python guidelines

Pootle has specific conventions for Python coding style.

Imports Like in Python import conventions in Translate styleguide, but imports should be grouped in the following
order:

1. __future__ library imports

2. Python standard library imports

3. Third party libraries imports (Including Translate Toolkit ones)

1.4. Developers 77

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide-general
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide-docs
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/development/styleguide.html#styleguide-imports

Pootle Documentation, Release 2.5.1.3

4. Django imports

5. Django external apps imports

6. Other Pootle apps imports

7. Current package (or app) imports, using explicit relative imports (See PEP 328)

Check Python import conventions in Translate styleguide for other conventions that the imports must follow.

from __future__ import absolute_import

import re
import sys.path as sys_path
import time
from datetime import timedelta
from os import path

from lxml.html import fromstring
from translate.storage import versioncontrol

from django.contrib.auth.models import User
from django.db import models
from django.db.models import Q
from django.db.models.signals import post_save

from profiles.views import edit_profile
from tastypie import fields

from pootle.core.decorators import permission_required
from pootle_store.models import (FUZZY, TRANSLATED, UNTRANSLATED, Store,

Unit, count_words)
from pootle_translationproject.models import TranslationProject

from .forms import GoalForm
from .models import Tag

Order in models Model’s inner classes and methods should keep the following order:

• Database fields

• Non database fields

• Default objects manager

• Custom manager attributes (i.e. other managers)

• class Meta

• def natural_key() (Because it is tightly related to model fields)

• Properties

• All @cached_property properties

• Any method decorated with @classmethod

• def __unicode__()

• def __str__()

• Any other method starting with __ (for example __init__())

• def save()

78 Chapter 1. All you need to know

http://www.python.org/dev/peps/pep-0328/#guido-s-decision
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/development/styleguide.html#styleguide-imports

Pootle Documentation, Release 2.5.1.3

• def delete()

• def get_absolute_url()

• def get_translate_url()

• Any custom methods

Fields in models and forms

• If the field declaration fits in one line:

– Put all the options on that line,

– Don’t put a comma after the last option,

– The parenthesis that closes the field declaration goes just after the last option.

• If the field declaration spans to several lines:

– Each option goes on its own line (including the first one),

– The options are indented 4 spaces,

– The last option must have a comma after it,

– The closing parenthesis in the field declaration goes on its own line, aligned with the first line in the field
declaration.

class SampleForm(forms.Form):
Field declaration that spans to several lines.
language = forms.ChoiceField(

label=_('Interface Language'),
initial="",
required=False,
widget=forms.Select(attrs={

'class': 'js-select2 select2-language',
}),
help_text=_('Default language for using on the user interface.'),

)
One line field declaration.
project = forms.ModelChoiceField(Project, required=True)

URL patterns When writing the URL patterns:

• URL patterns can be grouped by putting a blank line between the groups.

• On each URL pattern:

– Specify the URL pattern using the url() function, not a tuple.

– Each parameter must go on its own line in all cases, indenting them one level to allow easily seeing the
different URL patterns.

– In URLs:

* Use hyphens. Avoid underscores at all costs.

* To split long URLs use implicit string continuation. Note that URLs are raw strings.

– URL pattern names must be named like pootle-{app}-{view} (except in some cases, like URLs on
pootle_app app):

1.4. Developers 79

Pootle Documentation, Release 2.5.1.3

* {app} is the app name, which sometimes can be shortened, e.g. using tp to avoid the longish
translationproject. If either a shortened app name or a full one is being used, the chosen app name
must be used consistently across all the URL patterns for the app. The only exception to this are AJAX
URL patterns which can use a different value for {app}, that must be consistently used among all
the AJAX URL patterns in the app.

* {view} is a unique string which might consist on several words, separated with hyphens, that might
not match the name of the view that is handled by the URL pattern.

urlpatterns = patterns('pootle_project.views',
Listing of all projects.
url(r'^$',

'projects_index'),

Whatever URLs.
url(r'^incredibly-stupid/randomly-long-url-with-hyphens-that-is-split-'

r'and-continued-on-next-line.html$',
'whatever',
name='pootle-project-whatever'),

Admin URLs.
url(r'^(?P<project_code>[^/]*)/admin.html$',

'project_admin'),
url(r'^(?P<project_code>[^/]*)/permissions.html$',

'project_admin_permissions',
name='pootle-project-admin-permissions'),

)

Settings naming Pootle specific settings must be named like POOTLE_*, for example: POOTLE_ENABLE_API,
POOTLE_VCS_DIRECTORY or POOTLE_MARKUP_FILTER

Pootle-specific markup

For documenting several things, Pootle defines custom Sphinx roles.

• Settings:

.. setting:: PODIRECTORY

To link to a setting, use :setting:‘PODIRECTORY‘.

• Icons:

Some reference to |icon:some-icon| in the text.

This allows you to easily add inline images of icons used in Pootle. The icons are all files from
pootle/static/images/sprite. If you were referring to an icon icon-edit.png then you would
use the syntax |icon:icon-edit|. The icon reference is always prefixed by icon: and the name of the
icon is used without the extension.

E.g. |icon:icon-google-translate| will insert this icon.

JavaScript

There are no “official” coding style guidelines for JavaScript, so based on several recommendations (1, 2, 3) we try to
stick to our preferences.

80 Chapter 1. All you need to know

http://javascript.crockford.com/code.html
http://drupal.org/node/172169
http://docs.jquery.com/JQuery_Core_Style_Guidelines

Pootle Documentation, Release 2.5.1.3

Indenting

• We currently use 2-space indentation. Don’t use tabs.

• Avoid lines longer than 80 characters. When a statement will not fit on a single line, it may be necessary
to break it. Place the break after an operator, ideally after a comma.

Whitespace

• If a function literal is anonymous, there should be one space between the word function and the ((left
parenthesis).

• In function calls, don’t use any space before the ((left parenthesis).

• Control statements should have one space between the control keyword and opening parenthesis, to distin-
guish them from function calls.

• Each ; (semicolon) in the control part of a for statement should be followed with a space.

• Whitespace should follow every , (comma).

Naming

• Variable and function names should always start by a lowercase letter and consequent words should be
CamelCased. Never use underscores.

• If a variable holds a jQuery object, prefix it by a dollar sign $. For example:

var $fields = $('.js-search-fields');

Selectors

• Prefix selectors that deal with JavaScript with js-. This way it’s clear the separation between class
selectors that deal with presentation (CSS) and functionality (JavaScript).

• Use the same naming criterion as with CSS selector names, ie, lowercase and consequent words separated
by dashes.

Control statements Control statements such as if, for, or switch should follow these rules:

• The enclosed statements should be indented.

• The { (left curly brace) should be at the end of the line that begins the compound statement.

• The } (right curly brace) should begin a line and be indented to align with the beginning of the line
containing the matching { (left curly brace).

• Braces should be used around all statements, even single statements, when they are part of a control
structure, such as an if or for statement. This makes it easier to add statements without accidentally
introducing bugs.

• Should have one space between the control keyword and opening parenthesis, to distinguish them from
function calls.

String

• A string literal should be wrapped in single quotes.

• join should be used to concatenate pieces instead of + because it is usually faster to put the pieces into
an array and join them.

Number

• radix should be specified in the parseInt function to eliminate reader confusion and to guarantee
predictable behavior.

Examples

1.4. Developers 81

Pootle Documentation, Release 2.5.1.3

• if statements

if (condition) {
statements

}

if (condition) {
statements

} else {
statements

}

if (condition) {
statements

} else if (condition) {
statements

} else {
statements

}

• for statements

for (initialization; condition; update) {
statements;

}

for (variable in object) {
if (condition) {
statements

}
}

• switch statements

switch (condition) {
case 1:
statements
break;

case 2:
statements
break;

default:
statements

}

HTML

Indenting

• Indent using 2 spaces. Don’t use tabs.

• Although it’s desirable to avoid lines longer than 80 characters, most of the time the templating library
doesn’t easily allow this. So try not to extend too much the line length.

Template naming

• If a template name consists on several words they must be joined using underscores (never hyphens), e.g.
my_precious_template.html

82 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

• If a template is being used in AJAX views, even if it is also used for including it on other templates, its
name must start with xhr_, e.g. xhr_tag_form.html.

• If a template is intended to be included by other templates, and it is not going to be used directly, start its
name with an underscore, e.g. _included_template.html.

CSS

Indenting

• Indent using 4 spaces. Don’t use tabs.

• Put selectors and braces on their own lines.

• Right-align the CSS browser-prefixed properties.

Good:

.foo-bar,

.foo-bar:hover
{

background-color: #eee;
-webkit-box-shadow: 0 1px 4px #d9d9d9;

-moz-box-shadow: 0 1px 4px #d9d9d9;
box-shadow: 0 1px 4px #d9d9d9;

}

Bad:

.foo-bar, .foo-bar:hover {
background-color: #eee;
-webkit-box-shadow: 0 1px 4px #d9d9d9;
-moz-box-shadow: 0 1px 4px #d9d9d9;
box-shadow: 0 1px 4px #d9d9d9;

}

Naming

• Selectors should all be in lowercase and consequent words should be separated using dashes. As an
example, rather use .tm-results and not .TM_results.

1.4.9 Making a Pootle Release

These instructions are the guidelines for anyone making a Pootle commit.

Summary

1. git clone git@github.com:translate/pootle.git pootle-release

2. Create release notes

3. Adjust the roadmap

4. Up version number

5. Update translations

6. make build

7. Test install and other tests

1.4. Developers 83

mailto:git@github.com

Pootle Documentation, Release 2.5.1.3

8. Tag the release

9. Publish on PyPI

10. Upload to Sourceforge

11. Add product version to Bugzilla

12. Release documentation

13. Update translate website

14. Update Pootle dashboard

15. Unstage sourceforge

16. Announce to the world

17. Cleanup

Other possible steps

We need to check and document these if needed:

• Pre-release checks

• Build docs: we need to check if we need to build the docs for the release tarball.

• Change URLs to point to the correct docs: do we want to change URLs to point to the $version docs rather then
‘latest’?

• Building on Windows, building for other Linux distros. We have produced

• Communicating to upstream packagers

Pre-release instructions

Upload and announce translations

We need to give localizers enough time to localize Pootle. They need time to do the actual translation and to feedback
on any errors that they might encounter.

To make a new template:

make pot

And upload the templates to Pootle for translation. Update current translations against templates either on Pootle or in
code and commits these updated files to Git.

Announce the new translations using these two channels:

1. The News tab on Pootle – for those not on any mailing list

2. The translate-pootle and translate-devel mailing lists – for those who might miss the news.

String freeze

We want to give a string freeze at least 2-4 weeks before a release. Announce that on the mailing lists.

If we do have a string freeze break then announce those to people.

A string freeze would normally run between an RC1 and a released version.

84 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Detailed release instructions

Get a clean checkout and new virtualenv

We work from a clean checkout to ensure that everything you are adding to the build is what is in VC and doesn’t
contain any of your uncommitted changes. It also ensure that someone else could relicate your process.

git clone git@github.com:translate/pootle.git pootle-release
mkvirtualenv pootle-release
pip install -r requirements/build.txt

Create release notes

The release notes will be used in these places:

• Pootle website – download page (used in gh-pages)

• Sourceforge download – README.rst (used to give user info)

• Email announcements – text version

We create our release notes in reStructured Text, since we use that elsewhere and since it can be rendered well in some
of our key sites.

