
Pootle Documentation
Release 2.8.2

Pootle contributors

Sep 15, 2017

Contents

1 All you need to know 3
1.1 Features . 3
1.2 Installation . 33
1.3 Upgrading . 37
1.4 Administering a server . 41
1.5 Developers . 90
1.6 Frequently Asked Questions (FAQ) . 123

2 Additional Notes 125
2.1 Release Notes . 125
2.2 License . 164

i

ii

Pootle Documentation, Release 2.8.2

Pootle is an online tool that makes the process of translating so much simpler. It allows crowd-sourced translations,
easy volunteer contribution and gives statistics about the ongoing work.

Pootle is built using the powerful API of the Translate Toolkit and the Django framework. If you want to know more
about these, you can dive into their own documentation.

• Translate Toolkit Documentation

• Django Documentation

Contents 1

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/
https://docs.djangoproject.com/en/1.10/#index-first-steps

Pootle Documentation, Release 2.8.2

2 Contents

CHAPTER 1

All you need to know

The following pages cover the documentation of Pootle from a wide variety of perspectives, server administrator’s,
and developer’s view.

1.1 Features

1.1.1 Pootle FS

Pootle FS

Pootle FS is Pootle’s integration with version control plugin systems. It allows Pootle to synchronize with an ex-
ternal repository containing your translations, keep them synchronised and manage and resolve any conflicts either
automatically or via user input.

Warning: Pootle FS is considered beta in Pootle 2.8.0. We’d love you to try it out but please be aware that if you
are basing production installs on Pootle FS that you can expect changes that might require manual intervention.

Aims

• Allow Pootle data to be stored on version control systems

• Abstract version control systems into a standard method across all systems

• Ensure that we don’t lose any data

• Ensure that changes made on Pootle and the filesystem can seamlessly move from one to the other

3

Pootle Documentation, Release 2.8.2

Core concepts

Stores and files Pootle contains stores of translation units. The filesystem contains files.

Tracked and untracked When a store is associated with a file, it is tracked, if it is not yet associated then it is
untracked. And vice versa.

States Tracked and untracked files and stores will be in various states depending on a number of things. Have they
just appeared, have they changed, have they been removed, etc.

Actions Based on the states we can determine what actions might be applicable to the stores and files.

Staging We use Pootle FS commands to stage an action. Staging is not execution of those actions but merely preparing
these actions for execution.

Synchronisation This is the act of executing the staged actions.

Understanding operations

At any time we are able to query the state of Pootle FS using fs state command. The results of this operation will
indicate if there are any actions you need to specify to resolve any conflicts or if there are untracked files.

You specify Actions that need to be taken to resolve conflicts or to ensure that files are tracked. This could be adding
a file, removing a file or merging conflicting translations. This is the process of staging actions.

The final step is to synchronise Pootle and your filesystem. This operation takes your staged actions and executes
them.

What is a filesystem

A filesystem is actually itself a Pootle FS plugin. Currently two exist:

1. localfs - allowing synchronization with the filesystem on which Pootle is running

2. git - synchronization with a Git repository

You can write a plugin for any version control system, Pootle FS will ensure that the same commands and operations
are used to ensure Pootle and your filesystem stay synchronized.

How does Pootle FS relate to update_stores/sync_stores

Note: Read this if you have used previous versions of Pootle.

Previous versions of Pootle made use of two commands, update_stores and sync_stores, to allow translations
to be pushed into Pootle or pulled from Pootle.

These two commands still exist but we will be phasing these out in the long term to make everything use Pootle FS.

You can find an outline of how to use Pootle FS on your existing Pootle projects in the adding a Pootle FS managed
project instructions.

Once you are familiar with Pootle FS you can start migrating your projects to Pootle FS.

4 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Install Pootle FS plugins for VCS

To work with VCS systems Pootle FS requires some additional packages and configuration.

Warning: Pootle FS is considered beta in Pootle 2.8.0. We’d love you to try it out but please be aware that if you
are basing production installs on Pootle FS that you can expect changes that might require manual intervention.

Install the Pootle FS plugins

Pootle FS provides support for different VCS systems through plugins, so in order to work with a specific VCS it is
necessary to install its plugin. For examples for Git:

• Install the plugin:

(env) $ pip install --process-dependency-links Pootle[git]

• Add the plugin to INSTALLED_APPS:

INSTALLED_APPS += ['pootle_fs_git']

This is done once for the whole Pootle server.

Next steps

Your project is now ready to use Pootle FS with the chosen VCS systems, you can now proceed to add a Pootle FS
managed project.

Add a Pootle FS managed project

Pootle FS can work with different VCS systems as well as with the local file system.

The following steps outline the setup of a Pootle FS based project:

Install Pootle FS plugins

Note: Pootle FS will work out of the box when synchronizing with the local file system. If this is the case you can
safely skip this step.

Synchronizing against any version control system requires you add some additional packages and configuration.

Create a project to be managed by Pootle FS

Create a project as usual, setting the Project Tree Style to Allow Pootle FS to manage filesystems.

1.1. Features 5

https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-INSTALLED_APPS

Pootle Documentation, Release 2.8.2

Provide Pootle FS configuration for the project

Once the project is created you need to configure Pootle FS. You can accomplish this with the command line or the
web UI. The UI is by far the simplest way and is outlined here:

• Click on the Filesystems link below the project edit form in the project admin UI.

• Add the Backend configuration:

– Set the Filesystem backend to localfs as we are working against files stored on the local filesystem.

– Set the Backend URL or path to point to the translation files on Pootle’s local filesystem, e.g. /path/
to/translations/MYPROJECT/

– Set the Translation path mapping for your project, for example /<language_code>/
<dir_path>/<filename>.<ext>

Note: If you are setting up Pootle FS for a VCS then configure as follows:

– Set the Filesystem backend to the required VCS backend.

– Set the Backend URL or path to point to the repository, e.g. git@github.com:user/repo.git

6 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

• If not all of your project’s language codes match those available in Pootle, then add language mapping configu-
rations for those languages. For example match fr_FR on your filesystem to fr on Pootle.

Connect Pootle FS with VCS repository

Note: You can safely skip this step if you are setting up the project to synchronize with the local file system.

• Create a SSH key:

$ sudo -u USER-RUNNING-POOTLE ssh-keygen -b 4096

• Tell your upstream repo about the public key, allowing Pootle to be able to push to the repo.

– In GitHub:

* Either use the public key as a Deploy key for the repository on GitHub,

* Or (preferred) add the public key to a GitHub user’s SSH and GPG Keys. In most cases you want to
create a specific Pootle GitHub user.

Pull the translations into Pootle

Once the project is created and properly set up we can pull the translations into Pootle:

(env) $ pootle fs state MYPROJECT
(env) $ pootle fs add MYPROJECT
(env) $ pootle fs sync MYPROJECT

Next steps

Your project is now ready to use Pootle FS. In order to keep Pootle and the filesystem or VCS synchronised you will
need to learn how to use Pootle FS.

Migrating to Pootle FS

While Pootle will continue to support update_stores and sync_stores this will eventually be deprecated.
Thus it makes sense to migrate your projects to Pootle FS.

These steps will convert a project currently hosted in POOTLE_TRANSLATION_DIRECTORY into a Pootle FS
localfs project.

Preparation

1. (optional) Disable the project to prevent translators working on the stores. You can also, quite safely, perform
the migration live.

2. Run sync_stores to ensure that all translations in Pootle are on the filesystem. The filesystem and Pootle
should now have exactly the same data.

(env) $ pootle sync_stores --project=MYPROJECT

1.1. Features 7

Pootle Documentation, Release 2.8.2

Setup Pootle FS

1. In the Project Admin interface, change the Project Tree Style to Allow Pootle FS to manage
filesystems.

2. Click on the Filesystems link below the project edit form and set the following:

• Filesystem backend to localfs

• Backend URL or path to the value of POOTLE_TRANSLATION_DIRECTORY + MYPROJECT, e.g.
/path/to/pootle/translations/MYPROJECT

• Translation path mapping to the one your project uses, or pick one of the existing Translation mapping
presets.

First synchronization

Now that our project is setup we can initiate the first synchronization to ensure all files are tracked:

(env) $ pootle fs add --force MYPROJECT
(env) $ pootle fs sync MYPROJECT

This will use translations from Pootle and ignore those on the filesystem.

8 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Variations on the theme

The process above outlines how you can move an update_stores project to Pootle FS on the local filesystem with
Pootle winning. You might want to do some other things such as:

Filesystem wins

The sync_stores in our recipe above ensures that everything is in sync. However if you have scripts that commit
and update files you might prefer to let the filesystem win in which case rather use:

(env) $ pootle fs fetch --force MYPROJECT

Migrating to version control

1. Make sure you have installed the needed Pootle FS plugin for the version control backend you are using.

2. (optional but recommended) Disable the project.

3. Ensure you have synchronized all your files and committed them to your version control system.

4. Instead of localfs, set the backend appropriately.

5. Set the URL to your version control repository.

6. Synchronize as follows:

(env) $ pootle fs fetch --force MYPROJECT
(env) $ pootle fs sync MYPROJECT

Using Pootle FS

The task of Pootle FS is to keep the filesystem and Pootle in sync. There are scenarios where items are not in sync and
Pootle FS requires your intervention, these are the commands you need to bring things back into sync and to resolve
conflicts.

Pootle FS background

To clarify the terminology that we use in Pootle FS:

• file - a translation file on disk

• store - a translation file in the Pootle database

Files and stores are usually associated and thus we are able to keep them synchronised. But there might be files with
no store (the store for a new file has not yet been created in the Pootle database), and stores with no file (the file has
been removed from the filesystem).

Pootle FS works in these stages:

1. Actions are staged. An action is chosen to resolve each issue.

2. The system is synchronized. The staged action are actually performed.

1.1. Features 9

Pootle Documentation, Release 2.8.2

Files that have never been synced are untracked, and thus they need to be explicitly staged. Files previously synced
are tracked, and thus automatically staged if there are any changes. In the case of conflicts (changes both on disk and
in Pootle) it is also necessary to manually stage these to resolve which version should prevail.

When staging it is possible to specify specific stores or files, or groups of them using the -P and -p options. It is also
possible to limit which staged actions are executed by using these same options on the sync command.

Syncing tracked stores or files

When a store and its corresponding file are tracked and previously synced, then they are automatically staged for
syncing if either changes.

If both have changed then we will need to specify how to resolve the conflict.

To re-sync stores and files run:

(env) $ pootle fs sync MYPROJECT

Adding new files and stores

When new files appear on the filesystem that we want to bring into Pootle we use add. And when new stores have
appeared on Pootle that we want to push to the filesystem we also use add:

(env) $ pootle fs add MYPROJECT
(env) $ pootle fs sync MYPROJECT

Where add will stage the previously untracked files or stores. While sync will synchronize, pulling the translations
in the file into the Pootle database or pushing translations from the stores in the database to files on the filesystem.

Following this the file and store are now tracked.

Removing files or stores

A store or file can be missing from Pootle or the filesystem because it has been removed, we use rm to remove such
files and stores:

(env) $ pootle fs rm MYPROJECT
(env) $ pootle fs sync MYPROJECT

This will remove the store or file, depending on whether it is the file or store that remains.

Following this there is no such file or store on the filesystem or on Pootle.

Resolving conflicts

Conflicts can occur if a tracked Pootle store and its corresponding file have both changed. They can also arise if a new
Pootle store is added and a matching file has been added in the filesystem simultaneously.

There are four possible ways to resolve such conflicts:

1. Use the filesystem version and discard all Pootle translations

2. Use the Pootle version and ignore all filesystem translations

3. Merge translations and for unit conflicts choose Pootle’s version and turn the filesystem version into a suggestion

10 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

4. Merge translations and for unit conflicts choose the filesystem version and turn the Pootle translation into a
suggestion

The merge options are most useful where you need translators to resolve the conflict.

Overwrite Pootle with filesystem version

You want to keep the version that is currently on the filesystem, discarding all changes in Pootle:

(env) $ pootle fs resolve --overwrite --pootle-wins MYPROJECT
(env) $ pootle fs sync MYPROJECT

Overwrite filesystem with Pootle version

You wish to keep the version that is currently in Pootle, discarding all changes in the filesystem:

(env) $ pootle fs resolve --overwrite MYPROJECT
(env) $ pootle fs sync MYPROJECT

Use filesystem version and convert Pootle version into suggestion

To retain all translation and allow translators to resolve conflicts use resolve. This will merge any non-conflicting
units and convert conflicts into suggestions, by default we use filesystem translations:

(env) $ pootle fs resolve MYPROJECT
(env) $ pootle fs sync MYPROJECT

The result is that all non-conflicting units have been synchronised. For any unit where both the store unit and file unit
changed the translation is set to the file unit translation with the store unit translation converted into a suggestion. You
can now review these suggestions to resolve the conflicts.

Use Pootle version and convert filesystem version into suggestion

To retain all translation and allow translators to resolve conflicts use resolve. This will merge any non-conflicting
units and convert conflicts into suggestions, the --pootle-wins option ensures that we use Pootle translations and
convert filesystem translations into suggestions:

(env) $ pootle fs resolve --pootle-wins MYPROJECT
(env) $ pootle fs sync MYPROJECT

Pootle FS statuses

Pootle FS uses a set of statuses for the files or stores it manages, using these it is able to determine what to do to
resolve the scenario.

There are two groups of statuses:

• Unstaged - these need to be resolved by the user and will become staged.

• Staged - staged and ready to be sync’ed.

1.1. Features 11

Pootle Documentation, Release 2.8.2

Unstaged statuses

Statuses that need an action to be specified in order for Pootle FS to be able to resolve them:

conflict Both the Pootle store and the filesystem file have changed. To resolve this conflict use merge to merge
the two and manage conflict resolution. Or if you wish to discard one or the other use fetch --force or
add --force to keep the filesystem version or Pootle version respectively.

conflict_untracked Conflict can also arise if both the store and file are untracked. In this case you can use
merge to combine the translation and manage conflict resolution for each unit. Or to force taking the whole file
or store use either fetch --force or add --force depending on whether you want to keep the filesystem
file or the Pootle store.

pootle_untracked A new store has been added in Pootle but does not have any matching file on the filesystem.
You can use either add to create the file on the filesystem and push the translations on the store to it, or
alternatively use rm to stage the store for removal.

fs_untracked A new file has been added in the filesystem but does not have any matching store in Pootle. You
can use either fetch to pull the file into Pootle or alternatively use rm to stage the file for removal.

pootle_removed A tracked store has been removed. Either use fetch --force to restore the filesystem ver-
sion, or use rm to stage for removal from filesystem.

fs_removed A tracked file has been removed from the filesystem. Either use add --force to restore the Pootle
version, or use rm to stage for removal from Pootle.

Staged statuses

These statuses reflect changes that can be either unstaged by using unstage or executed with sync:

pootle_ahead A Pootle store has changed since the last synchronization. Running sync will push the changes to
the filesystem.

fs_ahead A file has changed in the filesystem since the last synchronization. Running sync will pull the changes
to Pootle.

pootle_staged A new store (with no associated file on the filesystem) has been created in Pootle and has been
staged to be added to the filesystem. Running sync will create the file on the filesystem.

fs_staged A new file (with no associated store on Pootle) has been created in the filesystem and has been staged
to be added to Pootle. Running sync will create the store on Pootle.

merge_pootle_wins Merge stores or files that have both been updated. If there are conflicts use the translation
from Pootle and turn the translation from the file into a suggestion.

merge_fs_wins Merge stores or files that have both been updated. If there are conflicts use the translation from
the filesystem and convert the translation from Pootle into a suggestion.

remove A file or store, whose corresponding store or file is missing, has been staged for removal. Running sync
will remove the file or store.

both_removed A previously tracked file has been staged to be removed from both the filesystem and Pootle.
Running sync will remove both the file and store.

12 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

1.1.2 Backends and storage

File formats

Pootle supports many file formats through the powerful Translate Toolkit API. The Toolkit also provides several format
converters for other formats, this will allow you to host a lot of translatable content on Pootle.

All these formats can be downloaded for offline use/or translation (for example in Virtaal). We recommend Virtaal for
offline translation. They can also be downloaded in XLIFF format.

Bilingual formats

These formats are translation files that include the source and target language in one file.

• Gettext PO

• XLIFF

• Qt TS

• TBX

• TMX

Translation statistics

Pootle gives translators and project developers an easy way to see progress on the translation work. Progress is
indicated by a coloured graph to easily see how much work is complete, and how much work remains. Pootle can also
give detailed statistics about the progress in translation work.

Statistics report on both the progress in the number of messages, and in the number of words. The number of words
gives a much better impression of how much work is involved, and allows for more accurate time estimation.

Pootle also assists in translation quality assurance, by performing several Quality checks on the translations which can
help in review. These quality checks correspond to the quality checks performed by pofilter from the Translate Toolkit.

Translation templates

Translation templates are translation files that contain only the source text (original text). These files are used as a
template to create target files for each language.

Users familiar with Gettext know translation templates as POT files. For other bilingual formats (like XLIFF) untrans-
lated files with the same extension are used as templates.

The “Templates” language

Pootle can manage a special language called templates. This is not strictly speaking a language but rather a place to
store translation templates for a project.

If the Templates language is present then Pootle will initialise brand new languages with files from the Templates
language.