First we need to create a log of changes in Pootle, which is done generically like this:

git log $version-1..HEAD > docs/release/$version.rst

Or a more specific example:

git log 2.5.0..HEAD > docs/releases/2.5.1.rst

Edit this new file. You can use the commits as a guide to build up the release notes. You should remove all log
messages before the release.

Note: Since the release notes will be used in places that allow linking we use links within the notes. These should
link back to products websites (Virtaal, Pootle, etc), references to Translate and possibly bug numbers, etc.

Read for grammar and spelling errors.

Note: When writing the notes please remember:

1. The voice is active. ‘Translate has released a new version of the toolkit’, not ‘A new version of the toolkit was
released by Translate’.

2. The connection to the users is human not distant.

3. We speak in familiar terms e.g. “I know you’ve been waiting for this release” instead of formal.

We create a list of contributors using this command:

git log 2.5.0..HEAD --format='%aN, ' | awk '{arr[$0]++} END{for (i in arr){print arr[i], i;}}' | sort -rn | cut -d\ -f2-

Adjust the roadmap

The roadmap file needs to be updated. Remove things that are part of this release. Adjust any version numbering if for
example we’re moving to Django 1.6 we need to change the proposed release numbers.

1.4. Developers 85

http://pootle.translatehouse.org/download.html
http://virtaal.org
http://pootle.translatehouse.org
http://translatehouse.org

Pootle Documentation, Release 2.5.1.3

Look at the actual roamap commitments and change if needed. These will remain during the lifetime of this version
so it is good to adjust them before we branch.

Up version numbers

Update the version number in:

• pootle/__version__.py

• docs/conf.py

In __version__.py, bump the build number if anybody used the toolkit with the previous number, and there have
been any changes to code touching stats or quality checks. An increased build number will force a toolkit user, like
Pootle, to regenerate the stats and checks.

For conf.py change version and release

Note: FIXME – We might want to automate the version and release info so that we can update it in one place.

The version string should follow the pattern:

$MAJOR-$MINOR-$MICRO[-$EXTRA]

E.g.

1.10.0
0.9.1-rc1

$EXTRA is optional but all the three others are required. The first release of a $MINOR version will always have a
$MICRO of .0. So 1.10.0 and never just 1.10.

Update requirements versions

Update the minimum version number for the requirements in:

• requirements/

• pootle/depcheck.py

Update the requirements files:

make requirements

Note: I’m still not 100% why or if we need these, but until we work it out lets make sure we ship with correct files.

Update translations

Update the translations from the Pootle server

1. Download all translations:

$ make get-translations

2. Update pootle/locale/LINGUAS to list the languages we would like to ship. While we package all PO
files, this is an indication of which ones we want packagers to use. The requirement is roughly 80% translated
with no obvious variable errors. Languages with a small userbase can be included.

86 Chapter 1. All you need to know

http://pootle.locamotion.org/projects/pootle

Pootle Documentation, Release 2.5.1.3

$ make linguas

Check the output and make any adjustments such as adding back languages that don’t quite make the target but
you wish to ship.

3. Build translations to check for errors:

$ make mo # Build all LINGUAS enabled languages

Build the package

Building is the first step to testing that things work. From your clean checkout run:

make mo-all # if we are shipping an pre-release
make build

This will create a tarball in dist/ which you can use for further testing.

Note: We use a clean checkout just to make sure that no inadvertant changes make it into the release.

Test install and other tests

The easiest way to test is in a virtualenv. You can install the new toolkit using:

mkvirtualenv pootle-testing
pip install path/to/dist/Pootle-$version.tar.bz2

This will allow you test installation of the software.

You can then proceed with other tests such as checking:

1. Quick installation check:

pootle init
pootle setup
pootle start
browse to localhost:8000

2. Documentation is available

3. Installation documention is correct

• Follow the installation and hacking guides to ensure that they are correct.

4. Meta information about the package is correct. See pypi section of reviewing meta data.

To cleanup:

deactivate
rmvirtualenv pootle-testing

Tag the release

You should only tag once you are happy with your release as there are some things that we can’t undo.

git tag -a 2.5.0 -m "Tag version 2.5.0"
git push --tags

1.4. Developers 87

Pootle Documentation, Release 2.5.1.3

If this is the final release then there should be a stable branch e.g. stable/2.5.0, so create one if it does not already
exist.

Publish on PyPI

Publish the package on the Python Package Index (PyPI)

• Submitting Packages to the Package Index

Note: You need a username and password on https://pypi.python.org and have rights to the project before you can
proceed with this step.

These can be stored in $HOME/.pypirc and will contain your username and password. A first run of ./setup.py
register will create such a file. It will also actually publish the meta-data so only do it when you are actually ready.

Review the meta data. This is stored in setup.py, use ./setup.py --help to se some options to display
meta-data. The actual long description is taken from /README.rst.

To test before publishing run:

make test-publish-pypi

Then to actually publish:

make publish-pypi

Copy files to sourceforge

Publishing files to the Translate Sourceforge project.

Note: You need to have release permissions on sourceforge to perform this step.

• http://sourceforge.net/projects/translate/files/Pootle/

You will need:

• Tarball of the release

• Release notes in reStructured Text

1. Create a new folder in the Pootle Sourceforge release folder using the ‘Add Folder’ button. The folder name
must be the same as the release name e.g. 2.5.0-rc1. Mark this as being for staging for the moment.

2. make publish-sourceforge will give you the command to upload your tarball and README.rst.

(a) Upload tarball for release.

(b) Upload release notes as README.rst.

(c) Click on the info icon for README.rst and tick “Exclude Stats” to exlude the README from stats
counting.

3. Check README.rst. Since this is generated on Sourceforge, without reference to the docs folder, some of the
links will be broken.

(a) Check all links

(b) If broken links exist then download README.rst from Sourceforge, make changes and upload your
adjusted version. Don’t change the version in releases/ as we want that to continue to work correctly.

88 Chapter 1. All you need to know

https://pypi.python.org/pypi
http://wiki.python.org/moin/CheeseShopTutorial#Submitting_Packages_to_the_Package_Index
https://pypi.python.org
http://sourceforge.net/projects/translate/files/Pootle/
https://sourceforge.net/projects/translate/files/Pootle/

Pootle Documentation, Release 2.5.1.3

4. Final checks:

(a) Check that the README.rst for the parent Pootle folder is still appropriate, this text is the text from
/README.rst.

(b) Check all the links in README.rst files for existing releases, new release and the parent folders.

Add product version to Bugzilla

We need to allow users to report issues against the released version.

1. In Administration->Products add a product version.

2. Review existing versions that are available and disable older version from accepting bug reports.

Release documentation

We need a tagged release or branch before we can do this. The docs are published on Read The Docs.

• https://readthedocs.org/dashboard/pootle/versions/

Use the admin pages to flag a version that should be published. When we have branched the stable release we use the
branch rather then the tag i.e. stable/2.5.0 rather than 2.5.0 as that allows any fixes of documentation for the
2.5.0 release to be immediately available.

Change all references to docs in the Pootle code to point to the branched version as apposed to the latest version.

Update Pootle website

We use github pages for the website. First we need to checkout the pages:

git checkout gh-pages

1. In _posts/ add a new release posting. This is in Markdown format (for now), so we need to change the release
notes .rst to .md, which mostly means changing URL links from ‘‘xxx <link>‘_‘ to [xxx](link).

2. Change $version as needed. See download.html, _config.yml and git grep $old_release

3. git commit and git push – changes are quite quick so easy to review.

Note: FIXME it would be great if gh-pages accepted .rst, maybe it can if we prerender just that page?

Update Pootle dashboard

The dashboard used in Pootle’s dashboard is updated in its own project:

1. git clone git@github.com:translate/pootle-dashboard.git

2. Edit index.html to contain the latest release info

3. Add the same info in alerts.xml pointing to the release in RTD release/$version.html

Do a git pull on the server to get the latest changes from the repo.

1.4. Developers 89

https://readthedocs.org/dashboard/pootle/versions/
mailto:git@github.com

Pootle Documentation, Release 2.5.1.3

Unstage on sourceforge

If you have created a staged release folder, then unstage it now.

Announce to the world

Let people know that there is a new version:

1. Announce on mailing lists: Send the announcement to the translate-announce mailing lists on translate-
announce@lists.sourceforge.net translate-pootle@lists.sourceforge.net

2. Adjust the #pootle channel notice. Use /topic to change the topic.

3. Email important users

4. Tweet about it

Cleanup

Some possible cleanup tasks:

• Remove any RC builds from the sourceforge download pages and add redirects to Sourceforge Pootle top
level download page.

• Checkin any release notes and such (or maybe do that before tagging).

• Remove your pootle-release checkout.

• Remove pootle-release virtualenv: deactivate; rmvirtualenv pootle-release

• Update and change things based on what you learnt, don’t wait:

– Update and fix these release notes and make sure they are on master.

– Dicuss any changes that should be made or new things that could be added

– Add automation if you can

1.5 Pootle API

Changed in version 2.5.1.

Pootle provides a REST API for interacting with it using external tools, allowing those to retrieve data, for example
translation stats, or save data to Pootle, e.g. translations. This reference document is written for those interested in:

• Developing software to use this API

• Integrating existing software with this API

• Exploring API features in detail

1.5.1 Enabling the Pootle API

Pootle API is disabled by default. To enable it just install django-tastypie and put the following line on your
custom settings:

90 Chapter 1. All you need to know

mailto:translate-announce@lists.sourceforge.net
mailto:translate-announce@lists.sourceforge.net
mailto:translate-pootle@lists.sourceforge.net

Pootle Documentation, Release 2.5.1.3

POOTLE_ENABLE_API = True

Warning: If you are running Pootle using Apache with mod_wsgi you will need to enable
WSGIPassAuthorization On as told in Tastypie authentication docs.

1.5.2 Pootle API usage

In order to interact with Pootle API it is necessary to know how to use it and some of its particularities.

Using Pootle API

In order to use the Pootle API it is necessary to know how some things, like the supported formats, available authenti-
cation methods or basic rules for performing queries.

Pootle API is created using Tastypie so you might need to refer to its documentation as well.

How to perform API queries

The structure of the API URLs is <SERVER>/api/<API_VERSION>/<QUERY> where:

Placeholder Description
<SERVER> The URL of the Pootle server
<API_VERSION> Version number of the API
<QUERY> Resource query URI

So the API can be queried using URLs like:

http://pootle.locamotion.org/api/v1/translation-projects/65/

List matching a criteria For some resources it is also possible to narrow down the list by providing a query string
containing filters provided by Tastypie (that actually are Django ORM Field Lookups).

In this case the structure of the API URLs is <SERVER>/api/<API_VERSION>/<RESOURCE>/?<CRITERIA>
where <CRITERIA> is the query string. For example:

http://pootle.locamotion.org/api/v1/units/?mtime__month=05&mtime__day=12&state__exact=200

Authentication

Pootle requires authentication for accessing its API.

The method used for authentication is HTTP Basic Authentication which requires providing a username and a pass-
word (the same ones used for Pootle login).

Note: Other authentication methods can be added in the future.