If the Templates language is absent from a project, Pootle will assume all initialisation of files for new languages
happens outside of Pootle.

1.1. Features 13

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html#formats
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/index.html#commands-converters
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/index.html#commands-converters
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html#po
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html#xliff
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html#ts
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/tbx.html#tbx
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/tmx.html#tmx
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html#pofilter-tests
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html#pofilter

Pootle Documentation, Release 2.8.2

Starting a new translation

It is helpful to understand in more detail how a new language is created or added to Pootle.

When adding a new language to a project from the Pootle interface, Pootle will first scan the file system and look
for translation files for that language. If they exist then these are imported into Pootle. If no files are present and if
the Templates language exists then a fresh copy will be generated based on the templates files (in a manner similar to
pot2po).

If there is no Templates language it is usual to manage all initialisation of languages from the Pootle command line.
When using update_stores new languages will be initialised if they are present on the filesystem. You are
responsible for initialisation of these new languages from template files as required.

Updating existing translations

Pootle will not update existing translations if new template files are added to Pootle. Updating of translations is
managed outside of Pootle. You can update your translations as follows:

1. Use sync_stores to sync all translations to the filesystem. These files will now contain the latest translations
from Pootle users.

2. Use pot2po or similar to update the translations.

3. Use update_stores to push the updated translations to Pootle.

A detailed example can be found in Updating strings for existing project.

1.1.3 Online translation editor

Alternative source language

Pootle has the ability to display alternative source languages while translating. Thus, translators who know another
language better than English can take part in the translation project. Also, it provides a way to disambiguate terminol-
ogy by seeing how other languages have translated the same string.

14 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html#pot2po
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html#pot2po

Pootle Documentation, Release 2.8.2

Setup

Users who want to use the functionality need to specify the desired alternative source languages in their account
configuration. Alternatively, Pootle will try to guess the user’s alternative source language by looking at the browser’s
Accept-Lang header.

Note: If the selected project doesn’t have translations in the alternative source language then no alternative will be
displayed.

This feature is enabled by default.

Matching criteria

In order to show suggestions from another language, the following is needed:

• The alternative languages must be visible in Pootle and added to the same project.

• The string must be translated in the alternative language (not incomplete or untranslated).

• The file names need to be identical (identical strings from different files are not matched).

• The source text for both translations need to be identical.

Special characters

Pootle can display clickable characters which might be difficult to type or unavailable to the translator on their key-
board. These appear below the translation widget as we see below for Afrikaans.

Clicking on any of the ëïêôûáéíóúý characters will insert that character into the translation.

Many languages, e.g. those using the Latin script with diacritics, will find this very helpful, especially where keyboard
layouts are not readily available.

Adding or altering special characters

Anyone with admin rights for Pootle or for a specific language can adjust the special characters.

To adjust the characters open the Special characters page accesssed via the admin dropdown in the navigation bar.

1.1. Features 15

Pootle Documentation, Release 2.8.2

Adjust the needed characters by adding and deleting characters.

When to use special characters

Special characters do not solve the input needs for all languages, but has been a very useful help for many languages,
especially in translate@thons.

For people using non-Latin scripts, consider if it will be useful to perhaps include things that can’t be easily typed by
translators in your language. You will probably need to limit the number of characters, but hopefully you can find a
reasonable compromise that will help many people.

Quality checks

Pootle provides a powerful way of reviewing translations for quality. It exposes most of the pofilter checks that can
check for several issues that can affect the quality of your translations.

If Pootle indicates a possible problem with a translation, it doesn’t mean that the translation is necessarily wrong,
just that you might want to review it. Pootle administrators should indicate the correct project type (GNOME, KDE,
Mozilla, etc.) in the administration pages. This will improve the accuracy of the quality checks.

Critical checks are prominently displayed through the browsing UI.

16 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html#pofilter-tests

Pootle Documentation, Release 2.8.2

Any extra failing checks can be accessed by clicking the button located below the navigation breadcrumbs.
Clicking on the name of a check will step you through the translations that fail that check.

While in the translation editor, submissions resulting in critical failing checks will be immediately reported, preventing
you from automatically continuing until the issues have been resolved or muted as false positives by using the mute

button. Non-critical checks flag potential problems but can be ignored or muted as needed.

To understand the meaning of each check, Pootle displays the failing checks right on top of the submission button,
with a link to the online documentation. You can also read the detailed descriptions of the pofilter checks.

Muting Quality Checks

It is possible to mute the quality check if the translation is correct. Reviewers are able to remove the check for a certain

string, by clicking on the button, to indicate that the string is correctly translated. This avoids having to review

the same check multiple times. You can unmute any muted check using the button.

If the source text of the translation is changed then the mute is discarded to ensure that the new translation is checked
again for any possible issues.

Translation Memory

Pootle provides matching translations to the current string. Translator can use these matches as their translation or to
aid their translation.

Matches are based on previous translations of similar strings. These Translation Memory (TM) matches mean that
you can speed up your translation and ensure consistency across your work.

Using Translation Memory

Translation Memory matches are automatically retrieved when you enter a new translation unit. These are displayed
below the editing widget. You can insert a TM match by clicking on a match row.

The differences between the current string and the match are highlighted, this allows you to see how the two differ and
helps you make changes to the match to adapt it for use with the current string.

1.1. Features 17

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html#test-description

Pootle Documentation, Release 2.8.2

Configuring Translation Memory

Translation Memory will work out of the box with a default Pootle installation. There are three methods of getting
Translation Memory.

1. Amagama - for remote Translation Memory

2. Elasticsearch - for local Translation Memory

3. Elasticsearch - for external Translation Memory

Amagama based remote TM

By default Pootle will query Translate’s Amagama Translation Memory server, which hosts translations of an extensive
collection of Opensource software.

If you want to setup and connect to your own TM server then the AMAGAMA_URL will allow you to point to a private
TM server.

To disable Amagama set AMAGAMA_URL to ''.

Elasticsearch-based TMs

New in version 2.7.

Pootle can also retrieve TM matches stored on Elasticsearch-based TM servers. These TM servers require Elastic-
search to be installed and running.

Note: Elasticsearch depends on Java. Note that some systems may ship with OpenJDK, however elasticsearch
recommends using Oracle JDK.

Install the required Python libraries:

(env) $ pip install --process-dependency-links Pootle[es5]

Note: Elasticsearch TM should work with any version of Elasticsearch, our tests run against Elasticsearch 5.x. For
support for Elasticsearch 1.x and Elasticsearch 2.x, simply replace es5 with es1 and es2 respectively in the above
command.

Pootle supports two types of Elasticsearch-based TMs:

• Local TM: (just one, named local) is populated using translations stored in Pootle database and every new
translation gets automatically imported to it.

• External TMs: (several) are populated from translation files specifically provided by the server admins, and are
not automatically updated.

Both local and external TM settings can be adjusted in POOTLE_TM_SERVER. A configuration example for local and
external TM can be found in the default ~/.pootle/pootle.conf, and can be enabled by uncommenting the
example.

Please see the POOTLE_TM_SERVER-WEIGHT for a full example of the configuration necessary to set up lo-
cal/external TM.

Both Amagama and Elasticsearch based TMs can operate together. Though you may want to disable Amagama.

18 Chapter 1. All you need to know

http://amagama.translatehouse.org
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/1.6/setup-service.html#_installing_the_oracle_jdk
https://www.elastic.co/guide/en/elasticsearch/reference/1.6/setup-service.html#_installing_the_oracle_jdk

Pootle Documentation, Release 2.8.2

Elasticsearch-based local TM

New in version 2.7.

To use it, the local TM must be enabled in POOTLE_TM_SERVER and will need to be populated using the
update_tmserver command:

(env) $ pootle update_tmserver

Once populated Pootle will keep Local TM up-to-date.

Elasticsearch-based external TMs

New in version 2.7.3.

In order to use them they must be enabled in POOTLE_TM_SERVER and you will need to populate them
using the update_tmserver command specifying the TM to use with --tm and the display name with
--display-name:

(env) $ pootle update_tmserver --tm=external --display-name=Pidgin af.po gl.tmx

A display name is a label used to group translations within a TM. A given TM can host translations for several labels.
Just specify them with --display-name:

(env) $ pootle update_tmserver --tm=external --display-name=GNOME pt.tmx eu.po xh.po

It is possible to have several Elasticsearch-based external TM servers working at once, along with the Elasticsearch-
based local TM server. In order to do so just add new entries to POOTLE_TM_SERVER:

POOTLE_TM_SERVER = {

...

'libreoffice': {
'ENGINE': 'pootle.core.search.backends.ElasticSearchBackend',
'HOST': 'localhost',
'PORT': 9200,
'INDEX_NAME': 'whatever',
'WEIGHT': 0.9,
'MIN_SCORE': 'AUTO',

},
}

Make sure INDEX_NAME is unique. You might also want to tweak WEIGHT to change the score of the TM results in
relation to other TM servers (valid values are between 0.0 and 1.0).

To use these additional external TMs you will need to populate them using the update_tmserver command
specifying the TM server with --tm:

(env) $ pootle update_tmserver --tm=libreoffice --display-name=LibreOffice af.po gl.
→˓tmx

Check update_tmserver for more options.

Note that Pootle will not push new translations to these TM servers unless you explicitly use the update_tmserver
command, giving you full control of which translations make into them.

1.1. Features 19

Pootle Documentation, Release 2.8.2

Machine Translation

Pootle has the ability to use online Machine Translation (MT) Services to give suggestions to translators. This feature
has to be enabled by the server administrators.

Using Machine Translation

Note: Machine Translations are not meant to replace human translations but to give a general idea or understanding
of the source text. It can be used as suggestion of a translation, but don’t forget to review the suggestion given.

If the server administrator has enabled machine translation then an icon will be displayed for each source text
(English or alternative source language) next to the Copy button. Clicking the relevant buttons will retrieve translation
suggestions from the online services and will mark the current string as fuzzy to indicate that review is required.

Enabling Machine Translations

To enable a certain Machine Translation Service, edit your configuration file and add the desired service within the
POOTLE_MT_BACKENDS setting.

Each line is a tuple which has the name of the service and an optional API key. Some services may not require API
keys but others do, so please take care of getting an API key when necessary.

Available Machine Translation Services

Supported Services:

Google Translate

Yandex.Translate

New in version 2.7: Yandex.Translate

Google Translate is widely used and supports a number of languages. It is a paid service requiring an account and API
key.

Yandex.Translate is the free alternative to Google.

Searching in Pootle

Pootle provides search functionality that allows translators and reviewers to search through translations for some text.
The search box is shown close to the top of the page. Searching can be used to find specific things you want to work
on, see how issues were solved before, or to verify consistency in your translations.

Search results are up to date, and will reflect the current translations in Pootle.

Search domain

It is important to realize that when a new search term is entered, searching will take place inside the currently
viewed domain. If you are currently at the top level of your project, the whole project will be searched. If you are

20 Chapter 1. All you need to know

https://cloud.google.com/translate/v2/translate-reference#supported_languages
https://cloud.google.com/translate/v2/pricing
https://tech.yandex.com/translate/

Pootle Documentation, Release 2.8.2

viewing a directory, only files under that directory will be searched. If you are already viewing/translating a file, only
that file will be searched.

The first result will be shown in context in the file where it is found. When you click “Skip”, “Suggest” or “Translate”
it will provide the next match to the search (in the original domain) until all matches were presented. Remember that
if you edit the search query while viewing search results in a specific file, your new query will only search in that
specific file.

Advanced search

When you enter a search box a dropdown will open allowing you to limit or expand your search to specific fields.
Any combination of these fields and options is accepted.

Fields that you can search in include:

• Source Text – the original reference text.

• Target Text (default) – the translations.

• Comments – any comments with the translation.

• Location – any location, key or ID value.

Options:

• Phrase Match (default: off) – search matching specified phrase. With this option on searching for “file table”
will not find “table file”.

• Case-sensitive Match (default: off) – search in a case sensitive manner. With this option on searching for “File”
will not find “file”.

1.1. Features 21

Pootle Documentation, Release 2.8.2

Keyboard shortcuts

Editing

Action Current shortcut Proposed shortcut
Submit and move to next translation Ctrl+Enter
Toggle the ‘Needs work’ flag Ctrl+Space
Toggle the suggest/submit mode Ctrl+Shift+Space
Copy the contents from the original language Alt+Down
Focus on comments field Ctrl+Shift+C

Navigation

Action Shortcut Alternative Shortcut
Move to previous string Ctrl+Up Ctrl+,
Move to next string Ctrl+Down Ctrl+.
Move to the first string Ctrl+Shift+Home
Move to the last string Ctrl+Shift+End
Move up 10 strings Ctrl+Shift+Page Up Ctrl+Shift+,
Move down 10 strings Ctrl+Shift+Page Down Ctrl+Shift+.
Select search box Ctrl+Shift+S
Select page number Ctrl+Shift+N

Translation suggestions

Pootle has the ability to optionally allow users to provide suggestions that need to be reviewed before they are accepted
into the real translation files. Who is allowed to do what, is determined by the configuration of User permissions for
the project or the server.

This allows for a team to form with different roles for different team members, and makes it possible to have a more
explicit review step that requires suggestions to be checked before they become the real translations. This also allows
the collection of different ideas for translating a single string.

Viewing and making suggestions

When translating, suggestions are shown inline so they’re always visible. If a user wants to view all the suggestions
within a project scope, it just needs to go to the “Review” tab and click on the “View Suggestions” link. Users with
rights to translate will be shown a “Review Suggestions” link and will be able to accept and reject suggestions.

Users with rights for making suggestions will see a “Suggest” button next to “Submit”. Making a suggestions is as
easy as clicking the button – hey, did you expect more steps involved?

Reviewing suggestions

In order to review suggestions, users must have privileges to translate. There are two ways for reviewing suggestions:
going through all of them, or reviewing while translating.

To go through all of them, the reviewer must click on “Review Suggestions” within the “Review” tab of the project.
This would guide her/him through all the suggestions available for the current view.

22 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

The second method is straightforward, since suggestions are shown throughout the translation process. Additionally,
buttons for accepting and rejecting the suggestions are displayed.

While reviewing a suggestion, a coloured difference between the current translation and the suggestion is displayed.
If available, the username is provided of the user that gave the suggestion.

A click on the green tick icon approves the selected suggestion while the red cross rejects the selected suggestion. A
suggestion approval doesn’t imply the rejection of the remaining suggestions.

Terminology

Pootle can help translators with terminology. Terminology can be specified to be global per language, and can be
overridden per project for each language. A project called terminology (with any full name) can contain any files that
will be used for terminology matching. Alternatively a file with the name pootle-terminology.po (in a PO project)
can be put in the directory of the project, in which case the global one (in the terminology project) will not be used.
Matching is done in real time.

Ideally, the source term should be the shortest, simplest form of a word. Therefore cat, dog, house are good, but cats,
dogged and housing are bad.

Context indicators are allowed in the source text, in brackets after the term, but keep them short, eg file (noun), view
(verb), etc.

The ideal is therefore that the target term be something that you’d like the translator to be able to insert. . . but strictly
speaking the target text can be anything, including a definition.

If the terminology PO file has translator comments, they will be displayed as a tooltip in Pootle.

What does it do?

If our glossary has an entry: file->lêer, and we translate a sentence like The file was not found, we can suggest the
glossary entry file->lêer as relevant to the translation, even if we don’t have any TM entry that is related to the complete
sentence that is available for translation.

Say our glossary has an entry category->kategorie and we translate a sentence like Please enter the categories for
this photo, we can suggest the glossary entry category->kategorie, even though the letters category doesn’t occur
anywhere in the original string.

Limits

Currently a single term entry can be up to 30 characters long (including context information), and the first 500 charac-
ters of each translation are scanned. Terms can consist of many words, but consider making them as general or simple
as possible for maximum impact.

If these limits prove too restrictive, feel free to point out use cases where this is not sufficient.

Since the terminology matching is performed in real-time, you might want to keep an eye on the size of your terminol-
ogy project to ensure that performance is not affected too much by having too many terms. This is highly dependent
on your server abilities and the nature of what you are translating.

Virtual Folders

New in version 2.7.

1.1. Features 23

Pootle Documentation, Release 2.8.2

Virtual folders provide a way to group translations based on any criteria, including a file across all the languages in a
project, or files on specific locations. Virtual folders have priority, so they can be used to allow translators to focus on
the most important work.

Virtual folders’ attributes

Virtual folders have several attributes:

• A mandatory lowercase name,

• A mandatory location,

• An optional priority,

• An optional publicness flag,

• An optional description,

• A field accepting several optional filtering rules.

The location indicates the root place where the virtual folder applies. It can use placeholders for language ({LANG})
and project ({PROJ}).

Note: The / location is not valid and must be replaced by /{LANG}/{PROJ}/. The locations starting with /
projects/ are also not valid and must be changed so they instead start with /{LANG}/.

Each virtual folder must have a unique combination of name and location. This means that there can exist two different
virtual folders with the same name if they have different locations.

The priority defaults to 1 and accepts any value greater than 0, including numbers with decimals, like 0.75. Higher
numbers means higher priority.

By default virtual folders are public. If they are not public then they won’t be displayed, but they are still used for
sorting.

Also the virtual folders can have a description which might be useful to explain the contents of the folder or provide
additional instructions. This might be handy when using the virtual folders as goals.

The filtering rules specify which translation units are included within a virtual folder. Currently the only supported
filtering rule consists of a list of file or directory paths relative to the virtual folder location. Note that it is required to
set some filtering rule.

Adding and updating virtual folders

To add or modify the properties of virtual folders use the add_vfolders management command.

This command imports a JSON file holding a list of virtual folders, and the files included on each virtual folder along
with all their attributes. Check the specs for the JSON format in order to know how to craft a JSON file that fits your
needs.

Virtual folders stats

Translation stats of virtual folders are automatically calculated.

24 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Translating virtual folders

If a virtual folder applies in the current location, then clicking on the links on the overview page will provide the units
in priority order when translating in the editor. The priority sorting on the translation editor is calculated taking into
account all the applicable virtual folders in the current location, including the not public ones.

Format for the JSON file

The JSON file used to import virtual folders consists of a list of virtual folder definitions with the same fields as the
virtual folders, except for two differences:

• If the description includes newlines those must be escaped.

The following example depicts a basic JSON file:

[
{

"name": "user1",
"location": "/{LANG}/firefox/browser/",
"priority": 999.99,
"is_public": true,
"description": "Most visible strings for the user.",
"filters": {

"files": [
"branding/official/brand.dtd.po",
"chrome/browser/aboutDialog.dtd.po"

]
}

},
{

"name": "user2",
"location": "/gl/firefox/",
"priority": 7.5,
"is_public": false,
"filters": {

"files": [
"browser/chrome/browser/aboutSessionRestore.dtd.po",
"browser/chrome/browser/downloads/downloads.dtd.po"

]
}

},
{

"name": "user3",
"location": "/ru/{PROJ}/",
"priority": 0.3,
"filters": {

"files": [
"browser/chrome/browser/engineManager.dtd.po"

]
}

},
{

"name": "directories-for-lang",
"location": "/{LANG}/",
"filters": {

"files": [
"firefox/browser/profile/",

1.1. Features 25

Pootle Documentation, Release 2.8.2

"firefox/browser/chrome/browser/"
]

}
},
{

"name": "directories-and-files-for-tp",
"location": "/{LANG}/firefox/",
"filters": {

"files": [
"browser/updater/",
"browser/chrome/browser/devtools/appcacheutils.properties.po",
"browser/chrome/browser/migration/"

]
}

},
{

"name": "default",
"location": "/{LANG}/{PROJ}",
"description": "All files in all projects for all languages.",
"filters": {

"files": [
"/"

]
}

},
{

"name": "other",
"location": "/af/firefox/",
"is_public": true,
"filters": {

"files": [
"browser/chrome/browser/aboutCertError.dtd.po"

]
}

},
{

"name": "developer",
"location": "/af/firefox/",
"priority": 0.9,
"description": "As you can see this\\n description spans\\n several lines.",
"filters": {

"files": [
"browser/chrome/browser/devtools/appcacheutils.properties.po",
"browser/chrome/browser/devtools/debugger.dtd.po"

]
}

},
{

"name": "install",
"location": "/ru/{PROJ}/",
"priority": 5,
"is_public": true,
"description": "Installation related strings.",
"filters": {

"files": [
"browser/chrome/browser/migration/migration.dtd.po",
"browser/chrome/browser/migration/migration.properties.po"

]

26 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

}
}

]

Offline Translation

You can export files for offline translation. Once translated you can import them again and Pootle will manage updating
the translation in Pootle based on your changes.

This feature is ideal for teams who have poor connectivity or if you prefer to use an offline translation tool.

To export, simply click on the “Download for offline translation” link on the sidebar in Pootle’s overview page. To
import simply click the “Upload translations” link and select the file you wish to upload.

Changed in version 2.7.1.

If a string has been translated on Pootle and changed in your uploaded file then your change will still be uploaded but
it will be converted into a suggestion which you can resolve in Pootle.

Note: If there are any errors in the upload then Pootle will warn you and the file will be rejected.

1.1.4 Administrative features

Static Pages

Pootle makes it easy to setup additional custom content without too much effort.

There are three types of static pages:

1. Regular – these work like normal web pages and are able to present additional content such as a “Getting
Started” page. You will want to add these into other UI customisation.

2. Legal – in addition to presenting content like a Regular page, Legal pages require that users agree to the content
otherwise they are logged off the system. Use these pages for presenting terms of service or changes in licensing
terms that user must accept before they can use or continue to use Pootle.

3. Announcements – these appear in the sidebar and can present special instructions about projects. If you change
these pages then they will be presented to users on their next visit. Announcements can also make use of link
rewriting to allow URLs to vary based on the language being browsed.

Use Admin – Static Pages to create and manage static pages.

The static pages are by default formatted using HTML. But you can use Markdown or RestructuredText by setting
POOTLE_MARKUP_FILTER correctly.

Links in static pages

When linking to a static page externally or in any customisations, your links would be pointing to /pages/$slug,
such as /pages/gettting-started.

For linking to another static page from within a static page use the #/$slug syntax. Thus, if you created
a Getting Started page as a static page which pointed to your Licence Statement legal page we’d use this #/
licence_statement in the URL.

1.1. Features 27

Pootle Documentation, Release 2.8.2

Special features of announcement pages

Naming your slug

When creating an announcement page use a slug projects/$project so that the page will be used on the
$project project.

Other slug names may be used:

• $lang - for an announcement page that will appear on every single project enabled for the $lang languages.

• $lang/$project - for an announcement page that is specific to the $project project in the $lang lan-
guage.

The prefered model though is to use the projects/$project convention for a single easy-to-maintian page.

Language link rewriting in Announcement pages

In many cases you have URLs in announcement pages that would be identical except for variations in the language
code. Examples would include links to team wiki pages, signoff pages, progress dashboards, live test versions, etc.

Any link within your announcement page that uses a fake language code of /xx/ will be rewritten with the language
code for this translation. Thus if you insert a link such as http://example.com/signoff/xx/ then that will be
rewritten to http://example.com/signoff/af/ for a user viewing this announcement page for the Afrikaans
language translation.

Captcha Support

With Pootle’s flexible permissions several ways of interacting with your translation community are possible. If you
have a very open Pootle server, you might want to ensure that spammers don’t abuse it by enabling captchas.

Configuration

If you have no need for captchas, e.g. at a translation sprint, you might want to remove captcha support. To disable
it, set POOTLE_CAPTCHA_ENABLED in your configuration file to False. Restart your server for the setting to take
effect.

Customization

The captchas can be customized. Look at the captcha template and code:

• pootle/templates/captcha.html and

• pootle/middleware/captcha.py

and make the changes you need.

Teams

Pootle’s team page is designed to assist in managing teams. These includes team members and their roles within the
team, and other team related aspects and features. The team page also provides overall statistics and access to the bulk
handling for pending suggestions.

28 Chapter 1. All you need to know

https://en.wikipedia.org/wiki/CAPTCHA

Pootle Documentation, Release 2.8.2

Language administrators will find the team interface on the first dropdown in their language’s browse page.

The team page is divided in two parts, on the left the management of the team members and on the right a list of the
projects enabled for the language, and the overall translation statistics with links to the editor and the bulk suggestions
manager.

Managing team members

The UI for team members management is divided in two parts:

1. Top left: a form to add new members to the team,

2. Bottom left: the team’s members listed within their assigned roles.

Roles

There are four different roles, which provide incremental permissions within the team:

Member May submit suggestions.

Submitter Can translate and make suggestions.

Reviewer In addition to translate and submit suggestions, can also review suggestions.

Administrator Can administer the team, adding team members and adjusting roles. May edit the announcement of
the team. Plus all rights of the Reviewer.

1.1. Features 29

Pootle Documentation, Release 2.8.2

Adding a member

Add new members using the form at the top left. Simply, select the user, choose a role and click Add team member
button.

30 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Removing a member

To remove members check the box next to their username and then click on the Remove selected button.

Changing a member’s role

To change a member’s role first remove the member from the team, then add the member back with the desired role.

User permissions

There are several rights which can be assigned to users or to a group of users, such as to all logged in users. The
default site-wide permissions are configured by the server administrator. These are the permissions that will be used
in each project unless other permissions are configured.

Permissions precedence

Permissions can be customized server-wide, per-language, per-project or language/project combination (translation
project).

Permissions apply recursively, so server-wide permissions will apply to all languages and projects unless there is a
more specific permission. Language permission applies to all translation projects under that language, etc.

Special users

Pootle has two special users, nobody and default, which are used to assign permissions to more than one user at once.
The user nobody represents any non-logged in user, and default represents any logged in user.

If a user has permissions assigned to her user account they override any default permissions even those applied to more
specific objects (i.e. a user who has specific rights on a language will override default rights on translation projects).

Server administrators can be specified in the users page of the admin section. Server administrators have full rights on
all languages and projects and override all permissions.

1.1. Features 31

Pootle Documentation, Release 2.8.2

Available permissions

Access Permissions

Access rights can be set server-wide or for projects. Bear in mind that when limiting access to projects the permissions
affect to all the languages available in the project.

view Gives access to a project.

hide Forbids access to a project.

Action Permissions

Permissions restricting actions can be set server-wide, per language, or language-project combination:

suggest The right to suggest a translation for a specific string, also implies the right to upload file using suggest only
method.

review The right to review the suggested translations and accept or reject them, as well as the right to reject false
positive quality checks

translate The right to supply a translation for a specific string or to replace the existing one. This implies the right to
upload files using the merge method.

administrate The right to administrate the project or language including administer permissions and delegating rights
to users (this is not the same as the site administrator)

Permissions interface

Users with administrative rights for projects, languages or translation projects can access the permissions interface by
selecting “Permissions” in the navigation dropdown on the project, language or translation project browsing pages.

Pootle administrators will find the default permissions interface on the administration page, at the “Permissions” tab,
where they can set server-wide permissions.

32 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

The current rights are listed as they are assigned. The user “nobody” refers to any user that is not logged in (an
anonymous, unidentified user). The user “default” refers to the rights that all logged in users will have by default,
unless other specific rights were assigned to them. The rest of the users are users of the Pootle server for which
non-default rights were assigned.

Changing permissions

In the list of permissions, you can simply select which rights must be assigned to each user by picking new permissions
or unassigning them. Changes will be updated when you submit the form.

Adding a user

To set permissions for a specific user, select the user in the dropdown list and set the specific rights for that user. This
is only necessary if the user does not yet have their own set of rights defined.

Removing a user

To reset some user’s rights to the default rights, select the “Delete” tick box next to their name and permissions list.
When you submit, their rights will be reset to the default rights.

Warning: A user with administrative rights can remove his own administrative rights.

1.2 Installation

These instructions will guide you through installing Pootle and its requirements in a virtual environment.

1.2. Installation 33

Pootle Documentation, Release 2.8.2

Fig. 1.1: Pootle installation tutorial (Click to play)

If
you
only
want
to
have
a
sneak
peek
of
Poo-
tle
then
the
de-
fault
con-
fig-
u-
ra-
tion
and
the
built-
in
server
will
suf-
fice.

Follow
the
Poo-
tle
in-
stal-
lation video tutorial, which starts after some basic setup, to see the installation steps in action and expected results.

For a production deployment we strongly recommend that you set up the following:

• Install optional optimization packages

• Use either a MySQL or PostgreSQL database.

• Make use of a front-end web server

Note: Before installing please ensure that you have all the necessary requirements.

Warning: It is important to install Pootle into a virtual environment to ensure the correct packages and permis-
sions. It’s even more important not to install Pootle as the root user on your system. Installing or running Pootle
as the root user will expose your system to many potential security vulnerabilities

34 Chapter 1. All you need to know

https://asciinema.org/a/92502

Pootle Documentation, Release 2.8.2

1.2.1 Setup assumptions

We’ve made some assumptions in these instructions, adjust as needed:

1. All of the Pootle requirements have been installed.

2. We’re installing into ~/dev/pootle.

3. We’re using SQLite as it’s easy to setup.

4. We’re setting up the essential parts of Pootle including Redis, and RQ Workers.

5. This is a test installation on a single server, and not optimised for production use.

6. We’re installing using pip.

1.2.2 Setting up the virtual environment

In order to install Pootle first create a virtual environment. The virtual environment allows you to install dependencies
independent of your system packages.

Please install virtualenv from your system packages, e.g. on Debian:

$ sudo apt-get install python-virtualenv

Otherwise you can install virtualenv using pip:

$ sudo pip install virtualenv

Now create a virtual environment on your location of choice by issuing the virtualenv command:

$ cd ~/dev/pootle
$ virtualenv env

Note: for versions of virtualenv prior to 1.10, you may need to call virtualenv with the --setuptools
option, to ensure the correct environment.

To activate the virtual environment run the activate script:

$ source env/bin/activate

Once activated the virtual environment name will be prepended to the shell prompt.

Lastly, we want to make sure that we are using the latest version of pip and setuptools:

(env) $ pip install --upgrade pip setuptools

1.2.3 Installing Pootle

Use pip to install Pootle into the virtual environment:

(env) $ pip install --process-dependency-links Pootle

This will also fetch and install Pootle’s dependencies.

1.2. Installation 35

Pootle Documentation, Release 2.8.2

Note: pip requires –pre to install pre-release versions of Pootle, i.e. alpha, beta and rc versions. You may require
–process-dependency-links if Pootle depends on unreleased versions of third-party software.

To verify that everything installed correctly, you should be able to access the pootle command line tool within your
environment.

(env) $ pootle --version
Pootle 2.8.2 (Django 1.10.8, Translate Toolkit 2.2.5)

1.2.4 Initializing the Configuration

Once Pootle has been installed, you will need to initialize a configuration file:

(env) $ pootle init

By default the configuration file is saved as ~/.pootle/pootle.conf. You can pass an alternative path as an
argument if required - see the init command for all of the options.

Warning: This default configuration is enough to experiment with Pootle. Don’t use this configuration in a
production environment.

The initial configuration includes the settings that you’re most likely to change. For further customization, see the full
list of available settings.

1.2.5 Running RQ worker

Statistics tracking and various other background processes are managed by RQ. The rqworker command needs to
be run continuously in order to process the jobs.

If you have not already done so you should install and start a Redis server.

You can start the worker in the background with the following command:

(env) $ pootle rqworker &

In a production environment you may want to run RQ workers as services.

See here for further information about RQ jobs in Pootle.

1.2.6 Populating the Database

Before you run Pootle for the first time, you need to create the schema for the database and populate it with initial
data. This is done by executing the migrate and initdb management commands:

Note: You will need to have an RQ worker running to complete this. Alternately, you can use the --no-rq .

(env) $ pootle migrate
(env) $ pootle initdb

Running initdb will take some time as it will create the default projects and stores.

36 Chapter 1. All you need to know

https://pip.pypa.io/en/stable/reference/pip_install/#install-pre
https://pip.pypa.io/en/stable/reference/pip_wheel/#process-dependency-links
http://python-rq.org/
https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-migrate

Pootle Documentation, Release 2.8.2

1.2.7 Creating an admin user

Pootle needs at least one user with superuser rights which we create with the createsuperuser command.

(env) $ pootle createsuperuser

All users are required to verify their email before logging in. If you wish to bypass this step you can use the
verify_user command.

For example to allow a user named admin to log in without having to verify their email address:

(env) $ pootle verify_user admin

1.2.8 Running Pootle

The Django default server will be enough for quickly testing the software. To run it, just issue:

(env) $ pootle runserver --insecure

Warning: There are serious drawbacks to using runserver. Never use it in production.

And the server will start listening on port 8000. Pootle can then be accessed from your web browser at localhost:8000.

1.2.9 Next steps

Now that you have Pootle up and running you may want to consider some of the following in order to build a production
environment.

• Create your first localisation project

• Run Pootle and RQ workers as services

• Set up a reverse-proxy web server for static files

• Use a wsgi server to serve dynamic content

• Check out the available settings

• Check out Pootle management commands

• Optimize your setup

• Set up a Translation Memory Server

• Customize the Pootle UI

1.3 Upgrading

These are the instructions for upgrading Pootle from an older version to the current release.

1.3.1 Stop your running Pootle

Stop your running Pootle while you upgrade to prevent updates to your data during the migration process. If you have
RQ workers running stop those also.

1.3. Upgrading 37

https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-createsuperuser
https://docs.djangoproject.com/en/1.10/ref/contrib/staticfiles/#staticfiles-runserver
http://localhost:8000/

Pootle Documentation, Release 2.8.2

1.3.2 Backup your system

Warning: Before upgrading we strongly recommend that you backup your current system.

1.3.3 Migrate your database

If you are currently using SQLite for your database you will need to migrate to either MySQL (InnoDB) or PostgreSQL
before you upgrade.

1.3.4 Latest changes

Before upgrading Pootle familiarize yourself with important changes since the version that you are upgrading from.

1.3.5 Check Pootle requirements

You should check that you have all of the necessary Pootle requirements and have installed all required system pack-
ages.

Warning: Pootle 2.7.0 or newer requires Python 2.7

If you are upgrading from a virtual environment using an earlier Python version, you must upgrade or rebuild your
virtual environment first.

1.3.6 Activate virtualenv

These instructions assume that you are using virtualenv and you have activated a virtual environment named env
as follows:

$ source env/bin/activate
(env) $

1.3.7 Update pip and setuptools

You should now upgrade pip and setuptools to the latest version:

(env) $ pip install --upgrade pip setuptools

1.3.8 Upgrading from a version older than 2.6

If you are upgrading from a version older than 2.6 you will need to first upgrade to the latest 2.6.x version and then
you will be able to upgrade to the latest version.