1.5. Pootle API 91

http://django-tastypie.readthedocs.org/en/latest/authentication.html#authentication
http://tastypieapi.org/
http://django-tastypie.readthedocs.org/
http://en.wikipedia.org/wiki/Query_string
http://django-tastypie.readthedocs.org/en/latest/resources.html#basic-filtering
https://docs.djangoproject.com/en/dev/ref/models/querysets/#field-lookups
http://en.wikipedia.org/wiki/Basic_access_authentication

Pootle Documentation, Release 2.5.1.3

Authorization

The Pootle API allows to interact with resources that represent some of the data handled internally by Pootle. In order
to avoid all users access or alter data they are not meant to, the Pootle API checks if the visitor has enough permissions
to perform the requested actions on the resources. The permissions used for these checks are the same permissions
used in Pootle for regular users.

For some particular resources some other checks can be done to allow or deny performing the requested action. For
example the visitors can only see the User resource for the user that they used to log in the Pootle API.

Formats

By default Pootle API returns only JSON replies. It is possible to use all the formats supported by Tastypie.

Tools and libraries

Translate is currently developing a client for Pootle API, but there are several other libraries and programs capable of
interacting with Pootle API. For example here is an example script that uses Slumber to retrieve and print the list of
used languages in Pootle:

import slumber

Change the following to match your Pootle URL, your username and password.
API_URL = "http://127.0.0.1:8000/api/v1/"
AUTH=('admin', 'admin')

api = slumber.API(API_URL, auth=AUTH)

Get all languages data.
lang_data = api.languages.get()

for lang in lang_data["objects"]:
print(lang["code"])

Note: Remember to install Slumber in order to run the previous code.

1.5.3 Available resources

The Pootle API exposes a number of resources. Next you have a complete list of them with data about the accepted
HTTP methods, result limits, authentication requirements or other constraints.

Note: You might want to look at the Glossary to fully understand the resource names used in the API.

Language resources

The Pootle API exposes a number of resources. Next you have a complete list of Language specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

92 Chapter 1. All you need to know

http://en.wikipedia.org/wiki/JSON
http://django-tastypie.readthedocs.org/en/latest/settings.html#settings-tastypie-default-formats
https://github.com/translate/pootle-client
http://django-tastypie.readthedocs.org/en/latest/tools.html#ref-tools
http://slumber.readthedocs.org/
http://slumber.readthedocs.org/

Pootle Documentation, Release 2.5.1.3

List languages

URL /languages/

Description Returns the languages list.

API versions 1

Method GET

Returns List of languages.

{
"meta": {

"limit": 1000,
"next": null,
"offset": 0,
"previous": null,
"total_count": 132

},
"objects": [

{
"code": "af",
"description": "",
"fullname": "Afrikaans",
"nplurals": 2,
"pluralequation": "(n != 1)",
"resource_uri": "/api/v1/languages/3/",
"specialchars": "ëïêôûáéíóúý",
"translation_projects": [

"/api/v1/translation-projects/2/",
"/api/v1/translation-projects/3/"

]
},
{

"code": "ak",
"description": "",
"fullname": "Akan",
"nplurals": 2,
"pluralequation": "(n > 1)",
"resource_uri": "/api/v1/languages/4/",
"specialchars": "",
"translation_projects": [

"/api/v1/translation-projects/4/"
]

}
]

}

Create a language

URL /languages/

Description Creates a new language.

API versions 1

Method POST

1.5. Pootle API 93

Pootle Documentation, Release 2.5.1.3

Returns HTTP 201 response with the relative URL for the newly created language on its Location
header.

Get a language

URL /languages/<LANG>/

Description Returns the language with the <LANG> ID.

API versions 1

Method GET

Returns Language with <LANG> ID.

{
"code": "gl",
"description": "",
"fullname": "Galician",
"nplurals": 2,
"pluralequation": "(n != 1)",
"resource_uri": "/api/v1/languages/20/",
"specialchars": "",
"translation_projects": [

"/api/v1/translation-projects/12/",
"/api/v1/translation-projects/81/"

]
}

Change a language

URL /languages/<LANG>/

Description Changes the language with the <LANG> ID.

API versions 1

Method PATCH or PUT

Returns HTTP 204 NO CONTENT response.

Note: The method used can be:

• PATCH if the language is going to be partially changed (just some of its fields)

• PUT if the whole language is going to be changed

Delete a language

URL /languages/<LANG>/

Description Deletes the language with the <LANG> ID.

API versions 1

Method DELETE

Returns HTTP 204 NO CONTENT response.

94 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Get statistics for a language

URL /languages/<LANG>/statistics/

Description Returns the language with the <LANG> ID, including an extra field with its statistics.

API versions 1

Method GET

Returns Language with <LANG> ID and its statistics.

{
"code": "gl",
"description": "",
"fullname": "Galician",
"nplurals": 2,
"pluralequation": "(n != 1)",
"resource_uri": "/api/v1/languages/20/",
"specialchars": "",
"statistics": {

"errors": 0,
"fuzzy": {

"percentage": 1,
"units": 1,
"words": 1

},
"suggestions": 0,
"total": {

"percentage": 100,
"units": 1191,
"words": 1949

},
"translated": {

"percentage": 91,
"units": 1156,
"words": 1767

},
"untranslated": {

"percentage": 8,
"units": 34,
"words": 181

}
},
"translation_projects": [

"/api/v1/translation-projects/12/",
"/api/v1/translation-projects/81/"

]
}

Project resources

The Pootle API exposes a number of resources. Next you have a complete list of Project specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

1.5. Pootle API 95

Pootle Documentation, Release 2.5.1.3

List projects

URL /projects/

Description Returns the projects list.

API versions 1

Method GET

Returns List of projects.

{
"meta": {

"limit": 1000,
"next": null,
"offset": 0,
"previous": null,
"total_count": 4

},
"objects": [

{
"checkstyle": "standard",
"code": "firefox",
"description": "",
"fullname": "Firefox 22 (Aurora)",
"ignoredfiles": "",
"localfiletype": "po",
"resource_uri": "/api/v1/projects/4/",
"source_language": "/api/v1/languages/2/",
"translation_projects": [

"/api/v1/translation-projects/71/",
"/api/v1/translation-projects/72/",
"/api/v1/translation-projects/73/",
"/api/v1/translation-projects/74/"

],
"treestyle": "nongnu"

},
{

"checkstyle": "standard",
"code": "lxde",
"description": "",
"fullname": "LXDE",
"ignoredfiles": "",
"localfiletype": "po",
"resource_uri": "/api/v1/projects/5/",
"source_language": "/api/v1/languages/2/",
"translation_projects": [

"/api/v1/translation-projects/88/",
"/api/v1/translation-projects/89/",
"/api/v1/translation-projects/90/"

],
"treestyle": "nongnu"

}
]

}

96 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Create a project

URL /projects/

Description Creates a new project.

API versions 1

Method POST

Returns HTTP 201 response with the relative URL for the newly created project on its Location
header.

Get a project

URL /projects/<PROJ>/

Description Returns the project with the <PROJ> ID.

API versions 1

Method GET

Returns Project with <PROJ> ID.

{
"checkstyle": "standard",
"code": "firefox",
"description": "",
"fullname": "Firefox 22 (Aurora)",
"ignoredfiles": "",
"localfiletype": "po",
"resource_uri": "/api/v1/projects/4/",
"source_language": "/api/v1/languages/2/",
"translation_projects": [

"/api/v1/translation-projects/71/",
"/api/v1/translation-projects/72/",
"/api/v1/translation-projects/73/",
"/api/v1/translation-projects/74/"

],
"treestyle": "nongnu"

}

Change a project

URL /projects/<PROJ>/

Description Changes the project with the <PROJ> ID.

API versions 1

Method PATCH or PUT

Returns HTTP 204 NO CONTENT response.

Note: The method used can be:

• PATCH if the project is going to be partially changed (just some of its fields)

• PUT if the whole project is going to be changed

1.5. Pootle API 97

Pootle Documentation, Release 2.5.1.3

Delete a project

URL /projects/<PROJ>/

Description Deletes the project with the <PROJ> ID.

API versions 1

Method DELETE

Returns HTTP 204 NO CONTENT response.

Get statistics for a project

URL /projects/<PROJ>/statistics/

Description Returns the project with the <PROJ> ID, including an extra field with its statistics.

API versions 1

Method GET

Returns Project with <PROJ> ID and its statistics.

{
"checkstyle": "standard",
"code": "firefox",
"description": "",
"fullname": "Firefox 22 (Aurora)",
"ignoredfiles": "",
"localfiletype": "po",
"resource_uri": "/api/v1/projects/4/",
"source_language": "/api/v1/languages/2/",
"statistics": {

"errors": 0,
"fuzzy": {

"percentage": 1,
"units": 1,
"words": 7

},
"suggestions": 5,
"total": {

"percentage": 100,
"units": 289,
"words": 1309

},
"translated": {

"percentage": 99,
"units": 284,
"words": 1296

},
"untranslated": {

"percentage": 0,
"units": 4,
"words": 6

}
},
"translation_projects": [

"/api/v1/translation-projects/71/",
"/api/v1/translation-projects/72/",

98 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

"/api/v1/translation-projects/73/",
"/api/v1/translation-projects/74/"

],
"treestyle": "nongnu"

}

Store resources

The Pootle API exposes a number of resources. Next you have a complete list of Store specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

List stores in a translation project

URL /translation-projects/<TRPR>/

Description Returns the store (file) list on a given <TRPR> translation project.

API versions 1

Method GET

Returns Store (file) list on a given <TRPR> translation project.

{
"description": "",
"language": "/api/v1/languages/110/",
"pootle_path": "/fr/Firefox/",
"project": "/api/v1/projects/3/",
"real_path": "Firefox/fr",
"resource_uri": "/api/v1/translation-projects/65/",
"stores": [

"/api/v1/stores/77/",
"/api/v1/stores/76/",
"/api/v1/stores/75/"

]
}

Get a store

URL /stores/<STOR>/

Description Returns the store with the <STOR> ID.

API versions 1

Method GET

Returns Store with <STOR> ID.

{
"file": "/media/Firefox/fr/chrome/global/languageNames.properties.po",
"name": "languageNames.properties.po",
"pending": null,
"pootle_path": "fr/firefox/chrome/global/languageNames.properties.po",
"resource_uri": "/api/v1/stores/76/",

1.5. Pootle API 99

Pootle Documentation, Release 2.5.1.3

"state": 2,
"sync_time": "2013-03-15T20:10:35.070238",
"tm": null,
"translation_project": "/api/v1/translation-projects/65/",
"units": [

"/api/v1/units/70316/",
"/api/v1/units/70317/",
"/api/v1/units/70318/",
"/api/v1/units/70319/"

]
}

Get statistics for a store

URL /stores/<STOR>/statistics/

Description Returns the store with the <STOR> ID, including an extra field with its statistics.

API versions 1

Method GET

Returns Store with <STOR> ID and its statistics.

{
"file": "/media/Firefox/fr/chrome/global/languageNames.properties.po",
"name": "languageNames.properties.po",
"pending": null,
"pootle_path": "fr/firefox/chrome/global/languageNames.properties.po",
"resource_uri": "/api/v1/stores/76/",
"state": 2,
"statistics": {

"errors": 0,
"fuzzy": {

"percentage": 26,
"units": 1,
"words": 7

},
"suggestions": 1,
"total": {

"percentage": 100,
"units": 4,
"words": 27

},
"translated": {

"percentage": 63,
"units": 2,
"words": 17

},
"untranslated": {

"percentage": 11,
"units": 1,
"words": 3

}
},
"sync_time": "2013-03-15T20:10:35.070238",
"tm": null,
"translation_project": "/api/v1/translation-projects/65/",

100 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

"units": [
"/api/v1/units/70316/",
"/api/v1/units/70317/",
"/api/v1/units/70318/",
"/api/v1/units/70319/"

]
}

Suggestion resources

The Pootle API exposes a number of resources. Next you have a complete list of Suggestion specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

List suggestions for a unit

Description Returns the suggestion list for a given <UNIT> unit.

API versions 1

Method GET

Returns Suggestion list on a given <UNIT> unit.

{
"commented_by": null,
"commented_on": "2013-03-15T20:10:35.017844",
"context": "This is a phrase, not a verb.",
"developer_comment": "Translators: name of the option in the menu.",
"locations": "fr/firefox/chrome/global/languageNames.properties.po:62",
"mtime": "2013-05-12T17:51:49.786611",
"resource_uri": "/api/v1/units/70316/",
"source_f": "New Tab",
"source_length": 29,
"source_wordcount": 3,
"state": 0,
"store": "/api/v1/stores/76/",
"submitted_by": "/api/v1/users/3/",
"submitted_on": "2013-05-21T17:51:16.155000",
"suggestions": [

"/api/v1/suggestions/1/",
"/api/v1/suggestions/3/"

],
"target_f": "",
"target_length": 0,
"target_wordcount": 0,
"translator_comment": ""

}

Create a suggestion

URL /suggestions/

Description Creates a new suggestion.

1.5. Pootle API 101

Pootle Documentation, Release 2.5.1.3

API versions 1

Method POST

Returns HTTP 201 response with the relative URL for the newly created suggestion on its Location
header.

Get a suggestion

URL /suggestions/<SUGG>/

Description Returns the suggestion with the <SUGG> ID.

API versions 1

Method GET

Returns Suggestion with <SUGG> ID.

{
"resource_uri": "/api/v1/suggestions/1/",
"target_f": "Nouvel onglet",
"translator_comment_f": "",
"unit": "/api/v1/units/70316/"

}

Change a suggestion

URL /suggestions/<SUGG>/

Description Changes the suggestion with the <SUGG> ID.

API versions 1

Method PATCH or PUT

Returns HTTP 204 NO CONTENT response.

Note: The method used can be:

• PATCH if the suggestion is going to be partially changed (just some of its fields)

• PUT if the whole suggestion is going to be changed

Delete a suggestion

URL /suggestion/<SUGG>/

Description Deletes the suggestion with the <SUGG> ID.

API versions 1

Method DELETE

Returns HTTP 204 NO CONTENT response.

102 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Translation project resources

The Pootle API exposes a number of resources. Next you have a complete list of Translation project specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

List translation projects in a project

URL /projects/<PROJ>/

Description Returns the translation projects (languages) list on a given <PROJ> project.

API versions 1

Method GET

Returns List of translation projects (languages) on a given <PROJ> project.

{
"checkstyle": "standard",
"code": "firefox",
"description": "",
"fullname": "Firefox 22 (Aurora)",
"ignoredfiles": "",
"localfiletype": "po",
"resource_uri": "/api/v1/projects/4/",
"source_language": "/api/v1/languages/2/",
"translation_projects": [

"/api/v1/translation-projects/71/",
"/api/v1/translation-projects/72/",
"/api/v1/translation-projects/73/",
"/api/v1/translation-projects/74/"

],
"treestyle": "nongnu"

}

List translation projects in a language

URL /languages/<LANG>/

Description Returns the translation projects (projects) list on a given <LANG> language.

API versions 1

Method GET

Returns List of translation projects (projects) on a given <LANG> language.

{
"code": "gl",
"description": "",
"fullname": "Galician",
"nplurals": 2,
"pluralequation": "(n != 1)",
"resource_uri": "/api/v1/languages/20/",
"specialchars": "",
"translation_projects": [

"/api/v1/translation-projects/12/",

1.5. Pootle API 103

Pootle Documentation, Release 2.5.1.3

"/api/v1/translation-projects/81/"
]

}

Create a translation project

URL /translation-projects/

Description Creates a new translation project.

API versions 1

Method POST

Returns HTTP 201 response with the relative URL for the newly created translation project on its
Location header.

Get a translation project

URL /translation-projects/<TRPR>/

Description Returns the translation project with the <TRPR> ID.

API versions 1

Method GET

Returns Translation project with <TRPR> ID.

{
"description": "",
"language": "/api/v1/languages/110/",
"pootle_path": "/fr/Firefox/",
"project": "/api/v1/projects/3/",
"real_path": "Firefox/fr",
"resource_uri": "/api/v1/translation-projects/65/",
"stores": [

"/api/v1/stores/77/",
"/api/v1/stores/76/",
"/api/v1/stores/75/"

]
}

Change a translation project

URL /translation-projects/<TRPR>/

Description Changes the translation project with the <TRPR> ID.

API versions 1

Method PATCH or PUT

Returns HTTP 204 NO CONTENT response.

Note: The method used can be:

• PATCH if the translation project is going to be partially changed (just some of its fields)

104 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

• PUT if the whole translation project is going to be changed

Delete a translation project

URL /translation-projects/<TRPR>/

Description Deletes the translation project with the <TRPR> ID.

API versions 1

Method DELETE

Returns HTTP 204 NO CONTENT response.

Get statistics for a translation project

URL /translation-projects/<TRAP>/statistics/

Description Returns the translation project with the <TRAP> ID, including an extra field with its statis-
tics.

API versions 1

Method GET

Returns Translation project with <TRAP> ID and its statistics.

{
"description": "",
"language": "/api/v1/languages/110/",
"pootle_path": "/fr/Firefox/",
"project": "/api/v1/projects/3/",
"real_path": "Firefox/fr",
"resource_uri": "/api/v1/translation-projects/65/",
"statistics": {

"errors": 0,
"fuzzy": {

"percentage": 4,
"units": 1,
"words": 7

},
"suggestions": 3,
"total": {

"percentage": 100,
"units": 39,
"words": 167

},
"translated": {

"percentage": 94,
"units": 37,
"words": 157

},
"untranslated": {

"percentage": 2,
"units": 1,
"words": 3

}
},

1.5. Pootle API 105

Pootle Documentation, Release 2.5.1.3

"stores": [
"/api/v1/stores/77/",
"/api/v1/stores/76/",
"/api/v1/stores/75/"

]
}

Unit resources

The Pootle API exposes a number of resources. Next you have a complete list of Unit specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

List units in a store

URL /stores/<STOR>/

Description Returns the unit list on a given <STOR> store.

API versions 1

Method GET

Returns Unit list on a given <STOR> store.

{
"file": "/media/Firefox/fr/chrome/global/languageNames.properties.po",
"name": "languageNames.properties.po",
"pending": null,
"pootle_path": "fr/firefox/chrome/global/languageNames.properties.po",
"resource_uri": "/api/v1/stores/76/",
"state": 2,
"sync_time": "2013-03-15T20:10:35.070238",
"tm": null,
"translation_project": "/api/v1/translation-projects/65/",
"units": [

"/api/v1/units/70316/",
"/api/v1/units/70317/",
"/api/v1/units/70318/",
"/api/v1/units/70319/"

]
}

List units matching a criteria

URL /units/?<CRITERIA>

Description Returns a unit list that match the <CRITERIA>.

API versions 1

Method GET

Returns Unit list that match a given <CRITERIA>.

<CRITERIA> is a query string where the fields are Django ORM Field Lookups. Some examples might help:

106 Chapter 1. All you need to know

http://en.wikipedia.org/wiki/Query_string
https://docs.djangoproject.com/en/dev/ref/models/querysets/#field-lookups

Pootle Documentation, Release 2.5.1.3

• source_f field contains, case insensitive, button: /units/?source_f__icontains=button

• target_f field starts with window: /units/?target_f__startswith=window

• mtime field (modification datetime) is on the May month: /units/?mtime__month=05

• Unit is translated: /units/?state=200

Multiple field lookups can be provided, even several lookups on the same field:

/units/?mtime__month=05&mtime__day=12&developer_comment__icontains=verb

Note: It is not possible to provide OR conditions using filters, nor negate the filters.

Fields Available filters (field lookups)

• context
• developer_comment
• locations
• source_f
• target_f
• translator_comment

• exact
• iexact
• contains
• icontains
• startswith
• istartswith
• endswith
• iendswith

• commented_on
• mtime
• submitted_on

• year
• month
• day

• state
• store

• exact

The available states are:

• 0 (untranslated): The unit is untranslated (empty)

• 50 (fuzzy): The unit is fuzzy (typically means translation needs more work)

• 200 (translated): The unit is fully translated

• -100 (obsolete): The unit is no longer part of the store

Warning: It is possible to get all the units in a given store by requesting /units/?store=<STOR> but it is
recommended to use the List units in a store method instead.
Filtering by store is only advisable when:

• You need to provide extra filters:
/units/?store=74&developer_comment__icontains=verb

• You want to get all the data for those units with a single request, despite the computational cost.

Get a unit

URL /units/<UNIT>/

Description Returns the unit with the <UNIT> ID.

API versions 1

1.5. Pootle API 107

Pootle Documentation, Release 2.5.1.3

Method GET

Returns Unit with <UNIT> ID.

{
"commented_by": null,
"commented_on": "2013-03-15T20:10:35.017844",
"context": "This is a phrase, not a verb.",
"developer_comment": "Translators: name of the option in the menu.",
"locations": "fr/firefox/chrome/global/languageNames.properties.po:62",
"mtime": "2013-05-12T17:51:49.786611",
"resource_uri": "/api/v1/units/70316/",
"source_f": "New Tab",
"source_length": 29,
"source_wordcount": 3,
"state": 0,
"store": "/api/v1/stores/76/",
"submitted_by": "/api/v1/users/3/",
"submitted_on": "2013-05-21T17:51:16.155000",
"suggestions": [

"/api/v1/suggestions/1/"
],
"target_f": "",
"target_length": 0,
"target_wordcount": 0,
"translator_comment": ""

}

Change a unit

URL /units/<UNIT>/

Description Changes the unit with the <UNIT> ID.

API versions 1

Method PATCH or PUT

Returns HTTP 204 NO CONTENT response.

Note: The method used can be:

• PATCH if the unit is going to be partially changed (just some of its fields), for example when providing a
translation

• PUT if the whole unit is going to be changed

User resources

The Pootle API exposes a number of resources. Next you have a complete list of User specific resources.

Note: All URLs listed here should be appended to the base URL of the API.

Create a user

URL /users/

108 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

Description Creates a new user.

API versions 1

Method POST

Returns HTTP 201 response with the relative URL for the newly created user on its Location header.

Note: The consumer must have the appropiate permissions in order to be able to create new users.

Warning: The new user will have no password set, and therefore won’t be able to log in until a password is set,
either by an administrator or by the user requesting and setting a new password.

Get a user

URL /users/<USER>/

Description Returns the user with the <USER> ID.