(env) $ pip install --upgrade "Pootle>=2.6,<2.7"
(env) $ pootle setup

38 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Warning: The 2.6.x releases are meant only as a migration step.

You must upgrade immediately to the latest version once setup has completed.

1.3.9 Clean up stale Python bytecode

You should remove any stale Python bytecode files before upgrading.

Assuming you are in the root of your virtualenv folder you can run:

(env) $ pyclean .

1.3.10 Upgrading from version 2.6.x or later

Upgrade to the latest Pootle version:

(env) $ pip install --process-dependency-links --upgrade Pootle

1.3.11 Update and check your settings

You should now update your custom Pootle settings to add, remove or adjust any settings that have changed. You may
want to view the latest available settings.

You can check to see if there are any issues with your configuration settings that need to be resolved:

(env) $ pootle check

Note: If you are upgrading from a version of Pootle that uses localsettings.py then you may want to merge
your old custom settings with your settings conf file (default location ~/.pootle/pootle.conf).

1.3.12 Start an RQ Worker

Statistics tracking and various other background processes are managed by RQ. The rqworker command needs to
be run continuously in order to process the jobs.

If you have not already done so you should install and start a Redis server.

You can start the worker in the background with the following command:

(env) $ pootle rqworker &

In a production environment you may want to run RQ workers as services.

See here for further information about RQ jobs in Pootle.

1.3.13 Review your database configuration

Review the MySQL or PostgreSQL installation instructions for any changes that you need to make to your database.

If you run MySQL you will almost certainly need to make sure you have Time zone definition files loaded into the
database.

1.3. Upgrading 39

http://python-rq.org/
https://docs.djangoproject.com/en/1.10/ref/databases/#mysql-time-zone-definitions

Pootle Documentation, Release 2.8.2

1.3.14 Migrate your database schema

Once you have updated your settings you can perform the database schema and data upgrade by running. This is done
as follows:

(env) $ pootle migrate --fake-initial

You will also need to update the stats data held in Pootle

(env) $ pootle update_data

1.3.15 Refreshing checks

You must now update the translation checks. You will need to have an RQ worker running to complete this.

(env) $ pootle calculate_checks

This command will dispatch jobs to the RQ worker and may take some time.

If you wish to run calculate_checks in the foreground without using the RQ worker you can use the --no-rq
option.

1.3.16 Refreshing scores

If you are upgrading from a version prior to 2.8rc6, you will need to update user scores using refresh_scores.

(env) $ pootle refresh_scores --reset
(env) $ pootle refresh_scores

1.3.17 Drop cached snippets

Redis might have cached HTML snippets referring to outdated static assets. In order for Pootle to return references to
the newest assets these cached snippets must go away:

(env) $ pootle flush_cache --django-cache

1.3.18 Set up users

Any accounts that do not have an email address registered will not be able to log in. You can set the email for a user
using the update_user_email command.

For example to set the email for user admin to admin@example.com:

(env) $ pootle update_user_email admin admin@example.com

As of Pootle 2.7 users must now verify their email before they can log in.

You can use the verify_user command to bypass email verification for a specific user.

For example to automatically verify the admin user:

(env) $ pootle verify_user admin

If you wish to verify all of your existing users please see the verify_user command for further options.

40 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

1.3.19 Next steps

Now that you have Pootle up and running you may want to consider some of the following in order to build a production
environment.

• Run Pootle and RQ workers as a service

• Re-apply customisations

• Optimize your setup

• Set up a Translation Memory Server

• Check out any new settings

• Check out Pootle management commands

1.4 Administering a server

1.4.1 Installation

Pootle requirements

Hardware Requirements

Your Pootle installation will need to be flexible enough to handle the translation load. The recommended hardware
depends highly on the performance you expect, the number of users you want to support, and the number and size of
the files you want to host.

Whatever hardware you have, you will still benefit from performance improvements if you can optimize your system.

Your disk space should always be enough to store your files and your Pootle database, with some extra space available.

System Requirements

To run Pootle you need a computer running:

• Linux

• Mac OS X

Or, any other Unix-like system.

Note: Pootle will not run on Windows since it uses RQ, whose workers cannot run on Windows.

Some developers do develop on Windows so these problems can be worked around for some of the development tasks.

Pootle should be able to run on any system that implements fork().

Python version

Python 2.7 is required, 3.x is not yet supported.

1.4. Administering a server 41

http://python-rq.org/docs/

Pootle Documentation, Release 2.8.2

Installing system packages

You will need a C compiler and the development libraries for Python and XML to be available on your system before
you will be able to install your virtual environment. You will also need pip.

Eg. on a Debian-based system:

$ sudo apt-get install build-essential libxml2-dev libxslt-dev python-dev python-pip
→˓zlib1g-dev

You will also need to access to a working Redis server to provide caching to Pootle and for managing asynchronous
workers.

To install and run Redis on a Debian-based system:

$ sudo apt-get install redis-server
$ sudo service redis-server start

Note: Pootle requires a minimum Redis server version of 2.8.4. If you are using Debian Wheezy you will need to
install redis-server from backports.

Database requirements

Make sure to install the requirements for your chosen database, either MySQL or PostgreSQL.

System requirements for customising static resources

In order to customise static resources such as CSS or JavaScript, you must install Node.js and npm.

On a Debian-based system you can install these with:

$ sudo apt-get install nodejs npm

On Debian Jessie and perhaps other distributions you also need to link the nodejs command to node:

$ sudo update-alternatives --install /usr/bin/node node /usr/bin/nodejs 99

Create a Project

Now that you have the server running, you can setup a project to translate on the server.

Our assumptions

To simplify the example we assume that:

• The project uses PO files.

• You can copy these files to the Pootle server.

• There is a template file in POT format containing the strings that need to be translated.

• The project follows the GNU layout (More information on this is provided below).

42 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

• Pootle is correctly set up and running.

• There is at least one rqworker thread running. This is important.

• You are logged into the Pootle server using your newly created administrator user.

Adding a new project

Placing translation files

You need to place the translation files for your new project in a location where Pootle can find, read and write them.
Pootle uses the POOTLE_TRANSLATION_DIRECTORY setting to find out where translation files are stored on the
server.

Our example project uses a GNU layout.

A GNU layout means that our project contains translation files named using language codes. Within the project there
are no directories, just files. There can only be a single translation file per language in a project using this layout.

This is the simplest layout possible and the reason we are using it in our example.

Below you can see an example with two projects using the GNU layout:

`-- translations
`-- project1
| |-- de.po
| |-- fr.po
| |-- gl.po
| |-- pt_BR.po
| `-- templates.pot
`-- project2

|-- af.po
|-- eu.po
|-- pt_BR.po
|-- templates.pot
`-- zu.po

Among the regular translation files there are two files named templates.pot. These are the template (master or
reference) files that contain the original strings. Usually these files contain only English strings, however it is much
less confusing to use the term templates than e.g. en or English.

To get started, create a my-project directory in the location pointed to by
POOTLE_TRANSLATION_DIRECTORY and place within it the translation files for your new project. Make
sure you have a templates.pot among those project translation files.

Creating the project

At the top of the user interface, you will see your newly created administrator username. Click on it and the main top
menu will be displayed, then click on Admin (highlighted in red):

1.4. Administering a server 43

Pootle Documentation, Release 2.8.2

Now you are in the administration interface. Go to the Projects tab and you will see a New Project button:

Click on that button and the Add Project form will be displayed. Enter the new project’s details. Code must match
the name of the directory within POOTLE_TRANSLATION_DIRECTORY that contains the project translation files, in
our example my-project. Also you must specify the File Types used in this new project, in our example Gettext
PO (po/pot).

You can also provide a Full Name easily readable for humans. You don’t need to change the rest of the fields unless
you need to further customize your project.

44 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Once you are done click on the Save button below the form to create the project. Creating the project doesn’t actually
import all the translations to Pootle. To do that you need to run update_stores on the command line of the Pootle
server:

(env) $ pootle update_stores --project=my-project

This will import all the translations from disk into Pootle, calculate the translation statistics and calculate the quality
check failures. This might take a while for a large project.

Looking at your new project you will see that Pootle has imported all the existing translations for the existing languages
that you copied to the my-project directory within POOTLE_TRANSLATION_DIRECTORY .

1.4. Administering a server 45

Pootle Documentation, Release 2.8.2

Enable translation to a new language

When you want to add a new language to the project, follow these steps.

Go to your project overview and select Languages in the navigation dropdown:

Note: Alternatively you can get the same result by clicking on the Languages link that is displayed below your
project form in the administration interface:

46 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

The existing languages enabled for the project are listed. In our example we are adding Arabic to the project:

1.4. Administering a server 47

Pootle Documentation, Release 2.8.2

When you click the Save button the new language will be added for translation. In large projects it may take some
time to create the new translation files from the templates.

Note: If you want to enable translation to a language that doesn’t yet exist in your Pootle instance, then you will
first have to add the language in the Languages tab in the administration interface, in a similar way to creating a new
project.

Once the language is created you can enable translation to that new language in any project by following the instruc-
tions above.

Updating strings for existing project

Whenever developers introduce new strings, deprecate older ones, or change some of them this impacts Pootle and the
languages being translated.

When any of these changes occur, you will need to generate a new templates.pot and use it to bring the transla-
tions in Pootle up-to-date with the new templates.

Once you have created the new templates.pot place it within your project’s directory in
POOTLE_TRANSLATION_DIRECTORY , replacing the file with the same name. After that, invoke the following
command which will update the template translations in the Pootle database.

(env) $ pootle update_stores --project=my-project --language=templates

This command will ensure that new strings are added to the project and any strings which have been removed are
marked as deprecated, and thus will not be available for translation.

Now each of the languages will need to be brought into sync with the template language. The first step is to save all
the Pootle translations to disk:

(env) $ pootle sync_stores --project=my-project

48 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Then update all those translations on disk against the newer templates. We recommend you to update them on disk
using the pot2po command line tool because it can handle other formats besides Gettext PO.

(env) $ cd $POOTLE_TRANSLATION_DIRECTORY # Use the actual path!
(env) $ cd my-project
(env) $ pot2po -t af.po templates.pot af.po # Repeat for each language by changing
→˓the language code.

Note: To preserve the existing translations we pass the previous translation file to the -t option.

When all the languages in the project have been updated you can push them back to Pootle:

(env) $ pootle update_stores --project=my-project

Note: If your project languages contain many translations you might want to perform the update against newer
templates on a language by language basis.

Installation with MySQL

These instructions provide additional steps for setting up Pootle with MySQL.

You should read the full installation instructions in order to install Pootle.

Pootle supports the versions of MySQL supported by Django, make sure that your installed version is supported.

Setting up the database

Use the mysql command to create the user and database:

$ mysql -u root -p # You will be asked for the MySQL root password to log in

> CREATE DATABASE pootledb CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
> GRANT ALL PRIVILEGES ON pootledb.* TO pootle@localhost IDENTIFIED BY 'secret';
> FLUSH PRIVILEGES;

System software requirements

In addition to the system packages set out in the general installation requirements you will also require the MySQL
client development headers in order to build the Python bindings, e.g. on a Debian-based system:

$ sudo apt-get install libmysqlclient-dev

Installing MySQL Python driver

Once you have set up and activated your virtual environment, you will need to install the MySQL driver.

You can do so as follows:

(env) $ pip install --process-dependency-links Pootle[mysql]

1.4. Administering a server 49

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html#pot2po
https://docs.djangoproject.com/en/1.10/ref/databases/#mysql-notes

Pootle Documentation, Release 2.8.2

Initializing the Configuration

When initializing your configuration you can specify params to set up your database, e.g.:

(env) $ pootle init --db mysql --db-name pootledb --db-user pootle

This will create a configuration file to connect to a MySQL database named pootledb hosted on localhost as the
user pootle. Please see the init command for all of the available options.

You will most likely want to edit your Pootle configuration (default location: ~/.pootle/pootle.conf) to set
your password.

Adding timezone definitions

Pootle makes use of time zones, follow Django’s instructions to load time zone tables into the MySQL database. This
needs to be done just once for your MySQL server, not per database.

Database backend

A Note on Persistent Connections

MySQL terminates idle connections after wait_timeout seconds. Thus setting CONN_MAX_AGE to a lower value will
be fine (it defaults to 0). Persistent connections where CONN_MAX_AGE is None can’t be used with MySQL.

To learn more please check Django’s docs on persistent connections and connection management.

DATABASES = {
'default': {

...
'CONN_MAX_AGE': 0,
...

}
}

Installation with PostgreSQL

These instructions provide additional steps for setting up Pootle with PostgreSQL.

You should read the full installation instructions in order to install Pootle.

Pootle supports the versions of PostgreSQL supported by Django, make sure that your installed version is supported.

Setting up the database

As the postgres user you must create a database and database user:

$ sudo su postgres # On Ubuntu, may be different on your system
postgres@ $ createuser -P pootle # This will ask you to define the users password.
postgres@ $ createdb --encoding='utf8' --locale=en_US.utf8 --template=template0 --
→˓owner=pootle pootledb

50 Chapter 1. All you need to know

https://docs.djangoproject.com/en/1.10/ref/databases/#mysql-time-zone-definitions
https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_wait_timeout
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CONN_MAX_AGE
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CONN_MAX_AGE
https://docs.djangoproject.com/en/1.10/ref/databases/#persistent-database-connections
https://docs.djangoproject.com/en/1.10/ref/databases/#postgresql-notes

Pootle Documentation, Release 2.8.2

System software requirements

In addition to the system packages set out in the general installation requirements you will also require the PostgreSQL
client development headers in order to build the Python bindings, e.g. on Debian Jessie:

$ sudo apt-get install postgresql-server-dev-9.4

Installing PostgreSQL Python bindings

Once you have set up and activated your virtual environment, you will need to install the PostgreSQL bindings.

You can do so as follows:

(env) $ pip install --process-dependency-links Pootle[postgresql]

Initializing the Configuration

When initializing your configuration you can specify params to set up your database, e.g.:

(env) $ pootle init --db postgresql --db-name pootledb --db-user pootle

This will create a configuration file to connect to a PostgreSQL database named pootledb hosted on localhost as
the user pootle. Please see the init command for all of the available options.

You will most likely want to edit your Pootle configuration (default location: ~/.pootle/pootle.conf) to set
your password.

Database backend

A Note on Persistent Connections

The default value for CONN_MAX_AGE is 0. It means that Django creates a connection before every request and closes
it at the end. PostgreSQL supports persistent connections, and it will be fine to set CONN_MAX_AGE to None.

To learn more please check Django’s docs on persistent connections and connection management.

DATABASES = {
'default': {

...
'CONN_MAX_AGE': None,
...

}
}

Running under a Web Server

Running Pootle with a front end web server will improve performance, give you more flexibility, and might be better
for security. It is strongly recommended to run Pootle under Apache, Nginx, or a similar web server.

1.4. Administering a server 51

https://docs.djangoproject.com/en/1.10/ref/databases/#persistent-database-connections

Pootle Documentation, Release 2.8.2

Running Pootle and RQ workers as a Service

If you plan to run Pootle and/or RQ workers as system services, you can use whatever software you are familiar with
for that purpose. For example Supervisor, Circus or daemontools might fit your needs.

Running under Apache

You can use Apache either as a reverse proxy or straight with mod_wsgi.

Proxying with Apache

If you want to reverse proxy through Apache, you will need to have mod_proxy installed for forwarding requests and
configure it accordingly.

ProxyPass / http://localhost:8000/
ProxyPassReverse / http://localhost:8000/
ProxyPreserveHost On

Apache with mod_wsgi

Make sure to review your global Apache settings (something like /etc/apache2/httpd.conf or
/etc/httpd/conf/httpd.conf) for the server-pool settings. The default settings provided by Apache are too high
for running a web application like Pootle. The ideal settings depend heavily on your hardware and the number of
users you expect to have. A moderate server with 1GB memory might set MaxClients to something like 20, for
example.

Make sure Apache has read access to all of Pootle’s files and write access to the
POOTLE_TRANSLATION_DIRECTORY directory.

Note: Most of the paths present in the examples in this section are the result of deploying Pootle using a Python
virtualenv as told in the Setting up the Environment section from the Quickstart installation instructions.

If for any reason you have different paths, you will have to adjust the examples before using them.

For example the path /var/www/pootle/env/lib/python2.7/site-packages/ will be different if you
have another Python version, or if the Python virtualenv is located in any other place.

First it is necessary to create a WSGI loader script:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import os
import site
import sys

You probably will need to change these paths to match your deployment,
most likely because of the Python version you are using.
ALLDIRS = [

'/var/www/pootle/env/lib/python2.7/site-packages',
'/var/www/pootle/env/lib/python2.7/site-packages/pootle/apps',

52 Chapter 1. All you need to know

http://supervisord.org/
https://circus.readthedocs.io/en/latest/
http://cr.yp.to/daemontools.html
https://httpd.apache.org/docs/current/mod/mod_proxy.html

Pootle Documentation, Release 2.8.2

]

Remember original sys.path.
prev_sys_path = list(sys.path)

Add each new site-packages directory.
for directory in ALLDIRS:

site.addsitedir(directory)

Reorder sys.path so new directories at the front.
new_sys_path = []

for item in list(sys.path):
if item not in prev_sys_path:

new_sys_path.append(item)
sys.path.remove(item)

sys.path[:0] = new_sys_path

Set the Pootle settings module as DJANGO_SETTINGS_MODULE.
os.environ['DJANGO_SETTINGS_MODULE'] = 'pootle.settings'

Set the WSGI application.
def application(environ, start_response):

"""Wrapper for Django's WSGIHandler().