API versions 1

Method GET

Returns User with <USER> ID.

Note: The consumer will get the user data only if it is authenticated as the user which is trying to get the data for.

{
"date_joined": "2013-03-15T19:04:39.401505",
"email": "admin@doesnotexist.com",
"first_name": "Administrator",
"last_name": "",
"resource_uri": "/api/v1/users/3/",
"username": "admin"

}

Change a user

URL /users/<USER>/

Description Changes the user with the <USER> ID.

API versions 1

Method PATCH or PUT

Returns HTTP 204 NO CONTENT response.

Note: The method used can be:

• PATCH if the user is going to be partially changed (just some of its fields)

• PUT if the whole user is going to be changed

Note: The consumer will only be able to change the data for a given user if it:

• Is authenticated as the user which is trying to change the data for, and

1.5. Pootle API 109

Pootle Documentation, Release 2.5.1.3

• Has enough permissions to perform this action.

Delete a user

URL /users/<USER>/

Description Deletes the user with the <USER> ID.

API versions 1

Method DELETE

Returns HTTP 204 NO CONTENT response.

Note: The consumer will only be able to delete a given user if it:

• Is authenticated as the user which is trying to delete, and

• Has enough permissions to perform this action.

Get statistics for a user

URL /users/<USER>/statistics/

Description Returns the user with the <USER> ID, including an extra field with its statistics.

API versions 1

Method GET

Returns User with <USER> ID and its statistics.

Note: If the consumer is authenticated as the same user for which the statistics are shown, then some extra fields are
included in the response.

This fields are the same ones that can be accessed when the consumer gets the data for a user.

{
"resource_uri": "/api/v1/users/3/",
"statistics": [

[
"Portuguese (Brazil) - pt_BR",
[

["/pt_BR/Firefox/",
[

{
"count": 2,
"id": "suggestions-pending",
"url": "/pt_BR/Firefox/translate.html#filter=user-suggestions&user=admin"

},
{

"count": 0,
"id": "suggestions-accepted",
"url": "/pt_BR/Firefox/translate.html#filter=user-suggestions-accepted&user=admin"

},
{

"count": 0,

110 Chapter 1. All you need to know

Pootle Documentation, Release 2.5.1.3

"id": "suggestions-rejected",
"url": "/pt_BR/Firefox/translate.html#filter=user-suggestions-rejected&user=admin"

},
{

"count": 10,
"id": "submissions-total",
"url": "/pt_BR/Firefox/translate.html#filter=user-submissions&user=admin"

},
{

"count": 0,
"id": "submissions-overwritten",
"url": "/pt_BR/Firefox/translate.html#filter=user-submissions-overwritten&user=admin"

}
]

]
]

],
[

"Russian - ru",
[

["/ru/LXDE/",
[

{
"count": 0,
"id": "suggestions-pending",
"url": "/ru/LXDE/translate.html#filter=user-suggestions&user=admin"

},
{

"count": 0,
"id": "suggestions-accepted",
"url": "/ru/LXDE/translate.html#filter=user-suggestions-accepted&user=admin"

},
{

"count": 0,
"id": "suggestions-rejected",
"url": "/ru/LXDE/translate.html#filter=user-suggestions-rejected&user=admin"

},
{

"count": 34,
"id": "submissions-total",
"url": "/ru/LXDE/translate.html#filter=user-submissions&user=admin"

},
{

"count": 0,
"id": "submissions-overwritten",
"url": "/ru/LXDE/translate.html#filter=user-submissions-overwritten&user=admin"

}
]

]
]

]
],
"username": "admin"

}

1.5. Pootle API 111

Pootle Documentation, Release 2.5.1.3

112 Chapter 1. All you need to know

CHAPTER 2

Additional Notes

2.1 Changelog

These are the critical changes that have happened in Pootle and may affect your server. Also be aware of the important
changes in the Translate Toolkit as many of these also affect Pootle.

If you are upgrading Pootle, you might want to see some tips to ensure your upgrade goes smoothly.

Note: For newer Pootle versions changes please check the Release notes.

2.1.1 Version 2.1.1

Bugfix release, released on September 3rd 2010.

• The default cache backend is now a database backend. Memcached is still the preferred cache backend, but
consider using the database cache if you are using the local memory backend and can’t use memcached.

• You can perform a database migration away from SQLite.

2.1.2 Version 2.1

Released on August 17th 2010.

• Pootle no longer depends on statsdb and SQLite.

• Files on disk are only synced with the database on download or commit. The old behaviour can be restored at
the cost of performance. A manage.py command can sync to files on the command line.

• The database is now much larger. This should have no negative impact on performance, but we strongly suggest
using MySQL or PostgreSQL for the best performance.

• Pootle 2.1 will upgrade the database automatically from Pootle 2.0 installations. You need to have South in-
stalled. Install it from your distribution, or http://south.aeracode.org/ or with easy_install South (the
upgrade could take quite a while, depending on your installation size).

• Pending files are not used for suggestions any more, and will also be migrated to the database during upgrade.

• New settings are available in localsettings.py – compare your existing one to the new one.

• Pootle 1 installations can easily migrate everything excluding project permissions. We encourage administrators
to configure permissions with the new permission system which is much simpler to use, since permissions on
the language and project level are now supported.

113

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/changelog.html#changelog
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/changelog.html#changelog
http://south.aeracode.org/

Pootle Documentation, Release 2.5.1.3

• Have a look at the optimization guide to ensure your Pootle runs well.

2.1.3 Version 2.0

Released on December 7th 2009.

• Pootle now uses the Django framework and data that previously was stored in flat files (projects, languages,
users and permissions) is now stored in a database. Migration scripts are provided.

• Review all suggestions before migrating, and note that assignments are not yet supported in Pootle 2.0.

2.1.4 Version 1.2.0

Released on October 8th 2008.

• The name of the directory for indexing databases changed from .poindex-PROJECT-LANGUAGE to .transla-
tion_index. Administrators may want to remove the old indexing directories manually.

• The enhanced search function needs all indexing databases to be regenerated, otherwise it won’t find anything.
To achieve this, just remove all .translation_index directories under your projects:

find /path/to/projects/ -type d -name ".translation_index" -exec rm -rf {} \;

• If you used testing versions of Pootle 1.2, you almost definitely need to regenerate your statistics database.
Pootle might be able to do it automatically, but if not, delete ~/.translate_toolkit/stats.db.

2.1.5 Version 1.0

Released on May 25th 2007.

XLIFF support Pootle 1.0 is the first version with support for XLIFF based projects. In the admin interface the
project type can be specified as PO / XLIFF (this really just tells Pootle for which type of files it should look -
it won’t convert your project for you). This property is stored in pootle.prefs in the variable localfiletype
for each project.

Configurable logos You are now able to configure the logos to use in pootle.prefs. At the moment it will probably be
easiest to ensure that the same image sizes are used as the standard images.

Localized language names Users can now feel more at home with language names being localized. This functional-
ity is actually provided by the toolkit and your system’s iso-codes package.

Treestyle: gnu vs nongnu Pootle automatically detects the file layout of each project. If you want to eliminate the
detection process (which can be a bit slow for big projects) or want to override the type that Pootle detected, you
can specify the treestyle attribute for the project in pootle.prefs. Currently this can not be specified through
the admin interface.

2.1.6 Version 0.11

Released on March 8th 2007.

• If the user has the appropriate privileges (ovewrite right) he/she will be able to upload a file and completely
overwrite the previous one. Obviously this should be done with care, but was a requested feature for people that
want to entirely replace existing files on a Pootle server.

• The server administrator can now specify the default access rights (permissions) for the server. This is the rights
that will be used for all projects where no other setup has been given. See pootle.prefs for some examples.

114 Chapter 2. Additional Notes

Pootle Documentation, Release 2.5.1.3

• The default rights in the default Pootle setup has changed to only allow suggesting and to not allow translation.
This means that the default server setup is not configured to allow translation, and that users must be specifically
assigned the translate (and optionally review) right, or alternatively, the default rights must be configured to
allow translation (see the paragraph above).

• The baseurl will now be used, except for the /doc/ directory, that currently still is offered at /doc/.

• The default installation now uses English language names in preperation for future versions that will hopefully
have language names translated into the user interface language. To this end the language names must be in
English, and names with country codes must have the country code in simple noun form in brackets. For
example Portuguese (Brazil); in other words, not Portuguese (Brazilian).

2.1.7 Version 0.10

Released on August 29th 2006.

Statistics The statistics pages are greatly reworked. We now have a page that shows a nice table, that you can sort,
with graphs of the completeness of the files. This is the default view. What is confusing is that the stats page
does not work directly with editing. To get the editing features, click on the editing link in the top bar.

The quick statistics files (pootle-projectname-zu.stats) now also store the fuzzy stats that are needed to render
the statistics tables. Your previous files from 0.9 can not supply this information. Pootle 0.10 will automatically
update these files, but if you (for some reason) want/need to go back to Pootle 0.9, you will have to delete these
files. Not all .stats files need to be deleted, only the ones starting with pootle-projectname.

SVN and CVS committing You can now commit to SVN or CVS. A default commit message is added, you cannot
edit this message. Your ability to commit depends on the rights you have on the checkout and since you cannot
supply a password it needs to be a non-blocking method. This feature is probably not useful for a very public
server unless it is managing multiple translations of your own project and you have direct control over it and
CVS/SVN accounts. It will work well in a standalone situation like a Translate@thon etc, where it is a public
event but the server is controled by yourself for the event and then you can simply commit changes at the end.
For more information, see version control information.

Terminology Pootle can now aid translators with terminology. Terminology can be specified to be global per lan-
guage, and can be overriden per project for each language. A project called “terminology” (with any full name)
can contain any files that will be used for terminology matching. Alternatively a file with the name pootle-
terminology.po can be put in the directory of the project, in which case the global one (in the terminology
project) will not be used. Matching is done in real time. Note that this does not work with GNU-style projects
(where all the files are in one directory and have names according to the language code).

Translation Memory Pootle can now aid translators by means of a translation memory. The suggestions are not
generated realtime – it is done on the server by means of a commandline program (updatetm). Files with
an appended .tm will be generated and read by Pootle to supply the suggestions. For more information see
updatetm.

2.2 Release Notes

The following are release notes used on PyPI, Sourceforge and mailing lists for Pootle releases.

2.2.1 Pootle bugfix release 2.5.1.3

Released on 2015-06-03

This is a bugfix release for the 2.5.1 branch. It is meant to provide a newer stable version until Pootle 2.7.0 is released.

2.2. Release Notes 115

mailto:Translate@thon

Pootle Documentation, Release 2.5.1.3

Installation and Upgrade

• Installation

• Upgrade

Bugfixes

For a full list of changes, please check the git log.

• Added support for xliff extension for XLIFF files

• Fixed the missing assets issue with the provided package

• Fixed submission of untrusted input from editor

• Fixed upgrading from version 2.5.0

• Fixed notification when saving units

• Assorted documentation updates and fixes

Credits

The following people have made this release possible:

Dwayne Bailey, Leandro Regueiro, Miha Vrhovnik, Kevin KIN-FOO, Julen Ruiz Aizpuru.

2.2.2 Pootle bugfix release 2.5.1.2

Released on 2015-06-01

The 2.5.1.2 release is a bugfix release for the 2.5.1 branch. It is meant to provide a newer stable version until Pootle
2.7.0 is released.

Installation and Upgrade

• Installation

• Upgrade

Bugfixes

For a full list of changes, please check the git log.

• Added support for xliff extension for XLIFF files

• Fixed the missing assets issue with the provided package

• Fixed submission of untrusted input from editor

• Fixed upgrading from version 2.5.0

• Fixed notification when saving units

• Assorted documentation updates and fixes

116 Chapter 2. Additional Notes

https://github.com/translate/pootle/compare/2.5.1...2.5.1.3
https://github.com/translate/pootle/compare/2.5.1...2.5.1.2

Pootle Documentation, Release 2.5.1.3

Credits

The following people have made Pootle 2.5.1.2 possible:

Dwayne Bailey, Leandro Regueiro, Miha Vrhovnik, Kevin KIN-FOO, Julen Ruiz Aizpuru.

2.2.3 Pootle bugfix release 2.5.1.1

Released on 2014-04-29

The 2.5.1.1 release is a bugfix release for the 2.5.1 branch.

Installation and Upgrade

• Installation

• Upgrade

Bugfixes

For a full list of changes, please check the git log.

• Top stats are now cached for a much longer time and are configurable.

• Updated Google Translate support to work with the updated Google Translate API

• Fixed potential failures with zip exports

• Fixed several requirements issues with newer versions of Python and some libraries

• Fixed an obscure crash caused by pagination queries

• Fixed a potential crash when calculating statistics for a submission

• Fixed some javascript issues for users with corrupt cookies

• Assorted documentation updates and fixes

Credits

The following people have made Pootle 2.5.1.1 possible:

Julen Ruiz Aizpuru, Leandro Regueiro, Dwayne Bailey, Khaled Hosny, Jerome Leclanche, Igor Afanasyev and @qd-
inar.

2.2.4 Welcome to the new Pootle 2.5.1

Released on 24 January 2014

Yes, we did miss our 6 month release cycle! Many changes have gone into Pootle 2.5.1 which follows on from 2.5.0
released in May.

Pootle 2.5.1 has been in production for a number of users, so although it is a new official release, we’ve had many
people running their production Pootle server off this code. This includes Mozilla and Evernote. So you are in good
company.

For those who can’t wait you might be interested to know what we’ve got planned on our roadmap for Pootle 2.5.2.

2.2. Release Notes 117

https://github.com/translate/pootle/compare/2.5.1...2.5.1.1
http://mozilla.locamotion.org/
http://translate.evernote.com/pootle/

Pootle Documentation, Release 2.5.1.3

Changes in Requirements

• Django >= 1.4.10 (note that Django 1.5 and 1.6 are not yet supported)

• Translate Toolkit >= 1.11.0

• Python >= 2.6

Installation and Upgrade

• Installation

• Upgrade

Major Changes

These are by no means exhaustive, check the git log for more details.

• Tags – You can now tag and filter translation projects, making it easy to focus on a set of languages.

• Goals – you can now group files within a project to ensure that translators focus on the most important tasks
first.

• Extension Actions – you can create custom actions using Python scripts. These are displayed with current
actions and allow you to extend Pootle’s functionality.

• API – an initial Pootle API is in place (disabled by default).

Changes since 2.5.1-rc1

• Goals: more efficient cache flushing mechanism, sites with large projects took very long to submit new transla-
tions.

• LDAP: explicit import of ldap.filter

• Tags: restrict accepted taggit versions to those that will work with Pootle’s use of tags.

Important server admin changes

• The minimum required Python version is now 2.6.x. While Django 1.4.x supports Python 2.5, it is no longer
supported by the Python Foundation neither by several third party apps.

• The database schema upgrade procedure has been redefined:

– The updatedb management command has been phased out in favor of South’s own migrate command.

– Post schema upgrade actions have been moved to the upgrade command.

– The automatic update has been removed.

• The setup management command was added to hide the complexities in the altering of the DB when installing
or upgrading Pootle.

• Fabric deployment scripts have been improved to make deployment easier.

• Security fixes identified by a Mozilla security audit have been implemented.

• Optimisations of asset caching such as Expires headers have been enabled.

118 Chapter 2. Additional Notes

http://toolkit.translatehouse.org/download.html
https://github.com/translate/pootle/compare/stable%2F2.5.0...2.5.1-rc1
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#updatedb
http://south.readthedocs.org/en/latest/commands.html#migrate
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#upgrade
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#setup

Pootle Documentation, Release 2.5.1.3

• LDAP authentication backend moved to pootle.core.auth.ldap_backend.LdapBackend and re-
ceived various fixes.

• Static pages can now be used to track the acceptance of terms of use.

• The quality check for spell checking has been globally disabled. It wasn’t properly advertised nor documented,
and it didn’t perform well enough to be considered useful.

Visual Changes

• User contribution are displayed in the users profile page.

• Breadcrumbs now follow the way a translator would interact with Pootle and are unified across all views of the
project.

• Global search allows you to search across all projects and all languages.

• Last activity messages show quickly what last change was made to the translations.

• The export view allows for easier proofreading by translators.

• Various RTL fixes.

...and lots of refactoring, upgrades of upstream code, cleanups to remove Django 1.3 specifics, missing documentation
and of course, loads of bugs were fixed

Credits

The following people have made Pootle 2.5.1 possible:

Julen Ruiz Aizpuru, Leandro Regueiro, Dwayne Bailey, Alexander Dupuy, Khaled Hosny, Arky, Fabio Pirola, Chris-
tian Hitz, Taras Semenenko, Chris Oelmueller, Peter Bengtsson, Yasunori Mahata, Denis Parchenko, Henrik Saari,
Hakan Bayindir, Edmund Huber, Dmitry Rozhkov & Darío Hereñú

2.2.5 Welcome to the new Pootle 2.5.1-rc1

Released on 1 December 2013

We almost missed our 6 month release cycle! Many changes have gone into Pootle 2.5.1 which follows on from 2.5.0
released in May.

Pootle 2.5.1 has been in production for a number of users, so although it is a new official release, we’ve had many
people running their production Pootle server off this code. This includes Mozilla and Evernote. So you are in good
company.

For those who can’t wait you might be interested to know what we’ve got planned on our roadmap for Pootle 2.5.2.

Changes in Requirements

• Django >= 1.4.10

• Translate Toolkit >= 1.11.0-rc1

• Python >= 2.6

2.2. Release Notes 119

http://mozilla.locamotion.org/
http://translate.evernote.com/pootle/
http://toolkit.translatehouse.org/download.html

Pootle Documentation, Release 2.5.1.3

Installation and Upgrade

• Installation

• Upgrade

Major Changes

These are by no means exhaustive, check the git log for more details.

• Tags – You can now tag and filter translation projects, making it easy to focus on a set of languages.

• Goals – you can now group files within a project to ensure that translators focus on the most important tasks
first.

• Extension Actions – you can create custom actions using Python scripts. These are displayed with current
actions and allow you to extend Pootle’s functionality.

• API – an initial Pootle API is in place (disabled by default).

Important server admin changes

• The minimum required Python version is now 2.6.x. While Django 1.4.x supports Python 2.5, it is no longer
supported by the Python Foundation neither by several third party apps.

• The database schema upgrade procedure has been redefined:

– The updatedb management command has been phased out in favor of South’s own migrate command.

– Post schema upgrade actions have been moved to the upgrade command.

– The automatic update has been removed.

• The setup management command was added to hide the complexities in the altering of the DB when installing
or upgrading Pootle.

• Fabric deployment scripts have been improved to make deployment easier.

• Security fixes identified by a Mozilla security audit have been implemented.

• Optimisations of asset caching such as Expires headers have been enabled.

• LDAP authentication backend moved to pootle.core.auth.ldap_backend.LdapBackend and re-
ceived various fixes.

• Static pages can now be used to track the acceptance of terms of use.

• The quality check for spell checking has been globally disabled. It wasn’t properly advertised nor documented,
and it didn’t perform well enough to be considered useful.

Visual Changes

• User contribution are displayed in the users profile page.

• Breadcrumbs now follow the way a translator would interact with Pootle and are unified across all views of the
project.

• Global search allows you to search across all projects and all languages.

• Last activity messages show quickly what last change was made to the translations.

120 Chapter 2. Additional Notes

https://github.com/translate/pootle/compare/stable%2F2.5.0...2.5.1-rc1
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#updatedb
http://south.readthedocs.org/en/latest/commands.html#migrate
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#upgrade
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#setup

Pootle Documentation, Release 2.5.1.3

• The export view allows for easier proofreading by translators.

• Various RTL fixes.

...and lots of refactoring, upgrades of upstream code, cleanups to remove Django 1.3 specifics, missing documentation
and of course, loads of bugs were fixed

Credits

The following people have made Pootle 2.5.1 possible:

Julen Ruiz Aizpuru, Leandro Regueiro, Dwayne Bailey, Alexander Dupuy, Khaled Hosny, Arky, Fabio Pirola, Chris-
tian Hitz, Taras Semenenko, Chris Oelmueller, Peter Bengtsson, Yasunori Mahata, Denis Parchenko, Henrik Saari,
Hakan Bayindir, Edmund Huber, Dmitry Rozhkov & Darío Hereñú

2.2.6 Welcome to the new Pootle 2.5.0

Released on 18 May 2013

Finally! Translate has a new baby and we’re pretty proud of her. Many changes have gone into 2.5.0 which follows on
from 2.1.6 released more then two years ago. So many changes that it’s quite hard to list them all.

Why so long? Well we had the Egyptian revolution, a complete change in UI, and a load of features we wanted you to
have. It took much longer to stabilise it for you to enjoy.

Pootle 2.5.0 has been in production with many users, so although it is a new official release, we’ve had many people
running their production server off this code. This includes LibreOffice, Mozilla and Evernote. So you are in good
company.

Requirements

• Django 1.3 or 1.4

• Translate Toolkit >= 1.10.0

• lxml (now a runtime requirement)

Installation and Upgrade

• Installation

• Upgrade

Changes

These are by no means exhaustive, check the git log for more details

2.5.0 vs 2.5.0-rc1

Changes from 2.5.0 RC1 to 2.5.0 final release:

• Correct all Right-to-Left rendering issues

• Minor fixes: update translations, fixes to lightbox and some documentation corrections

2.2. Release Notes 121

https://www.google.co.uk/search?q=%23freealaa&tbm=isch
https://translations.documentfoundation.org/
http://mozilla.locamotion.org/
http://translate.evernote.com/pootle/
http://toolkit.translatehouse.org/download.html
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/installation.html
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/upgrading.html

Pootle Documentation, Release 2.5.1.3

User Experience

We undertook a major UI rework – we now have a clean new translation interface, and overview page.

In the editor:

• We follow a new approach when you edit translations, you will see a list of units that meet some criterion.

• Translation Memory is displayed for the current unit – results are from Translate’s public Amagama server.

• Filters are easily accessible while you translate, so you can quickly change these within the translation interface.

• Context rows are provided in the translation interface when you are filtering and these can be hidden or expanded.

• A timeline is provided for a unit. This provides a history of the changes in translation text, state changes,
translator and dates of changes.

• Gravatars give credit to translators and suggesters.

In the overview page:

• Several features from translation projects have been merged into the Overview tab, including quality check fail-
ures and directory- and file-level actions. As a consequence the Review tab has been dropped and the Translate
tab serves solely to display the actual translation editor.