This allows to get values specified by SetEnv in the Apache
configuration or interpose other changes to that environment, like
installing middleware.
"""
try:

os.environ['POOTLE_SETTINGS'] = environ['POOTLE_SETTINGS']
except KeyError:

pass

from django.core.wsgi import get_wsgi_application
_wsgi_application = get_wsgi_application()
return _wsgi_application(environ, start_response)

Place it in /var/www/pootle/wsgi.py. If you use a different location remember to update the Apache configu-
ration accordingly.

A sample Apache configuration with mod_wsgi might look like this:

WSGIRestrictEmbedded On
WSGIPythonOptimize 1

<VirtualHost *:80>
Domain for the Pootle server. Use 'localhost' for local deployments.
#
If you want to deploy on example.com/your-pootle/ rather than in
my-pootle.example.com/ you will have to do the following changes to
this sample Apache configuration:
#
- Change the ServerName directive to:
ServerName example.com
- Change the WSGIScriptAlias directive to (note that /your-pootle must

1.4. Administering a server 53

Pootle Documentation, Release 2.8.2

not end with a slash):
WSGIScriptAlias /your-pootle /var/www/pootle/wsgi.py
- Change the Alias directive for 'assets' to include the '/your-pootle'.
- Include the following settings in your custom Pootle settings:
STATIC_URL = '/your-pootle/assets/'
FORCE_SCRIPT_NAME = '/your-pootle'
- If you have previously calculated the stats:
- Restart the RQ workers.
- Run refresh_stats to recalculate the stats data.
ServerName my-pootle.example.com

Set the 'POOTLE_SETTINGS' environment variable pointing at your custom
Pootle settings file. An initial settings file can be created using
'pootle init'
#
This might require enabling the 'env' module.
SetEnv POOTLE_SETTINGS /var/www/pootle/your_custom_settings.conf

The following two optional lines enable the "daemon mode" which
limits the number of processes and therefore also keeps memory use
more predictable.
WSGIDaemonProcess pootle processes=2 threads=3 stack-size=1048576 maximum-

→˓requests=500 inactivity-timeout=300 display-name=%{GROUP} python-path=/var/www/
→˓pootle/env/lib/python2.7/site-packages

WSGIProcessGroup pootle

Point to the WSGI loader script.
WSGIScriptAlias / /var/www/pootle/wsgi.py

Turn off directory listing by default.
Options -Indexes

Compress before being sent to the client over the network.
This might require enabling the 'deflate' module.
SetOutputFilter DEFLATE
AddOutputFilterByType DEFLATE text/html text/css text/plain text/xml application/

→˓x-javascript

Set expiration for some types of files.
This might require enabling the 'expires' module.
ExpiresActive On

ExpiresByType image/jpg "access plus 10 years"
ExpiresByType image/png "access plus 10 years"
ExpiresByType text/css "access plus 10 years"
ExpiresByType application/x-javascript "access plus 10 years"

Optimal caching by proxies.
This might require enabling the 'headers' module.
Header set Cache-Control "public"

Directly serve static files like css and images, no need to go
through mod_wsgi and Django. For high performance consider having a
separate server.
Alias /assets /var/www/pootle/env/lib/python2.7/site-packages/pootle/assets
<Directory /var/www/pootle/env/lib/python2.7/site-packages/pootle/assets>

Require all granted

54 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

For apache 2.2, comment the line directly above, and uncommend the two
→˓lines directly below

#Order deny,allow
#Allow from all

</Directory>

</VirtualHost>

You can find more information in the Django docs about Apache and mod_wsgi.

.htaccess

If you do not have access to the main Apache configuration, you should still be able to configure things correctly using
the .htaccess file.

More information on configuring mod_wsgi (including .htaccess)

Running under Nginx

Running Pootle under a web server such as Nginx will improve performance. For more information about Nginx and
WSGI, visit Nginx’s WSGI module page

A Pootle server is made up of static and dynamic content. By default Pootle serves all content, and for low-latency
purposes it is better to get other webserver to serve the content that does not change, the static content. It is just the
issue of low latency and making the translation experience more interactive that calls you to proxy through Nginx.
The following steps show you how to setup Pootle to proxy through Nginx.

Proxying with Nginx

The default Pootle server runs at port 8000 and for convenience and simplicity does ugly things such as serving static
files — you should definitely avoid that in production environments.

By proxying Pootle through nginx, the web server will serve all the static media and the dynamic content will be
produced by the app server.

server {
listen 80;
server_name pootle.example.com;

access_log /path/to/pootle/logs/nginx-access.log;
gzip on; # Enable gzip compression

charset utf-8;

location /assets {
alias /path/to/pootle/env/lib/python2.6/site-packages/pootle/assets/;
expires 14d;
access_log off;

}

location / {
proxy_pass http://localhost:8000;
proxy_redirect off;

1.4. Administering a server 55

https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/modwsgi/
https://code.google.com/archive/p/modwsgi/wikis/ConfigurationGuidelines.wiki
http://nginx.org/en/docs/http/ngx_http_uwsgi_module.html

Pootle Documentation, Release 2.8.2

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}
}

1.4.2 Upgrading

Database Migration

Note: Please note that the database migration must be performed before upgrading Pootle.

Using dumpdata and loaddata commands to migrate between databases is no longer supported.

The MySQL MyISAM backend is no longer supported. Use InnoDB instead.

There are several tools available to migrate between databases. We recommend having a look through this list for the
following supported backends:

• PostgreSQL

• SQLite

• MySQL/MariaDB (InnoDB)

1.4.3 Performance tuning and managing the server

Settings

You will find all the Pootle-specific settings in this document.

If you have upgraded, you might want to compare your previous copy to the one distributed with the Pootle version
for any new settings you might be interested in.

Customizing Settings

When starting Pootle with the pootle runner script, by default it will try to load custom settings from the ~/.
pootle/pootle.conf file. These settings will override the defaults set by Pootle.

An alternative location for the settings file can be specified by setting the -c </path/to/settings.conf/>
flag when executing the runner. You can also set the POOTLE_SETTINGS environment variable to specify the path
to the custom configuration file. The environment variable will take precedence over the command-line flag.

Available Settings

This is a list of Pootle-specific settings grouped by the file they’re contained and ordered alphabetically.

56 Chapter 1. All you need to know

https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://wiki.postgresql.org/wiki/Converting_from_other_Databases_to_PostgreSQL
https://www.sqlite.org/cvstrac/wiki?p=ConverterTools
https://www.mysql.com/products/workbench/migrate/

Pootle Documentation, Release 2.8.2

10-base.conf

This file contains base configuration settings.

POOTLE_INSTANCE_ID Instance ID. This is to differentiate multiple instances of the same app (e.g. development,
staging and production). By default this value is exposed as a global <html> class name to allow overriding CSS
rules based on the instance type.

POOTLE_TITLE Default: 'Pootle Translation Server'

The name of the Pootle server.

POOTLE_SQL_MIGRATIONS Default: True

New in version 2.8.

Some migrations have been optimized by using SQL directly and bypassing the Django ORM (Currently only
for mysql migrations).

This could cause problems if, for example, you have developed custom models with foreign keys to Pootle
models.

20-backends.conf

Backend and caching settings.

POOTLE_CACHE_TIMEOUT Default: 604800 (a week)

New in version 2.7.

Time in seconds to keep certain objects cached in memory (template fragments, language and project lists,
permissions, etc.).

Note that for anonymous users Pootle also uses Django’s caching middleware, and its settings can be configured
separately.

25-logging.conf

POOTLE_LOG_DIRECTORY Default: working_path('log')

New in version 2.7.

The directory where Pootle writes event logs to. These are high-level logs of events on store/unit changes and
pootle commands executed.

30-site.conf

Site-specific settings.

POOTLE_CONTACT_ENABLED Default: True

Controls whether users will be able to use the contact form. The address to receive messages is controlled by
POOTLE_CONTACT_EMAIL.

POOTLE_CONTACT_EMAIL Default: info@YOUR_DOMAIN.com

Address to receive messages sent through the contact form. This will only have effect if
POOTLE_CONTACT_ENABLED is set to True.

1.4. Administering a server 57

https://docs.djangoproject.com/en/1.10/topics/cache/#the-per-site-cache

Pootle Documentation, Release 2.8.2

POOTLE_CONTACT_REPORT_EMAIL Default: POOTLE_CONTACT_EMAIL

New in version 2.7.

Email address to report errors on strings.

POOTLE_EMAIL_FEEDBACK_ENABLED Default: False

New in version 2.8.

Controls whether emails are sent to suggesters when a reviewer accepts or rejects their suggestions providing
some comment for the suggester.

POOTLE_CANONICAL_URL Default: http://localhost

New in version 2.8.

Canonical URL, without trailing slash, used when deriving the URLs to send out emails. If you use the
django.contrib.sites framework set this to blank string.

POOTLE_CUSTOM_LOGO Default: ""

New in version 2.8.

Custom logo URL - this can be an absolute or relative URL.

POOTLE_FAVICONS_PATH Default: "/assets/favicon"

New in version 2.8.

Customisable favicon path. Should not end with trailing slash.

40-apps.conf

Configuration settings for applications used by Pootle.

POOTLE_SIGNUP_ENABLED Default: True

Changed in version 2.7.

Controls whether user sign ups are allowed or not. If set to False, administrators will still be able to create
new user accounts.

POOTLE_CUSTOM_TEMPLATE_CONTEXT Default: {}

Changed in version 2.7.

Custom template context dictionary. The values will be available in the templates as {{ custom.<key> }}.

POOTLE_LEGALPAGE_NOCHECK_PREFIXES Default: ('/about', '/accounts', '/admin', '/
contact', '/jsi18n', '/pages',)

Changed in version 2.7.

List of path prefixes where the LegalAgreementMiddleware will check if the current logged-in user has
agreed all the legal documents defined for the Pootle instance. Don’t change this unless you know what you’re
doing.

POOTLE_META_USERS Default: ()

New in version 2.7.

Additional meta, or non-human, accounts. Pootle already manages the ‘system’ and ‘nobody’ users who own
system updates to translations and submissions by anonymous users. These meta accounts have their own simple
public profiles and won’t track scores.

58 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

POOTLE_MARKUP_FILTER Default: (None, {})

Two-tuple defining the markup filter to apply in certain textareas.

• Acceptable values for the first element are markdown and html (deprecated).

• The second element should be a dictionary of keyword arguments that will be passed to the markup func-
tion

Changed in version 2.8: Support for textile, restructuredtext and html formats has been deprecated.

Examples:

POOTLE_MARKUP_FILTER = ('markdown', {})

POOTLE_MARKUP_FILTER = ('markdown', {
'clean': {

'extra_tags': ['div'],
'extra_attrs': {

'*': ['style']
'img': ['alt'],

},
'extra_styles': [

'color',
'font-weight'

],
},

})

POOTLE_CAPTCHA_ENABLED Default: True

Enable spam prevention through a captcha.

POOTLE_REPORTS_MARK_FUNC Default: '' (empty string)

New in version 2.7.

The graph of a user’s activity, within reports, can be marked to indicate events by using this function. The setting
must contain an import path to such a marking function (string).

The function receives the user and graph ranges and returns an array of applicable marks.

Parameters:

• username - user for whom we’re producing this graph

• start (datetime) - start date of the graph

• end (datetime) - end date of the graph

The function must return an array of dictionaries (marks), where every mark has the following properties:

• position, specifying the point in the x-axis where the mark should be set (UNIX timestamp multiplied
by 1000), and

• label specifying the text that will be displayed next to the mark.

POOTLE_SCORES Default:

{
'suggestion_add': 0,
'suggestion_accept': .1,
'suggestion_reject': .1,
'comment_updated': .1,
'target_updated': .3,

1.4. Administering a server 59

https://code.google.com/archive/p/flot-marks/

Pootle Documentation, Release 2.8.2

'state_translated': .6,
'state_fuzzy': .1,
'state_unfuzzy': .1,

}

New in version 2.8.

The default score is based on the wordcount of the source text. The values of the various parameters are used as
a multiplier to arrive at the score atributed to the translators and reviewers.

Thus:

score = source wordcount * multiplier

When a translator translates a 10 word string they would get a score using the state_translated multiplier
of 0.6.

6 = 10 words * 0.6

Parameters:

• suggestion_* - scoring for the events of adding a new suggestions, accepting or rejecting existing
suggestions. By default adding a suggestion gives no score, to prevent users from gaming the system.

• comment_* - making changes to the string comment.

• target_* - adjusting the existing translation.

• state_* - changing the state of the string, this includes translation and fuzzy setting.

POOTLE_FS_WORKING_PATH Default: working_path('.pootle_fs/tmp/')

New in version 2.8.

The directory that Pootle FS uses to store temporary data for handling the projects.

Warning: This directory can potentially get very large, so you need to place it somewhere with plenty of
room.

60-translation.conf

Translation environment configuration settings.

AMAGAMA_URL Default: https://amagama-live.translatehouse.org/api/v1/

URL to an amaGama Translation Memory server. The default service should work fine, but if you have a custom
server set it here.

This URL must point to the public API URL which returns JSON. Don’t forget the trailing slash.

AMAGAMA_SOURCE_LANGUAGES Default: ('en', 'en_US', 'en-US')

List of available source languages in amaGama server pointed to by AMAGAMA_URL.

POOTLE_SYNC_FILE_MODE Default: 0o644

Changed in version 2.7.

On POSIX systems, files synchronized to disk will be assigned this permission. Use 0o644 for publically-
readable files or 0o600 if you want only the Pootle user to be able to read them.

60 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

POOTLE_TM_SERVER New in version 2.7.

Changed in version 2.7.3: Added the WEIGHT and MIN_SIMILARITY options. Also added another default
TM used to import external translations from files.

Default: {} (empty dict)

Example configuration for local/external TM server:

{
'local': {

'ENGINE': 'pootle.core.search.backends.ElasticSearchBackend',
'HOST': 'localhost',
'PORT': 9200,
'INDEX_NAME': 'translations',
'WEIGHT': 1,

},
'external': {

'ENGINE': 'pootle.core.search.backends.ElasticSearchBackend',
'HOST': 'localhost',
'PORT': 9200,
'INDEX_NAME': 'external-translations',
'WEIGHT': 0.9,

},
}

This is configured to access a standard Elasticsearch setup. Change the settings for any non-standard setup.
Change HOST and PORT settings as required.

The default local TM is automatically updated every time a new translation is submitted. The other TMs are
not automatically updated so they can be trusted to provide selected high quality translations. Every TM server
must have its own unique INDEX_NAME. WEIGHT provides a weighting factor to alter the final score for TM
results from this TM server. Valid values are between 0.0 and 1.0, both included. Defaults to 1.0 if not
provided. MIN_SIMILARITY serves as a threshold value to filter out results that are potentially too far from
the source text. The Levenshtein distance is considered when measuring how similar the text is from the source
text, and this represents a real value in the (0..1) range, 1 being 100% similarity. The default value (0.7) should
work fine in most cases, although your mileage might vary.

POOTLE_MT_BACKENDS Default: [] (empty list)

This setting enables translation suggestions through several online services.

The elements for the list are two-element tuples containing the name of the service and an optional API key.

Available options are:

GOOGLE_TRANSLATE: Google Translate service. For this service you need to obtain an API key. Note that
Google Translate API is a paid service.

YANDEX_TRANSLATE: Yandex.Translate service. For this service you need to obtain a Yandex API key.

PARSE_POOL_CULL_FREQUENCY Default: 4

When the pool fills up, 1/PARSE_POOL_CULL_FREQUENCY number of files will be removed from the pool.

PARSE_POOL_SIZE Default: 40

To avoid rereading and reparsing translation files from disk on every request, Pootle keeps a pool of already
parsed files in memory.

Larger pools will offer better performance, but higher memory usage (per server process).

1.4. Administering a server 61

https://cloud.google.com/translate/v2/pricing
https://tech.yandex.com/keys/get/?service=trnsl

Pootle Documentation, Release 2.8.2

POOTLE_TRANSLATION_DIRECTORY Default: working_path('translations')

The directory where projects hosted on Pootle store their translation files. sync_stores will write to this
directory and update_stores will read from this directory.

POOTLE_WORDCOUNT_FUNC Default: translate.storage.statsdb.wordcount

New in version 2.7.

The import path to a function that provides wordcounts for Pootle.

Current options:

• Translate Toolkit (default) - translate.storage.statsdb.wordcount

Adding a custom function allows you to alter how words are counted.

Warning: Changing this function requires that you recalculate the associated wordcounts.

Deprecated Settings

ENABLE_ALT_SRC Deprecated since version 2.5: Alternate source languages are now on by default. This ensures
that translators have access to as much useful information as possible when translating.

POOTLE_TOP_STATS_CACHE_TIMEOUT Deprecated since version 2.7: The overview page statistics rewrite has
removed these statistics and the RQ based statistics has also removed the load of this type of data so this setting
has been removed.

VCS_DIRECTORY Deprecated since version 2.7: Version Control Support has been removed from Pootle. We
feel we can support version control better in future. You can currently make use of sync_stores and
update_stores to automate your own integration.

CONTRIBUTORS_EXCLUDED_NAMES Deprecated since version 2.7: The contributors page has been removed and
is being replaced with better user statistics.

CONTRIBUTORS_EXCLUDED_PROJECT_NAMES Deprecated since version 2.7: The contributors page has been
removed and is being replaced with better user statistics.

MIN_AUTOTERMS Deprecated since version 2.7: Terminology auto-extraction feature has been removed.

MAX_AUTOTERMS Deprecated since version 2.7: Terminology auto-extraction feature has been removed.

DESCRIPTION Deprecated since version 2.7: Pootle no longer displays site description on the landing page, but
rather makes use of static pages to convey information to users in the sidebar. Use static pages and customization
if you want to give users information about the Pootle site.

FUZZY_MATCH_MAX_LENGTH Deprecated since version 2.7: Update against templates feature has been removed.

FUZZY_MATCH_MIN_SIMILARITY Deprecated since version 2.7: Update against templates feature has been re-
moved.

EXPORTED_DIRECTORY_MODE Deprecated since version 2.7: Offline translation support was rewritten and the
setting was unused.

POOTLE_QUALITY_CHECKER Deprecated since version 2.8: To simplify checker code, the ability to have a custom
quality checker was removed. To create custom checks, write them within the Translate Toolkit.

POOTLE_SCORE_COEFFICIENTS Removed in version 2.8: A rewrite of the scoring in Pootle now uses
POOTLE_SCORE to store score adjustment coefficients.

62 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Logging

Pootle’s default logging has configurations for all important aspects of the server that we want to log. Pootle also logs
to the ‘action’ logger that will log every user, system and command action executed on the server.

Log directory

You can override the default logging directory by specifying the POOTLE_LOG_DIRECTORY setting.

Action logger

The action logger logs each activity related to translation, units changes, store changes, command execution and other
activities.

The generic log message is as follows (though some actions do produce slightly different log entries):

[2015-05-04T15:06:39] system X pootle update_tmserver

That is:

[date] user type message

Action types

Current action types are as follows:

Action Group Description
A Translation Translation submission added a translation
C Translation An existing translation was changed
D Translation An existing translation was deleted
UA Unit A new unit was added
UO Unit An existing unit was made obsolete
UR Unit An obsolete unit was resurected i.e. reinstated
UD Unit An existing unit was deleted
SA Store A new store was added
SO Store An existing store was made obsolete
SR Store An obsolete store was reinstated
SD Store An existing store was deleted
X Command A pootle command was executed
QM Quality check A quality check was muted (marked as a false positive)
QU Quality check A quality check was unmuted (reenabled after having been muted)
SC Score A users score has changed because of an action

Score Translation Actions

In addition the SC action type also has its own actions which track the actual type of activity that leads to changes in
translation. These are used to track scores for the translators.

1.4. Administering a server 63

Pootle Documentation, Release 2.8.2

Action Description
TA unit translated
TE unit edited after someone else
TX unit edited after themselves
TD translation deleted by admin
R translation reviewed
TF translation’s fuzzy flag is set by admin
XE translation penalty [when translation deleted]
XR translation penalty [when review canceled]
S suggestion added
SA suggestion accepted (counted towards the suggestion author)
SR suggestion rejected (counted towards the suggestion author)
RA suggestion accepted (counted towards the reviewer)
RR suggestion rejected (counted towards the reviewer)

Action messages

Various of the action groups have different message structures as outlined here:

Translation:

date user action lang unit path translation
[2015-05-19T14:11:18] admin C af 2 /af/tutorial/stats-test.po
→˓ Twee
[2015-05-19T14:12:17] admin A af 3 /af/tutorial/stats-test.po
→˓ Drie
[2015-05-19T14:13:05] admin D af 1 /af/tutorial/stats-test.po

Unit:

date user action language unit file translation
[2015-05-06T16:25:20] system UA am 4109 /am/terminology/gnome/am.po
→˓MSDOS
[2015-05-06T16:37:05] system UA cs 12043 /cs/terminology/gnome/cs.po
→˓přepínač

Store:

date user action path store
[2015-05-05T20:23:37] system SA /templates/tutorial/tutorial.pot 1

Command:

date user action command
[2015-05-06T11:24:28] system X pootle update_stores --project=vfolders
[2015-05-05T20:22:46] system X pootle migrate

Quality check:

date user action lang unit path translation
[2015-05-19T14:16:36] admin QM af 855 /af/terminology/gnome-
→˓terminologie.po lug
[2015-05-19T14:17:44] admin QU af 855 /af/terminology/gnome-
→˓terminologie.po lug

64 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Score:

date user SC score_delta score_action #unit NS=wordcount S=similarity
→˓total
[2015-05-19T14:19:11] admin SC 1.0 TA #1 NS=1 S=0.0
→˓(total: 2.28571428571)

Sync and Update messages

The sync_stores and update_stores commands will produce a number of logs to report any activity that
results from those commands.

update_stores:

[$date] [update] updated $number units in $store_path [revision: $revision]
[2015-05-19T21:06:24] [update] updated 1 units in /an/libo_ui/dictionaries/pt_PT.po
→˓[revision: 58]

sync_stores:

[$date] [sync] File saved; updated $number units in $store_path [revision:
→˓$revision]
[2015-05-19T23:11:50] [sync] File saved; updated 1 units in /an/libo_ui/avmedia/
→˓source/viewer.po [revision: 0]

Optimization

This page lists extra optional software you can install to improve Pootle’s performance. Some configuration tips are
given too.

Optional Software

By installing optional software you can gain performance and extra features.

Database Backends

You should really switch to a real database backend in production environments. Adjust the DATABASES setting
accordingly.

• MySQL

• PostgreSQL

Web Servers

You should really run Pootle behind a real web server, at least to serve static content. For generating the dynamic
content, you can also use alternative WSGI servers that might better suit your environment.

Apache Apache web server.

Nginx Ngninx web server.

gunicorn Python WSGI HTTP server.

1.4. Administering a server 65

https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-DATABASES
http://httpd.apache.org/
http://nginx.org/
http://gunicorn.org/

Pootle Documentation, Release 2.8.2

Speed-ups and Extras

iso-codes Enables translated language and country names.

raven Enables logging server exceptions to a Sentry server. If installed and configured, Pootle will automatically use
the raven client.

Tips

With a few extra steps, you can support more users and more data. Here are some tips for performance tuning on your
Pootle installation.

• Ensure that Pootle runs under a proper web server.

• Be sure to use a proper database server like MySQL instead of the default SQLite. You can migrate an existing
installation if you already have data you don’t want to lose.

• Install the latest recommended version of all dependencies. Django and the Translate Toolkit might affect
performance. Later versions of Pootle should also give better performance. You can upgrade to newer versions
of Pootle easily.

• Ensure DEBUG mode is disabled.

• Increase the cache timeout for users who are not logged in.

• Increase your PARSE_POOL_SIZE if you have enough memory available.

• Enable 'django.contrib.sessions.backends.cached_db'.

• Disable swap on the server. Things should be configured so that physical memory of the server is never exceeded.
Swapping is bound to seriously degrade the user experience.

• Ensure gzip compression is enabled on your web server. For Apache, mod_deflate and for Nginx,
ngx_http_gzip_module.

• Serve your robots.txt file statically. By default Pootle will serve this file as a static template, but that means it
is still going through a small layer of Django. On larger sites you likely want to have your webserver serve this
file.

Apache

For Apache, review your server settings so that you don’t support too many or too few clients. Supporting too many
clients increases memory usage, and can actually reduce performance.

No specific settings can be recommended, since this depends heavily on your users, your files, and your hardware.
However the default value for the MaxClient directive (usually 256) is almost always too high. Experiment with
values between 10 and 80.

MySQL

Using MySQL with InnoDB backend is well tested. MyISAM is no longer supported. You can migrate your current
database if you already have data you don’t want to lose.

66 Chapter 1. All you need to know

https://packages.debian.org/unstable/source/iso-codes
https://raven.readthedocs.io/en/latest/
https://docs.sentry.io/
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-DEBUG
https://httpd.apache.org/docs/2.4/mod/mod_deflate.html
http://nginx.org/en/docs/http/ngx_http_gzip_module.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html

Pootle Documentation, Release 2.8.2

Caching System

Pootle uses a caching system to improve performance. It is an essential part of your Pootle installation. It is based on
Django’s caching system, and is used for various things:

• To serve cached (possibly slightly outdated) versions of most pages to anonymous users to reduce their impact
on server performance.

• To cache bits of the user interface, even for logged in users. Data will not be out of date but Pootle still tries to
use the cache to reduce the impact on server performance.

• To store the result of expensive calculations like translation statistics.

• To keep track of last update timestamps to avoid unnecessary and expensive file operations (for example don’t
attempt to save translations before a download if there are no new translations).

Without a well functioning cache system, Pootle could be slow.

Named Caches

Pootle is configured with a these named caches:

• 'default' – all non specified cache data and all Django cache data.

• 'redis' – all RQ data related and revision counter.

• 'lru' – all lru cache data.

In large installations you may want to setup separate caches to improve cache performance. You can then setup caching
parameters for each cache separately.

Cache Backends

Django supports multiple cache backends (methods of storing cache data). However, Redis is the only cache backend
supported by Pootle. We use some custom features of Redis so cannot support other backends. You can customise the
Redis cache settings by overriding the value of CACHES in your configuration file.

User Authentication and Authorization

Pootle’s backend for authenticating and authorizing users is provided by django-allauth, and it comes with a heavily-
customized client-side user interface.

Note that while Allauth supports local and social sign-in flows, not all of them have been equally-tested on Pootle, so
your mileage might vary.

At the same time, Allauth also provides tons of settings which deployments can configure to their needs, although
some of them clash directly with how our workflow has been designed. For instance, leaving UNIQUE_EMAIL =
True becomes a hard requirement.

Setting Up a Social Provider

Each third party social authentication provider has its own requirements, although most of them implement similar
protocols (OAuth, OAuth2, OpenID etc.).

1.4. Administering a server 67

https://docs.djangoproject.com/en/1.10/topics/cache/
https://docs.djangoproject.com/en/1.10/topics/cache/#setting-up-the-cache
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CACHES
https://django-allauth.readthedocs.io/
https://django-allauth.readthedocs.io/en/latest/configuration.html

Pootle Documentation, Release 2.8.2

Usually providers require consumers to register their apps on the provider website. On the Pootle side of things, your
provider might need to be registered as a social app against your host. In order to do this you will need to insert a few
records into your SQL database.

An example with GitHub follows.

GitHub

1. Register your app against your host.

Application name Some descriptive name

Homepage URL URL to your Pootle server, e.g. http://foo.bar.tld

Application description Some descriptive text

Authorization callback URL URL to the callback endpoint of your provider in the Pootle server, e.g. http:/
/foo.bar.tld/accounts/github/login/callback/

2. Let Allauth know about your social provider.

UPDATE django_site SET DOMAIN = 'foo.bar.tld', name = 'Site name' WHERE id=1;

INSERT INTO socialaccount_socialapp (provider, name, secret, client_id, 'key')
VALUES ("github", "GitHub", "---Client-Secret-from-above---",

"---Client-ID-from-above---", "");

INSERT INTO socialaccount_socialapp_sites (socialapp_id, site_id)
VALUES (1,1);

Note the first line simply sets the domain name for the default site; you can omit it if it’s already up-to-date.

Management commands

The management commands are administration commands provided by Django, Pootle or any external Django app
being used with Pootle. You will usually run these commands by issuing pootle <command> [options].

For example, to get information about all available management commands, you will run:

(env) $ pootle help

Managing Pootle projects

These commands will go through all existing projects performing maintenance tasks. The tasks are all available
through the web interface but on a project by project or file by file basis.

--project, --language

The commands target can be limited in a more flexible way using the --project --language command line
options. They can be repeated to indicate multiple languages or projects. If you use both options together it will only
match the files that match both languages and projects selected.

For example, to calculate_checks for the tutorial project only, run:

(env) $ pootle calculate_checks --project=tutorial

To only calculate the Zulu and Basque language files within the tutorial project, run:

68 Chapter 1. All you need to know

https://github.com/settings/applications/new

Pootle Documentation, Release 2.8.2

(env) $ pootle calculate_checks --project=tutorial --language=zu --language=eu

Running commands with –no-rq option

--no-rq

New in version 2.7.1.

Some of the commands work asynchronously and will schedule jobs to RQ workers, rather than running them in the
command process. You can change this behaviour using the --no-rq command line option.

This can be useful for running pootle commands in bash scripts or automating installation/upgrade/migration. It can
also be useful for debugging otherwise asynchronous jobs.

For example, to run calculate_checks in the command process and wait for the process to terminate:

(env) $ pootle calculate_checks --no-rq

It is not generally safe to run commands in this mode if you have RQ workers active at the same time, as there is a risk
that they conflict with other jobs dispatched to the workers.

--atomic

New in version 2.8: Default: tp. Available choices: tp, all, none.

This option allows you to run CLI commands with atomic transactions.

The default is to commit changes on per-translation-project basis.

For example to run update_stores against all translation projects in a single transaction.

(env) $ pootle update_stores --atomic=all

--noinput

If there are RQ workers running, the command will ask for confirmation before proceeding. This can be overridden
using the --noinput flag, in which case the command will run even if there are.

retry_failed_jobs

retry_failed_jobs

New in version 2.7.

Requeue failed RQ jobs.

Background RQ jobs can fail for various reasons. To push them back into the queue you can run this command.

Examine the RQ worker logs for tracebacks before trying to requeue your jobs.

update_data

update_data

New in version 2.8.

This command updates the stats data. The stats data update can be triggered for specific languages or projects.

--store

1.4. Administering a server 69

Pootle Documentation, Release 2.8.2

Use the --store option to narrow the stats data calculation to a specific store:

(env) $ pootle update_data --store=/fr/proj/mydir/mystore.po

Note this will also trigger the update of the stats data for items above the store, like for example directories above it,
its language and its project.

calculate_checks

calculate_checks

New in version 2.7.

This command will create a background job to go through all units and recalculate quality checks.

Note: Disabled projects are processed.

calculate_checks will flush existing caches and update the quality checks cache.

It’s necessary to run this command after upgrading Pootle if new quality checks are added.

The time it takes to complete the whole process will vary depending on the number of units you have in the database.
If a user hits a page that needs to display stats but they haven’t been calculated yet, then a message will be displayed
indicating that the stats being calculated.

--check

Use the --check option to force calculation of a specified check. To recalculate only the date_format quality
checks, run:

(env) $ pootle calculate_checks --check=date_format

Multiple checks can be specifed in one run as well:

(env) $ pootle calculate_checks --check=date_format --check=accelerators

flush_cache

flush_cache

New in version 2.8.0.

Flush cache.

Warning: You must first stop the workers if you flush redis cache.

--django-cache

Use the --django-cache to flush the default cache which keeps Django templates, project permissions etc.

--rqdata

Use the --rqdata to flush all data contained in redis cache: pending jobs, revision (which will be automatically
restored), all data from queues.

--lru

70 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Use the --lru to flush all lru cache data contained in lru cache.

--all

Use the --all to flush all caches (default, redis, lru) data.

refresh_scores

refresh_scores

New in version 2.7.

Recalculates the scores for all users. It is possible to narrow down the calculation to specific projects and/or languages.

Warning: It is advisable to run this command while Pootle server is offline since the command can fail due to
data being changed by users.

--reset

When the --reset option is used , all score log data is removed and zero score is set for all users.

sync_stores

sync_stores

Changed in version 2.7.

Save all translations currently in the database to the file system, thereby bringing the files under the
POOTLE_TRANSLATION_DIRECTORY directory in sync with the Pootle database.

Note: Disabled projects are skipped.

You must run this command before taking backups or running scripts that modify the translation files directly on the
file system, otherwise you might miss out on translations that are in the database but not yet saved to disk. In other
words, translations are saved to disk only when you explicitly do so using this command.

For every file being synced, the in-DB Store will be updated to reflect the latest revision across the units in the file
at the time of syncing. This allows Pootle to make optimizations when syncing and updating files, ignoring files that
haven’t change.

The default behavior of sync_stores can be altered by specifying these parameters:

--force
Synchronizes files even if nothing changed in the database.

--overwrite
Copies the current state of the DB stores (not only translations, but also metadata) regardless if they have been
modified since the last sync or not. This operation will (over)write existing on-disk files.

--skip-missing
Ignores files missing on disk, and no new files will be created.

update_stores

1.4. Administering a server 71

Pootle Documentation, Release 2.8.2

update_stores

Changed in version 2.7.

Load translation files currently on the file system into the database, thereby bringing the Pootle database in sync
with the files under the POOTLE_TRANSLATION_DIRECTORY directory. Pootle will not detect changes in the file
system on its own. This is the opposite of sync_stores.

Note: Disabled projects are skipped.

Note: update_stores does not manage the updating of translations against templates, it simply loads translation
files and translation templates into Pootle. For a full understanding of the role of templates and updating translations
against templates read the templates section.

It also discovers new units, files and translation projects that were added on disk:

• Projects that exist in the DB but ceased to exist on disk will be disabled (not deleted). If a project is recovered
on disk it can be enabled via the admin UI only.