• The overview page allows you to drill down into certain types of units matching a translation state or with an
error.

• It is now easier to see what work needs attentions, as we highlight next actions for your project.

• With editable project and language descriptions you can supply description for projects. These are editable
using Markdown, reStructuredText or HTML.

• News alerts can now be sent via email to project participants.

• The overview page provides an expanded checks page that highlights all failing checks.

• Checks are classified into categories so that more urgent ones are highlighted to translators

Version Control

• Update the whole project at once avoiding slow file by file updates

• A separate VCS_DIRECTORY for VCS checkout is where Pootle now does all VC related work – this ensures
that we can work well with DVCS like Git.

• Detect new and removed files after a VCS update

• Management commands for VCS actions [Stuart Prescott]

• Add new files to VCS after updating from templates

Commands

New and changed commands:

• list_languages

• list_projects

• latest_change_id

• --modified-since flag for update_stores and sync_stores

122 Chapter 2. Additional Notes

http://amagama.translatehouse.org/
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/settings.html#std:setting-VCS_DIRECTORY
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#list-languages
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#list-projects
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#latest-change-id
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-stores
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#sync-stores

Pootle Documentation, Release 2.5.1.3

• commit_to_vcs

• update_from_vcs

• update_from_templates has been renamed to update_against_templates

Important server admin changes

• Static files are now handled by the django.contrib.staticfiles module. This means you will need to
run the pootle collectstatic command on production and serve the pootle/assets/ directory from your
webserver at /assets/. If you are upgrading from a previous version, you will need to replace the occurrences of
static with assets within your web server configuration.

• Static files are bundled into assets by using django-assets.

• Settings have been migrated from localsettings.py into settings/*.conf files. Your customizations now go in a
separate configuration file (or in settings/90-local.conf if running from a repository clone).

• The PootleServer script has been phased out in favor of a pootle runner script.

• If you will be using Pootle with Django 1.3, you have to keep the timezone on UTC, unless you are using
PostgreSQL. Users of PostgreSQL or Django 1.4 or later are free to set the time zone as they prefer.

• Make sure to use the minimum required South version when performing database upgrades.

Infrastructure

• All documentation is now on Read The Docs

• We have a new website for Pootle

• We’re using Travis for Continuous Integration

• All our code is now on Github

...and of course, loads of bugs were fixed

Credits

The following people have made Pootle 2.5.0 possible:

Julen Ruiz Aizpuru, Friedel Wolff, Alaa Abd el Fattah, Igor Afanasyev, Dwayne Bailey, Leandro Regueiro, Claude
Paroz, Chris Oelmueller, Taras Semenenko, Kevin Scannell, Christian Hitz, Thomas Kinnen, Alexander Dupuy, kha-
garoth, dvinella, Stuart Prescott, Roman Imankulov, Peter Bengtsson, Nagy Akos, Michael Tänzer, Gregory Oschwaldi
& Andy Nicholson.

2.2.7 Welcome to the new Pootle 2.5.0-rc1

Released on 16 March 2013

At Translate we’re pretty proud of this baby. Many changes have gone into 2.5.0 which follows on from 2.1.6 released
more then two years ago. So many changes that it’s quite hard to list them all.

Why so long? Well we had the Egyptian revolution, a complete change in UI, and a load of features we wanted you to
enjoy. It took much longer to stabilise it for you to enjoy.

2.2. Release Notes 123

http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#commit-to-vcs
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-from-vcs
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-against-templates
http://elsdoerfer.name/docs/django-assets/
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/
http://pootle.translatehouse.org/
https://travis-ci.org/translate/pootle
https://github.com/translate/pootle
https://www.google.co.uk/search?q=%23freealaa&tbm=isch

Pootle Documentation, Release 2.5.1.3

Pootle 2.5.0 has been in production with many users, so although it is a new official release, we’ve had many people
running their production server off this code. This includes LibreOffice, Mozilla and Evernote. So you are in good
company.

Requirements

• Django 1.3 or 1.4

• Translate Toolkit >= 1.10.0

• lxml (now a runtime requirement)

Installation and Upgrade

• Installation

• Upgrade

Changes

These are by no means exhaustive, check the git log for more details

User Experience

We undertook a major UI rework – we now have a clean new translation interface, and overview page.

In the editor:

• We follow a new approach when you edit translations, you will see a list of units that meet some criterion.

• Translation Memory is displayed for the current unit – results are from the Amagama server.

• Filters are easily accessible while you translate, so you can quickly change these within the translation interface.

• Context rows are provided in the translation interface when you are filtering and these can be hidden or expanded.

• A timeline is provided for a unit. This provides a history of the changes in translation text, state changes,
translator and dates of changes.

• Gravatars give credit to translators and suggesters.

In the overview page:

• Several features from translation projects have been merged into the Overview tab, including quality check fail-
ures and directory- and file-level actions. As a consequence the Review tab has been dropped and the Translate
tab serves solely to display the actual translation editor.

• The overview page allows you to drill down into certain types of units matching a translation state or with an
error.

• It is now easier to see what work needs attentions, as we highlight next actions for your project.

• With editable project and language descriptions you can supply description for projects. These are editable
using Markdown, reStructuredText or HTML.

• News alerts can now be sent via email to project participants.

• The overview page provides an expanded checks page that highlights all failing checks.

• Checks are classified into categories so that more urgent ones are highlighted to translators

124 Chapter 2. Additional Notes

https://translations.documentfoundation.org/
http://mozilla.locamotion.org/
http://translate.evernote.com/pootle/
http://toolkit.translatehouse.org/download.html
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
http://docs.translatehouse.org/projects/pootle/en/latest/server/upgrading.html
http://amagama.translatehouse.org/

Pootle Documentation, Release 2.5.1.3

Version Control

• Update the whole project at once avoiding slow file by file updates

• A separate VCS_DIRECTORY for VCS checkout is where Pootle now does all VC related work – this ensures
that we can work well with DVCS like Git.

• Detect new and removed files after a VCS update

• Management commands for VCS actions [Stuart Prescott]

• Add new files to VCS after updating from templates

Commands

New and changed commands:

• list_languages

• list_projects

• latest_change_id

• --modified-since flag for update_stores and sync_stores

• commit_to_vcs

• update_from_vcs

• update_from_templates has been renamed to update_against_templates

Important server admin changes

• Static files are now handled by the django.contrib.staticfiles module. This means you will need to
run the pootle collectstatic command on production and serve the pootle/assets/ directory from your
webserver at /assets/. If you are upgrading from a previous version, you will need to replace the occurrences of
static with assets within your web server configuration.

• Static files are bundled into assets by using django-assets.

• Settings have been migrated from localsettings.py into settings/*.conf files. Your customizations now go in a
separate configuration file (or in settings/90-local.conf if running from a repository clone).

• The PootleServer script has been phased out in favor of a pootle runner script.

• If you will be using Pootle with Django 1.3, you have to keep the timezone on UTC, unless you are using
PostgreSQL. Users of PostgreSQL or Django 1.4 or later are free to set the time zone as they prefer.

• Make sure to use the minimum required South version when performing database upgrades.

Infrastructure

• All documentation is now on Read The Docs

• We have a new website for Pootle

• We’re using Travis for Continuous Integration

• All our code is now on Github

...and of course, loads of bugs where fixed

2.2. Release Notes 125

http://docs.translatehouse.org/projects/pootle/en/latest/server/settings.html#std:setting-VCS_DIRECTORY
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#list-languages
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#list-projects
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#latest-change-id
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-stores
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#sync-stores
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#commit-to-vcs
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-from-vcs
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-against-templates
http://elsdoerfer.name/docs/django-assets/
http://docs.translatehouse.org/projects/pootle/en/latest/
http://pootle.translatehouse.org/
https://travis-ci.org/translate/pootle
https://github.com/translate/pootle

Pootle Documentation, Release 2.5.1.3

Credits

The following people have made Pootle 2.5.0 possible:

Julen Ruiz Aizpuru, Friedel Wolff, Alaa Abd el Fattah, Igor Afanasyev, Dwayne Bailey, Leandro Regueiro, Claude
Paroz, Chris Oelmueller, Taras Semenenko, Kevin Scannell, Christian Hitz, Thomas Kinnen, Alexander Dupuy, kha-
garoth, dvinella, Stuart Prescott, Roman Imankulov, Peter Bengtsson, Nagy Akos, Michael Tänzer, Gregory Oschwaldi
& Andy Nicholson.

2.2.8 Pootle 2.1.6

Released on 13 April 2011

It’s been 3 months since our last bug fix releases, it’s about time we give you Pootle 2.1.6.

Pootle is a web based system for translation and translation management.

Main focus of the release is incompatibility issues with the latest versions of Django (1.2.5 and 1.3.0).

Apart from that, version 2.1.6 has a handful of fixes. Here are the highlights:

• Fixed another bug with GNU style projects language detection.

• Added a separate project type for UTF-8 encoded Java properties.

• Fixed a bug that would under rare conditions hide some strings from translate page.

• Fixed a bug that caused some translation project level statistics to be miscalculated.

• Fix for Qt TS format based on changes in Translate Toolkit 1.9.0

On the first visit after upgrading upgrade screen will flash for a short period while translation statistics are recalculated,
if running under Translate Toolkit version 1.9.0 it might last longer as Qt TS files will be reparsed to benefit from
improvements to the format support.

Django 1.2.5 and 1.3.0 compatibility depends on Translate Toolkit version 1.9.0 or above but all users are encouraged
to upgrade their versions of Translate Toolkit. As always Pootle will benefit from fixes and performance improvements
in the latest versions.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

2.2.9 Pootle 2.1.5 released

Released on 18 Jan 2011

A quick bug fix release to celebrate the new Year. Please welcome Pootle 2.1.5!

Pootle is a web based system for translation and translation management.

This release fixes a couple of regressions introduced in the previous 2.1.4 release. Including a build mistake where the
files in the 2.1.4 tarball had very restrictive permissions.

Apart from that, version 2.1.5 has a handful of fixes. Here are the highlights:

• Fix regression causing update from templates to fail for GNU Style projects with subdirectories.

126 Chapter 2. Additional Notes

http://pootle.translatehouse.org/
http://toolkit.translatehouse.org/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
http://sourceforge.net/projects/translate/files/Pootle/2.1.6/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
http://bugs.locamotion.org/
http://pootle.translatehouse.org/
http://sourceforge.net/projects/translate/files/Pootle/2.1.5/

Pootle Documentation, Release 2.5.1.3

• Fix regression in handling obsolete units while committing to version control (reported by Mozilla).

• Clean stale file locks left in cases of external kills which running expensive commands.

• Fix security bug where project names would leak to users without view access on the server via news summary
on front page or profile edit form.

• Fix a bug that prevented Project level permissions from overriding very restrictive server wide permissions.

As always Pootle will benefit from fixes and performance improvements in the latest versions of Translate Toolkit.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

Enjoy it, The Translate Team

2.2.10 Pootle 2.1.4 Released

Released on 17 Dec 2010

We thought we’d wrap up the year with one more bug fix release, Please welcome Pootle 2.1.4

Pootle is a web based system for translation and translation management.