• Translation projects will be scanned for new files and directories. In-DB files and directories that no longer exist
on disk will be marked as obsolete. Also any in-DB directory will be marked as obsolete if this directory is
empty or contains empty directories only.

• In-DB stores will be updated with the contents of the on-disk files. New units will be added to the store, units
that ceased to exist will be marked as obsolete. Translations that were updated on-disk will be reflected in the
DB.

You must run this command after running scripts that modify translation files directly on the file system.

update_stores accepts several options:

--force
Updates in-DB translations even if the on-disk file hasn’t been changed since the last sync operation.

--overwrite
Mirrors the on-disk contents of the file. If there have been changes in the database since the last sync operation,
these will be overwritten.

Warning: If files on the file system are corrupt, translations might be deleted from the database. Handle with
care!

list_serializers

list_serializers

New in version 2.8.0.

List the installed serializers and deserializers on your system.

Available options:

-m, --model

List serializers for specified model. The model should be expressed as a contenttype label - eg
app_name.‘‘model_name‘‘

72 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

-d, --deserializers

List available deserializers set up for our system.

list_languages

list_languages

Lists all the language codes for languages hosted on the server. This can be useful for automation.

--modified-since

Accepts the --modified-since parameter to list only those languages modified since the revision given by
revision.

list_projects

list_projects

Lists all the project codes on the server. This might can be useful for automation.

--modified-since

Accepts the --modified-since parameter to list only those projects modified since the revision given by
revision.

contributors

contributors

New in version 2.7.1.

Lists the contributors to a language, project or overall and the amount of contributions they have.

Available options:

--sort-by
Changed in version 2.8.0.

Specifies the sorting to be used. Valid options are contributions (sort by decreasing number of contribu-
tions) and username (sort by user name, alphabetically).

Default: username.

--mailmerge
New in version 2.8.0.

Specifies to only output user names and emails. Users with no email are skipped.

--mailmerge and --include-anonymous are mutually exclusive.

--include-anonymous
New in version 2.8.0.

Specifies to include anonymous contributions.

--include-anonymous and --mailmerge are mutually exclusive.

1.4. Administering a server 73

Pootle Documentation, Release 2.8.2

--since
New in version 2.8.0.

Only consider contributions since the specified date or datetime.

Date or datetime can be in any format accepted by python-dateutil library, for example ISO 8601 format
(2016-01-24T23:15:22+0000 or 2016-01-24) or a string formatted like "2016-01-24 23:15:22
+0000" (quotes included).

--until
New in version 2.8.0.

Only consider contributions until the specified date or datetime.

Date or datetime can be in any format accepted by python-dateutil library, for example ISO 8601 format
(2016-01-24T23:15:22+0000 or 2016-01-24) or a string formatted like "2016-01-24 23:15:22
+0000" (quotes included).

set_filetype

set_filetype

New in version 2.8.

This command sets file formats for projects, and also allows to convert files to another format.

--from-filetype

Convert stores of this file type.

--matching

Convert stores matching this path glob within the project.

For example, to add the properties format to a project, run:

(env) $ pootle set_filetype --project=myproj properties

To convert stores of po format to properties, run:

(env) $ pootle set_filetype --project=myproj --from-filetype=po properties

To convert stores matching a given path glob to properties format, run:

(env) $ pootle set_filetype --project=myproj --matching=mydir/myfile-* properties

revision

revision

New in version 2.7.

Print the latest revision number.

The revision is a common system-wide counter for units. It is incremented with every translation action made from
the browser. Zero length units that have been auto-translated also increment the unit revision.

--restore

74 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

The revision counter is stored in the database but also in cache for faster retrieval. If for some reason the revision
counter was removed or got corrupted, passing the --restore flag to the command will restore the counter’s value
based on the revision data available on the relational DB backend. You shouldn’t need to ever run this, but if for
instance you deleted your cache you will need to restore the counter to ensure correct operation.

changed_languages

changed_languages

New in version 2.7.

Produces a comma-separated list of language codes that changed since the last sync operation.

--after-revision

When --after-revision is specified with a revision number as an argument, it will print the language codes for
languages that have changed since the specified revision.

test_checks

test_checks

New in version 2.7.

Tests any given string pair or unit against all or certain checks from the command line. This is useful for debugging
and developing new checks.

--source, --target

String pairs can be specified by setting the values to be checked in the --source=<"source_text"> and
--target="<target_text>" command-line arguments.

--unit

Alternatively, --unit=<unit_id> can be used to reference an existing unit from the database.

--check

By default, test_checks tests all existing checks. When --check=<checkname> is set, only specific checks
will be tested against.

dump

dump

New in version 2.7.

Prints data or stats data (depending on --data or --stats option) in specific format.

--data

object_id:class_name
8276:Directory name=android parent=/uk/ pootle_path=/uk/android/
24394:Store file=android/uk/strings.xml.po translation_project=/uk/android/
→˓pootle_path=/uk/android/strings.xml.po name=strings.xml.pstate=2

1.4. Administering a server 75

Pootle Documentation, Release 2.8.2

806705:Unit source=Create Account target= source_wordcount=2 target_
→˓wordcount=2 developer_comment=create_account translator_
→˓commentlocations=File:\nstrings.xml\nID:\ne82a8ea14a0b9f92b1b67ebfde2c16e9
→˓isobsolete=False isfuzzy=False istranslated=True
115654:Suggestion target_f= user_id=104481

--stats

pootle_path total,translated,fuzzy,suggestions,criticals,is_dirty,last_action_unit_id,
→˓last_updated_unit_id
/uk/android/strings.xml.po 11126,10597,383,231,0,False,4710214,4735242
/uk/android/widget/strings.xml.po 339,339,0,26,0,False,2277376,3738609
/uk/android/widget/ 339,339,0,26,0,False,2277376,3738609
/uk/android/ 11465,10936,383,257,0,False,4710214,4735242

This command can be used by developers to check if all data kept after migrations or stats calculating algorithm was
changed.

config

config

New in version 2.8.

Gets, sets, lists, appends and clears pootle configuration settings.

content_type
Optional positional argument to specify a model to manage configuration for.

object
Optional positional argument to specify the primary key of an object to manage configuration for. You can use
a field other than the primary key by specifying -o, but the field must be unique for the request object when
doing so.

-o <field>, --object-field <field>
Specify a field other than the primary key when specifying an object. It must be unique to the object specified.

-g <key>, --get <key>
Get value for specified key.

-l <key>, --list <key>
List values for specified key(s). This option can be specified multiple times.

-s <key> <value>, --set <key> <value>
Set value for specified key. The key must be unique or not exist already.

-a <key> <value>, --append <key> <value>
Append value for specified key.

-c <key>, --clear <key>
Clear value(s) for specified key.

-j, --json
Treat data as JSON when getting, setting, or appending values.

schema

76 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

schema

New in version 2.8.

Dumps a JSON representation for the Pootle database schema, currently only MySQL, for debugging and comparison
to a reference database schema.

Translation Memory

These commands allow you to setup and manage Translation Memory.

update_tmserver

update_tmserver

New in version 2.7.

Changed in version 2.7.3: Renamed --overwrite to --refresh. Disabled projects’ translations are no longer
added by default. It is also possible to import translations from files.

Updates the local server in POOTLE_TM_SERVER. The command reads translations from the current Pootle install
and builds the TM resources in the TM server.

If no options are provided, the command will only add new translations to the server.

--refresh

Use --refresh to also update existing translations that have been changed, besides adding any new translation.

--rebuild

To completely remove the TM and rebuild it adding all existing translations use --rebuild.

--tm

If no specific TM server is specified using --tm, then the default local TM will be used. If the specified TM server
doesn’t exist it will be automatically created for you.

--include-disabled-projects

By default translations from disabled projects are not added to the TM, but this can be changed by specifying
--include-disabled-projects.

--dry-run

To see how many units will be loaded into the server use --dry-run, no actual data will be loaded or deleted (the
TM will be left unchanged):

(env) $ pootle update_tmserver --dry-run
(env) $ pootle update_tmserver --refresh --dry-run
(env) $ pootle update_tmserver --rebuild --dry-run

This command also allows to read translations from files and build the TM resources in the external TM server. In
order to do so it is mandatory to provide the --tm and --display-name options, along with some files to import.

--display-name

The display name is a label used to group translations within a TM. A given TM can host translations for several
display names. The display name can be used to specify the name of the project from which the translations originate.
The display name will be shown on TM matches in the translation editor. To specify a name use --display-name:

1.4. Administering a server 77

Pootle Documentation, Release 2.8.2

(env) $ pootle update_tmserver --tm=libreoffice --display-name="LibreOffice 4.3 UI"
→˓TM_LibreOffice_4.3.gl.tmx

By default the command will only add new translations to the server. To rebuild the server from scratch use
--rebuild to completely remove the TM and rebuild it before importing the translations:

(env) $ pootle update_tmserver --rebuild --tm=mozilla --display-name="Foo 1.7" foo.po

Option --refresh doesn’t apply when adding translations from files on disk.

To see how many units will be loaded into the server use --dry-run, no actual data will be loaded:

(env) $ pootle update_tmserver --dry-run --tm=mozilla --display-name="Foo 1.7" foo.po
175045 translations to index

This command is capable of importing translations in multiple formats from several files and directories at once:

(env) $ pootle update_tmserver --tm=mozilla --display-name="Foo 1.7" bar.tmx foo.
→˓xliff fr/

--target-language

Use --target-language to specify the target language ISO code for the imported translations in case it is not
possible to guess it from the translation files or if the code is incorrect:

(env) $ pootle update_tmserver --target-language=af --tm=mozilla --display-name="Foo
→˓1.7" foo.po bar.tmx

Virtual Folders

These commands allow you to perform tasks with virtual folders from the command line.

add_vfolders

add_vfolders

New in version 2.7.

Creates virtual folders from a JSON file. If the specified virtual folders already exist then they are updated.

The vfolder format defines how to specify a virtual folder that fits your needs.

This command requires a mandatory filename argument.

(env) $ pootle add_vfolders virtual_folders.json

Import and Export

Export and Import translation files in Pootle. The operation can be thought of best as offline operations to assist
with offline translation, unlike sync_stores and update_stores the operations here are designed to cater for
translators working outside of Pootle.

The import and export commands are designed to mimic the operations of Download and Upload from the Pootle
UI.

export

78 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

export

New in version 2.7.

Download a file for offline translation.

Note: This mimics the editor’s download functionality and its primary purpose is to test the operation of downloads
from the command line.

A file or a .zip of files is provided as output. The file headers include a revision counter to assist Pootle to detetmine
how to handle subsequent uploads of the file.

Available options:

--tmx
New in version 2.8.0.

Export every translation project as one zipped TMX file into MEDIA_ROOT directory.

--rotate
New in version 2.8.0.

Remove old exported zipped TMX files (except previous one) from MEDIA_ROOT directory after current ex-
ported file is saved.

import

import

New in version 2.7.

Upload a file that was altered offline.

Note: This mimics the editor’s upload functionality and its primary purpose is to test the operation of uploads from
the command line.

A file or a .zip is submitted to Pootle and based on the revision counter of the Store on Pootle it will be uploaded or
rejected. If the revision counter is older than on Pootle, that is someone has translated while the file was offline, then
it will be rejected. Otherwise the translations in the file are accepted.

Available options:

--user
New in version 2.7.3.

Import file(s) as given user. The user with the provided username must exist.

Default: system.

Manually Installing Pootle

These commands expose the database installation and upgrade process from the command line.

init

1.4. Administering a server 79

https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-MEDIA_ROOT
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-MEDIA_ROOT

Pootle Documentation, Release 2.8.2

init

Create the initial configuration for Pootle.

Available options:

--config
The configuration file to write to.

Default: ~/.pootle/pootle.conf.

--db
New in version 2.7.1.

The database backend that you are using

Default: sqlite. Available options: sqlite, mysql, postgresql.

--db-name
New in version 2.7.1.

The database name or path to database file if you are using sqlite.

Default for sqlite: dbs/pootle.db. Default for mysql/postgresql: pootledb.

--db-user
New in version 2.7.1.

Name of the database user. Not used with sqlite.

Default: pootle.

--db-host
New in version 2.7.1.

Database host to connect to. Not used with sqlite.

Default: localhost.

--db-port
New in version 2.7.1.

Port to connect to database on. Defaults to database backend’s default port. Not used with sqlite.

--dev
New in version 2.8.

Creates a development configuration instead.

initdb

initdb

Initializes a new Pootle install.

This is an optional part of Pootle’s install process, it creates the default admin user, populates the language table with
several languages, initializes the terminology project, and creates the tutorial project among other tasks.

initdb can only be run after migrate.

initdb accepts the following option:

New in version 2.7.3.

--no-projects
Don’t create the default terminology and tutorial projects.

80 Chapter 1. All you need to know

https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-migrate

Pootle Documentation, Release 2.8.2

Note: initdb will import translations into the database, so can be slow to run. You should have an rqworker
running or run with the –no-rq.

collectstatic

Running the Django admin collectstatic command finds and extracts static content such as images, CSS and
JavaScript files used by the Pootle server, so that they can be served separately from a static webserver. Typically,
this is run with the --clear --noinput options, to flush any existing static data and use default answers for the
content finders.

assets

Pootle uses the Django app django-assets interface of webassets to minify and bundle CSS and JavaScript; this app
has a management command that is used to make these preparations using the command assets build. This
command is usually executed after the collectstatic one.

webpack

webpack

New in version 2.7.

The webpack tool is used under the hood to bundle JavaScript scripts, and this management command is a convenient
wrapper that sets everything up ready for production and makes sure to include any 3rd party customizations.

--dev

When the --dev flag is enabled, development builds will be created and the process will start a watchdog to track
any client-side scripts for changes. Use this only when developing Pootle.

Pootle FS

fs

fs

To interact with Pootle FS we use multiple subcommands:

• Admin:

– info - Display filesystem info

– state - Show current state

• Action:

– fetch - Add a file from the filesystem to Pootle

– add - Add a store from Pootle to the filesystem

– merge - Handle conflicts in stores and files

– rm - Remove a store and file from both Pootle and the filesystem

1.4. Administering a server 81

https://docs.djangoproject.com/en/1.10/ref/contrib/staticfiles/#django-admin-collectstatic
https://django-assets.readthedocs.io/en/latest/
http://webpack.github.io/

Pootle Documentation, Release 2.8.2

– resolve - Revert a staged action

– unstage - Revert a staged action

• Execute:

– sync - Execute staged actions

Note: The action staging commands require that you run :djadmin:sync in order to actually perform the staged
actions.

Common options

Pootle FS action and execution subcommands take the -p and -P options which allow you to specify a glob to limit
which files or stores are affected by the command.

-p --fs_path
Only affect files whose filesystem path matches a given glob.

(env) $ pootle fs add --fs_path MYPROJECT/af/directory/file.po MYPROJECT

Note: The path should be relative to the Pootle FS URL setting for the project.

-P --pootle_path
Only affect files whose Pootle path matches a given glob.

(env) $ pootle fs add --pootle_path /af/MYPROJECT/directory/file.po MYPROJECT

Note: Keep in mind that Pootle paths always start with /.

Pootle FS subcommands

add

fs add

New in version 2.8.0.

Stage for adding any new or changed stores from Pootle to the filesystem:

(env) $ pootle fs add MYPROJECT

This command is the functional opposite of the fetch command.

--force
Conflicting files on the filesystem will be staged to be overwritten by the Pootle store.

(env) $ pootle fs add --force MYPROJECT

fetch

82 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

fs fetch

New in version 2.8.0.

Stage for fetching any new or changed files from the filesystem to Pootle:

(env) $ pootle fs fetch MYPROJECT

This command is the functional opposite of the add command.

--force
Conflicting stores in Pootle to be overwritten with the filesystem file.

(env) $ pootle fs fetch --force MYPROJECT

info

fs info

New in version 2.8.0.

Retrieve the filesystem info for a project.

(env) $ pootle fs info MYPROJECT

resolve

fs resolve

New in version 2.8.0.

Stage for merging any stores/files that have either been updated both in Pootle and filesystem.

When merging, if there are conflicts in any specific translation unit the default behavior is to keep the filesystem
version and convert the Pootle version into a suggestion. Suggestions can then we reviewed by translators to ensure
any corrections are correctly incorporated.

When there are no conflicts in unit resolve will handle the merge without user input:

(env) $ pootle fs merge MYPROJECT

--pootle-wins
Alter the default conflict resolution of filesystem winning to instead use the Pootle version as the correct trans-
lation and converting the filesystem version into a suggestion.

(env) $ pootle fs resolve --pootle-wins MYPROJECT

--overwrite
Discard all translations. Use only those translations from the filesytem, by default, or from Pootle if used
together with --pootle-wins

(env) $ pootle fs resolve --overwrite MYPROJECT

rm

1.4. Administering a server 83

Pootle Documentation, Release 2.8.2

fs rm

New in version 2.8.0.

Remove any matched:

• Store that do not have a corresponding file in filesystem.

• File that do not have a corresponding store in Pootle.

(env) $ pootle fs rm MYPROJECT

--force
Stage for removal conflicting/untracked files and/or stores.

(env) $ pootle fs rm --force MYPROJECT

state

fs state

New in version 2.8.0.

List the status of stores in Pootle and files on the filesystem.