This release fixes a nasty bug where quality checks failed to update on file uploads. the upgrade screen will flash on
first visit after upgrade for a minute or two to correct this problem (might take longer if you used the quality checks
feature extensively).

Apart from that, version 2.1.4 has a handful of fixes. Here are the highlights:

• Once and for all Qt ts plurals should now work correctly.

• Fixed a bug where obsolete units could not be updated when uploading a new version of the file.

• Fixed a bug that affected some GNU/Linux systems causing server errors when using Turkish Locale.

• Fixed a bug in GNU style projects with a prefix where pt_BR would be detected as Breton instead of Brazilian
Portuguese

As always Pootle will benefit from fixes and performance improvements in the latest versions of Translate Toolkit.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

2.2.11 Pootle 2.1.3 released

Released on 26 Nov 2010

It’s been less than three weeks since the we released Pootle 2.1.2 but we’ve fixed a couple of critical bugs affecting
many users so it’s time for another bug fix release. Please welcome Pootle 2.1.3

2.2. Release Notes 127

http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
http://sourceforge.net/projects/translate/files/Pootle/2.1.5/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
http://bugs.locamotion.org/
http://pootle.translatehouse.org
http://sourceforge.net/projects/translate/files/Pootle/2.1.4/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
http://sourceforge.net/projects/translate/files/Pootle/2.1.4/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
http://bugs.locamotion.org/
http://pootle.translatehouse.org
http://sourceforge.net/projects/translate/files/Pootle/2.1.3/

Pootle Documentation, Release 2.5.1.3

Pootle is a web based system for translation and translation management.

This release includes a fix to a data loss bug, where recent translations are lost when updating from version control.
Users who depend on version control support are encouraged to upgrade immediately.

We’ve added support for CSV format. This will hopefully make it easier for less technical users to get their strings
inside Pootle by exporting from spreadsheet or similar office software. But it should not be treated as a replacement
for more solid formats like PO, Qt ts or XLIFF.

By popular demand we’ve improved Java properties support to accept properties files in any encoding. including
UTF-8.

Improved format support depends on the recently release Translate Toolkit 1.8.1

We also bring you translations for Chiga and Latvian.

Apart from that, version 2.1.2 has many bug fixes. Here are the highlights:

• Fix for database migration failing for some users

• Fix for errors on upgrades for users who deleted the English language

• Fix for errors on filenames with spaces and memcached

• Many fixes to language detection in GNU Style projects

• Various fixes to handling of escaped characters in translate page

As always Pootle will benefit from fixes in any the latest versions of Translate Toolkit, the recently released 1.8.1
includes many fixes specifically for Pootle 2.1.3 so upgrading translate toolkit is highly recommended.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

2.2.12 Pootle 2.1.2 Released including security fix

Released on 15 Nov 2010

http://sourceforge.net/projects/translate/files/Pootle/2.1.2/Pootle-2.1.2.tar.bz2

This release includes an important security fix to a cross site scripting vulnerability in the translate page. All users are
encouraged to upgrade immediately.

The release also includes many improvements to the support of monolingual translation formats (like subtitles files
and Java properties) and to “GNU style” projects.

We also bring you translations for five new language (Zulu, Greek, Danish, Acoli and Fulah) and six more translations
are now 100% complete (Uighur, Chinese (China), Catalan, Asturian, Akan and Ganda).

Highlighted fixed and improvements:

• Fixed a PostgreSQL incompatibility bug.

• Fixed a regression where plural units in Qt ts where not parsed correctly.

• A new manage.py command update_translation_projects allows for detecting new languages added to projects
on the file system.

128 Chapter 2. Additional Notes

http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
http://sourceforge.net/projects/translate/files/Pootle/2.1.3/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
http://bugs.locamotion.org/
http://pootle.translatehouse.org
http://sourceforge.net/projects/translate/files/Pootle/2.1.2/Pootle-2.1.2.tar.bz2

Pootle Documentation, Release 2.5.1.3

• More flexible options to all manage.py commands allowing users to limit commands to a set of projects and
languages.

• Pootle now supports GNU Style projects where filenames have a prefix preceding language codes.

• Pootle will ignore case differences when matching filenames to language codes.

• Improvements to fuzzy matching when updating monolingual projects from templates.

• Pootle will no longer modify templates files, translations to these files will be stored in database only to avoid
propagating these translations on update from templates.

• Users with administer permissions on a language or project now have all the other rights implied automatically
for that language or project.

• Users with only suggest right will be able to upload files using the “suggest only” merge method.

• URLs in developer comments are now displayed as links.

• Fixed bug that caused unnecessary diffs to PO files tracked in version control.

• Local terminology no longer blocks suggestions from the server-wide terminology project.

• Pootle is now less fascistic about what language codes should look like, but users should try to stick to GNU
locale names when possible.

• Removed confusing initialize checkbox from Project admin page. No one knew what it was for, those who do
can uncomment a single line of code to bring it back.

Pootle 2.1.1 depends on at least version 1.8.0 of Translate Toolkit, and as always will benefit from fixes in any later
versions. so always use the latest.

This work was made possible by many volunteers and our funders:

• ANLoc, funded by IDRC http://africanlocalisation.net/

• Feature list

• Download

• Installation instructions

• Bugs

• More information

2.3 External documentation

These are external sources of documentation, often relevant to a specific Pootle server for one of the many projects
that use Pootle.

• http://colivre.coop.br/Tech/TraducaoPootle

• http://wiki.creativecommons.org/Translating_with_Pootle

• http://wiki.openoffice.org/wiki/Pootle_User_Guide

• http://wiki.openoffice.org/wiki/Pootle_Glossary_Guide

• http://mr-dust.pe.kr/entry/How-to-translate-OpenOfficeorg

• http://docs.linux.org.ua/Dlou/index.php/Pootle (Ukrainian,)

• http://takanory.net/plone/japanese/pootle (Japanese,)

• http://www.moongift.jp/2006/09/2326/ (Japanese,)

2.3. External documentation 129

http://africanlocalisation.net/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
http://sourceforge.net/projects/translate/files/Pootle/2.1.2/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
http://bugs.locamotion.org/
http://pootle.translatehouse.org
http://colivre.coop.br/Tech/TraducaoPootle
http://wiki.creativecommons.org/Translating_with_Pootle
http://wiki.openoffice.org/wiki/Pootle_User_Guide
http://wiki.openoffice.org/wiki/Pootle_Glossary_Guide
http://mr-dust.pe.kr/entry/How-to-translate-OpenOfficeorg
http://docs.linux.org.ua/Dlou/index.php/Pootle
http://takanory.net/plone/japanese/pootle
http://www.moongift.jp/2006/09/2326/

Pootle Documentation, Release 2.5.1.3

• http://gustavonarea.net/blog/posts/installing-pootle-on-debian-etch-the-easiest-way/

• http://wiki.laptop.org/go/Pootle (OLPC project)

• http://wiki.list.org/display/DEV/Pootle+primer (mailman project)

• http://wiki.squid-cache.org/Translations/Basics (Squid project)

2.4 License

The Pootle documentation is released under the GNU General Public License (GPL), version 2 or later.

130 Chapter 2. Additional Notes

http://gustavonarea.net/blog/posts/installing-pootle-on-debian-etch-the-easiest-way/
http://wiki.laptop.org/go/Pootle
http://wiki.list.org/display/DEV/Pootle+primer
http://wiki.squid-cache.org/Translations/Basics
http://www.gnu.org/licenses/gpl.html

Index

A
AMAGAMA_URL

setting, 54
API_LIMIT_PER_PAGE

setting, 52
AUTH_LDAP_ANON_DN

setting, 54
AUTH_LDAP_ANON_PASS

setting, 54
AUTH_LDAP_BASE_DN

setting, 54
AUTH_LDAP_FIELDS

setting, 54
AUTH_LDAP_FILTER

setting, 54
AUTH_LDAP_SERVER

setting, 54
AUTOSYNC

setting, 54

C
CAN_CONTACT

setting, 52
CAN_REGISTER

setting, 52
CONTACT_EMAIL

setting, 52
CUSTOM_TEMPLATE_CONTEXT

setting, 52

D
DESCRIPTION

setting, 52

E
EMAIL_SEND_HTML

setting, 52
ENABLE_ALT_SRC

setting, 55
EXPORTED_DIRECTORY_MODE

setting, 54
EXPORTED_FILE_MODE

setting, 54

F
FUZZY_MATCH_MAX_LENGTH

setting, 52
FUZZY_MATCH_MIN_SIMILARITY

setting, 52

L
LEGALPAGE_NOCHECK_PREFIXES

setting, 53
LIVE_TRANSLATION

setting, 54
LOOKUP_BACKENDS

setting, 54

M
MARKUP_FILTER

setting, 53
MAX_AUTOTERMS

setting, 53
MIN_AUTOTERMS

setting, 53
MT_BACKENDS

setting, 55

O
OBJECT_CACHE_TIMEOUT

setting, 52

P
PARSE_POOL_CULL_FREQUENCY

setting, 55
PARSE_POOL_SIZE

setting, 55
PODIRECTORY

setting, 55
POOTLE_ENABLE_API

131

Pootle Documentation, Release 2.5.1.3

setting, 53
POOTLE_TOP_STATS_CACHE_TIMEOUT

setting, 52

S
setting

AMAGAMA_URL, 54
API_LIMIT_PER_PAGE, 52
AUTH_LDAP_ANON_DN, 54
AUTH_LDAP_ANON_PASS, 54
AUTH_LDAP_BASE_DN, 54
AUTH_LDAP_FIELDS, 54
AUTH_LDAP_FILTER, 54
AUTH_LDAP_SERVER, 54
AUTOSYNC, 54
CAN_CONTACT, 52
CAN_REGISTER, 52
CONTACT_EMAIL, 52
CUSTOM_TEMPLATE_CONTEXT, 52
DESCRIPTION, 52
EMAIL_SEND_HTML, 52
ENABLE_ALT_SRC, 55
EXPORTED_DIRECTORY_MODE, 54
EXPORTED_FILE_MODE, 54
FUZZY_MATCH_MAX_LENGTH, 52
FUZZY_MATCH_MIN_SIMILARITY, 52
LEGALPAGE_NOCHECK_PREFIXES, 53
LIVE_TRANSLATION, 54
LOOKUP_BACKENDS, 54
MARKUP_FILTER, 53
MAX_AUTOTERMS, 53
MIN_AUTOTERMS, 53
MT_BACKENDS, 55
OBJECT_CACHE_TIMEOUT, 52
PARSE_POOL_CULL_FREQUENCY, 55
PARSE_POOL_SIZE, 55
PODIRECTORY, 55
POOTLE_ENABLE_API, 53
POOTLE_TOP_STATS_CACHE_TIMEOUT, 52
TASTYPIE_DEFAULT_FORMATS, 53
TITLE, 52
TOPSTAT_SIZE, 53
USE_CAPTCHA, 53
VCS_DIRECTORY, 55

T
TASTYPIE_DEFAULT_FORMATS

setting, 53
TITLE

setting, 52
TOPSTAT_SIZE

setting, 53

U
USE_CAPTCHA

setting, 53

V
VCS_DIRECTORY

setting, 55

132 Index

	All you need to know
	User's guide
	Features
	Administering a server
	Developers
	Pootle API

	Additional Notes
	Changelog
	Release Notes
	External documentation
	License