(env) $ pootle fs state MYPROJECT

-t --type
Restrict to specified Pootle FS status.

(env) $ pootle fs state -t pootle_staged MYPROJECT

sync

fs sync

New in version 2.8.0.

Commit any staged changes, effectively synchronizing the filesystem and Pootle. This command is run after other
Pootle FS commands have been used to stage changes.

(env) $ pootle fs sync MYPROJECT

unstage

fs unstage

New in version 2.8.0.

Unstage any staged Pootle FS actions. This allows you to remove any staged actions which you might have added
erroneously.

(env) $ pootle fs unstage MYPROJECT

84 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Managing users

find_duplicate_emails

find_duplicate_emails

New in version 2.7.1.

As of Pootle version 2.8, it will no longer be possible to have users with duplicate emails. This command will find any
user accounts that have duplicate emails. It also shows the last login time for each affected user and indicates if they
are superusers of the site.

(env) $ pootle find_duplicate_emails

merge_user

merge_user

New in version 2.7.1.

This can be used if you have a user with two accounts and need to merge one account into another. This will re-assign
all submissions, units and suggestions, but not any of the user’s profile data.

This command requires 2 mandatory arguments, src_username and target_username, both should be valid
usernames for users of your site. Submissions from the first are re-assigned to the second. The users’ profile data is
not merged.

--no-delete

By default src_username will be deleted after the contributions have been merged. You can prevent this by using
the --no-delete option.

(env) $ pootle merge_user src_username target_username

purge_user

purge_user

New in version 2.7.1.

This command can be used if you wish to permanently remove a user and revert the edits, comments and reviews that
the user has made. This is useful for removing a spam account or other malicious user.

This command requires a mandatory username argument, which should be a valid username for a user of your site.

Changed in version 2.7.3: purge_user can accept multiple user accounts to purge.

(env) $ pootle purge_user username [username ...]

update_user_email

1.4. Administering a server 85

Pootle Documentation, Release 2.8.2

update_user_email

New in version 2.7.1.

(env) $ pootle update_user_email username email

This command can be used if you wish to update a user’s email address. This might be useful if you have users with
duplicate email addresses.

This command requires a mandatory username, which should be a valid username for a user of your site, and a
mandatory valid email address.

(env) $ pootle update_user_email username email

verify_user

verify_user

New in version 2.7.1.

Verify a user without the user having to go through email verification process.

This is useful if you are migrating users that have already been verified, or if you want to create a superuser that can
log in immediately.

This command requires either mandatory username arguments, which should be valid username(s) for user(s) on
your site, or the --all flag if you wish to verify all users of your site.

Changed in version 2.7.3: verify_user can accept multiple user accounts to verify.

(env) $ pootle verify_user username [username ...]

Available options:

--all
Verify all users of the site

Running WSGI servers

There are multiple ways to run Pootle, and some of them rely on running WSGI servers that can be reverse proxied to
a proper HTTP web server such as nginx or lighttpd.

There are many more options such as uWSGI, Gunicorn, etc.

Deprecated commands

The following are commands that have been removed or deprecated:

refresh_stats

refresh_stats

Removed in version 2.8.

With the new stats infrastructure this is not needed anymore.

86 Chapter 1. All you need to know

https://uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html
http://gunicorn.org/

Pootle Documentation, Release 2.8.2

clear_stats

clear_stats

Removed in version 2.8.

With the new stats infrastructure this is not needed anymore.

last_change_id

last_change_id

Deprecated since version 2.7.

With the change to revisions the command you will want to use is revision, though you are unlikely to know a
specific revision number as you needed to in older versions of update_stores.

commit_to_vcs

commit_to_vcs

Deprecated since version 2.7.

Version Control support has been removed from Pootle and will reappear in a later release.

update_from_vcs

update_from_vcs

Deprecated since version 2.7.

Version Control support has been removed from Pootle and will reappear in a later release.

run_cherrypy

run_cherrypy

Deprecated since version 2.7.3.

Run the CherryPy server bundled with the Translate Toolkit.

start

start

Removed in version 2.7.3.

Use runserver instead.

Run Pootle using the default Django server.

1.4. Administering a server 87

https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-runserver

Pootle Documentation, Release 2.8.2

Running Commands in cron

If you want to schedule certain actions on your Pootle server, using management commands with cron might be a
solution.

The management commands can perform certain batch commands which you might want to have executed periodically
without user intervention.

For the full details on how to configure cron, read your platform documentation (for example man crontab). Here
is an example that runs the calculate_checks command daily at 02:00 AM:

00 02 * * * www-data source /var/www/sites/pootle/env/bin/activate; pootle calculate_
→˓checks

Test your command with the parameters you want from the command line. Insert it in the cron table, and ensure that
it is executed as the correct user (the same as your web server) like www-data, for example. The user executing the
command is specified in the sixth column. Cron might report errors through local mail, but it might also be useful to
look at the logs in /var/log/cron/, for example.

If you are running Pootle from a virtualenv, or if you set any custom PYTHONPATH or similar, you might need to
run your management command from a bash script that creates the correct environment for your command to run
from. Call this script then from cron. It shouldn’t be necessary to specify the settings file for Pootle — it should
automatically be detected.

RQ Job Queues

Pootle makes use of RQ to manage background jobs.

Some tasks are performed using background jobs and we expect more components to use it in future.

The RQ queue is managed by Redis and it is setup in the RQ_QUEUES and CACHES settings.

Running job workers

The queue is processed by Workers. Any number of workers may be started and will process jobs in the default queue.
The rqworker command is used to start a Worker.

Monitoring the queue

At the simplest level the Admin dashboard will tell you if the queue is active and how many workers are available to
service the queue. It also lists the number of pending jobs and the number of failed jobs. This gives you a quick way
to see if anything is wrong.

Working with failed jobs

If a job fails it needs to be investigated. In most cases a traceback will indicate why the job failed.

The simplest way to work with queues and jobs is to use rq-dashboard, though you likely don’t want to deploy that on
a production server. With this you can see the jobs in the queue, you can check the tracebacks and you can retry failed
jobs.

In the case of a production server you can make use of the following commands to manage jobs:

88 Chapter 1. All you need to know

https://docs.python.org/2.7/using/cmdline.html#envvar-PYTHONPATH
https://github.com/ui/django-rq#installation
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CACHES
https://github.com/ducu/rq-dashboard

Pootle Documentation, Release 2.8.2

$ redis-cli -n 2 lrange rq:queue:default 0 -1
03135097-00f8-46eb-b084-6f34a16d9940
a07309b3-f056-47e7-856c-c608bda2f171
3df6a559-2e3c-4c0c-b09c-1948b4bacda2

This will display all pending job IDs in the default queue. We’re using the Redis DB number 2, the default RQ queue
on a standard Pootle install.

$ redis-cli -n 2 lrange rq:queue:failed 0 -1
60ed13df-0ce5-4b98-96f0-f8e0294ba421
3240527f-58b9-40fe-b0c5-b8d3fcaa06b6

This will display the failed job IDs.

To investigate a failed job simply add rq:job: prefix to a job ID and use a command such as this:

$ redis-cli -n 2 hgetall rq:job:60ed13df-0ce5-4b98-96f0-f8e0294ba421

This will allow you to see any traceback and investigate and solve them.

To push failed jobs back into the queue we simply run the retry_failed_jobs management command.

Delete all failed jobs

Sometimes failed jobs no longer apply since they refer to removed items, so no matter how many times you run them
they will keep failing. Note that sometimes those unrecoverable failed jobs are in company of other failed jobs that
can be re-run by using the retry_failed_jobs management command:

(env) $ pootle retry_failed_jobs

In order to delete all the failed jobs you must first stop the workers.

Once the workers are stopped make sure that there are no failed jobs that you don’t want to remove. In case there
is any restart the workers to re-run them with retry_failed_jobs. Stop the workers again once those jobs are
completed. Check again that all the failed jobs are the ones you want to remove.

In order to perform a bulk delete of all failed jobs run the following commands:

$ redis-cli -n 2 LRANGE "rq:queue:failed" 0 -1 | perl -nE 'chomp; `redis-cli DEL
→˓rq:job:$_`;'

Now remove the list of failed jobs:

$ redis-cli -n 2 DEL "rq:queue:failed"

Do not forget to restart the workers.

Backup your Pootle system

In particular you should backup:

• All your translation files (your whole POOTLE_TRANSLATION_DIRECTORY). Use the sync_stores com-
mand to synchronize all your translation files to disk before making any backup.

• Your settings, to avoid losing any settings customizations.

1.4. Administering a server 89

Pootle Documentation, Release 2.8.2

• Your complete database using the appropriate dump command for your database system. For example
mysqldump for MySQL, or pg_dump for PostgreSQL.

• Any code, templates or styling customization that you have done to your installation.

1.5 Developers

If you are a developer and are willing to hack on Pootle or contribute in some other way, make sure to read through
this part.

1.5.1 Contributing

There are several ways you can contribute to improve Pootle, even if you don’t know programming! Want to know
how? Please keep reading.

• You can give us feedback about things that annoy you or about areas you see for improvement. You can reach
us in our mailing list or in the Pootle channel.

• Found a bug? Report it in our Issue tracker. You can also always contact us on Pootle channel. Make sure to
read more about how to report bugs.

• Translate the User Interface into your own language. Pootle is translated into nearly 50 languages. Is your
language missing? Have you found any errors in the translation? Learn how to contribute translating.

• Suggest documentation improvements by fixing mistakes and adding new sections.

• In case you have coding skills and are willing to contribute patches, fixes, or new features, read how you can
hack on Pootle.

Requesting features

Sometimes Pootle doesn’t quite meet your expectations or you have an idea for a great new feature.

It might help to understand how Pootle developers evaluate new features:

1. Is it generally useful? i.e. will it be useful for a large number of people?

2. Does it follow the ethos of Pootle? e.g. does it keep the interface clean, is it intuitive and non-technical?

3. How long would it take to implement?

(a) Does it require fundamental changes to how Pootle works? i.e. long, or

(b) Is this just a simple change of layout or a simple feature? i.e. short

4. Is this something a developer is passionate about? Does this meet their itch or are they convinced it is a winning
feature?

How can I make a winning feature request?

If you really do want your feature to succeed here are some options to help you when reporting or requesting the
feature.

1. Have you thought about this and provided a clear use case?

• Using a real use case would be good.

• Make it clear why you think this feature is important, don’t assume it is obvious.

90 Chapter 1. All you need to know

https://lists.sourceforge.net/lists/listinfo/translate-pootle
https://gitter.im/translate/pootle
https://github.com/translate/pootle/issues/
http://pootle.locamotion.org/projects/pootle/

Pootle Documentation, Release 2.8.2

2. Have you made some mockups of the UI?

• Isn’t it a bit unfair that you expect a volunteer coder to create the mockup for your feature?

3. Did you have some discussion on the mailing list or on the Pootle channel?

• Drive-by feature requests usually don’t get attention. But if you have built a case and some links to
developers, i.e. they know you, then they will listen. Proposing your idea in these forums could be helpful
for your case.

4. Can you code?

• If you can code the feature yourself that will always win some acceptance. But realise that someone does
need to review your code and your code still needs to meet the acceptance criterion. So discuss early.

• If you can’t code, commission someone to write it for you. Or spend a lot more time making sure that you
use the volunteers’ free time to your best advantage, i.e. you need to work hard to make the feature clear
and easy to implement.

Reporting bugs

In order to best solve the problem we need good bug reports. Reports that do not give a full picture or which coders
are unable to reproduce, end up wasting a lot of time. If you, the expert in your bug, spend a bit of time you can make
sure your bug gets fixed.

First see if the bug is not already reported. Perhaps someone already reported it and you can provide some extra
information in that bug report. You can also add yourself in the CC field so that you get notified of any changes to the
bug report.

If you could not find the bug, you should report it. Look through each of the following sections and make sure you
have given the information required.

Be verbose

Tell us exactly how came to see this bug. Don’t say:

Suggesting doesn't work

Rather say:

In a translation project with proper permissions when I try to suggest I
get a 404 error.

So we need to know:

1. What procedure you followed

2. What you got, and

3. What you expected to get

Steps to reproduce

Tell us exactly how to reproduce the error. Mention the steps if needed, or give an example. Without being able to
reproduce the error, it will not easily get fixed.

1.5. Developers 91

Pootle Documentation, Release 2.8.2

Include tracebacks

If you are a server administrator you can get this information from the web server’s error log. In case you’re hacking
on Pootle, the traceback will be displayed both in the console and the browser.

A traceback will give a much better clue as to what the error might be and send the coder on the right path. It may be
a very simple fix, may relate to your setup or might indicate a much more complex problem. Tracebacks help coders
get you information quicker.

Be available

If you can be on Pootle channel or the mailing list to answer questions and test possible fixes then this will help to get
your problem fixed quickly.

Translating

Pootle’s User Interface translations are kept in the official Pootle server. If you have a user in that server, you can start
translating right away. Otherwise, just create a new user and start translating.

If your language already has a translation and you want to further improve or complete it, you can contribute sugges-
tions that will later be reviewed by the language administrators.

If you can’t find your language and want to have that added or have concerns of any other means, contact us on the
Pootle channel.

Although desirable, it’s not mandatory to use the official Pootle server to translate Pootle itself. In case you feel more
comfortable working with files and offline tools, just head to the code repository at GitHub, create your localization
based on the latest template and submit it to us by opening a bug or by sending us a pull request.

There are some addtional localization requirements beyond translation, so please review those to ensure that your
language is 100% translated.

Documentation

You can help us documenting Pootle by just mentioning typos, providing reworded alternatives or by writing full
sections.

Pootle’s documentation is written using reStructuredText and Sphinx.

If you intend to build the documentation yourself (it’s converted from reST to HTML using Sphinx), you may want to
setup a development environment for that.

1.5.2 Pootle Development Roadmap

We track the development roadmap using Github Milestones. These match the version numbers of future releases.

Project specific milestones are tracked using mstone-$name milestones.

Note: Development partners may use their own systems to track their roadmaps.

92 Chapter 1. All you need to know

https://gitter.im/translate/pootle
https://lists.sourceforge.net/lists/listinfo/translate-pootle
http://pootle.locamotion.org/
https://gitter.im/translate/pootle
https://github.com/translate/pootle/
https://github.com/translate/pootle/issues/new
https://github.com/translate/pootle/wiki/Localizing-Pootle---extras
http://docs.translatehouse.org/projects/pootle/en/latest/
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://github.com/translate/pootle/milestones

Pootle Documentation, Release 2.8.2

1.5.3 Hacking

Want to fix a bug in Pootle? Want to change the behaviour of an existing feature or add new ones? This section is all
about hacking on Pootle, so if you are interested on the topic, keep reading.

Before doing anything

Before starting any actual work on the source code, make sure that:

• There is nobody working on the bug you are trying to fix. See the existing bug reports and the existing pull
requests. In the situation where somebody else is working on a fix, you can always offer your help.

• If you plan to develop a new feature and want to include it upstream, please first discuss it with the developers
on the Pootle development channel or in the translate-pootle mailing list so that it doesn’t interfere in current
development plans. Also note that adding new features is relatively easy, but keeping them updated is harder.

Environment setup

Although Pootle should only be deployed to production on a Linux server, it is possible to get a viable development
environment up and running on Windows with some slightly different steps.

• Environment setup on Linux

• Environment setup on Windows

Workflow

Any time you want to fix a bug or work on a new feature, create a new local branch:

$ git checkout -b <my_new_branch>

Then safely work there, create the needed commits and once the work is ready for being incorporated upstream, either:

• Push the changes to your own GitHub fork and send us a pull request, or

• Create a patch against the HEAD of the master branch using git diff or git format-patch and attach
it to the affected issue.

Commits

When creating commits take into account the following:

What to commit As far as possible, try to commit individual changes in individual commits. Where different changes
depend on each other, but are related to different parts of a problem / solution, try to commit them in quick
succession.

If a change in the code requires some change in the documentation then all those changes must be in the same
commit.

If code and documentation changes are unrelated then it is recommended to put them in separate commits,
despite that sometimes it is acceptable to mix those changes in the same commit, for example cleanups changes
both in code and documentation.

Commit messages Begin the commit message with a single short (less than 50 character) line summarizing the
change, followed by a blank line and then a more thorough (and sometimes optional) description.

1.5. Developers 93

https://github.com/translate/pootle/issues
https://github.com/translate/pootle/pulls
https://github.com/translate/pootle/pulls
https://gitter.im/translate/dev
https://lists.sourceforge.net/lists/listinfo/translate-pootle

Pootle Documentation, Release 2.8.2

Cleanups

Another example:

Factor out common behavior for whatever

These reduces lines of code to maintain, and eases a lot the maintenance
work.

Also was partially reworked to ease extending it in the future.

If your change fixes a bug in the tracker, mention the bug number. This way the bug is automatically closed after
merging the commit.

Docs: Update code for this thing

Now the docs are exact and represent the actual behavior introduced in
commits ef4517ab and abc361fd.

Fixes #2399

If you are reverting a previous commit, mention the sha1 revision that is being reverted.

Revert "Fabric: Cleanup to use the new setup command"

This reverts commit 5c54bd4.

1.5.4 Linux Development Environment Setup

The minimum software packages you need for setting up a development environment include git and a Python in-
terpreter along with the pip installer. Consult the specifics for your operating system in order to get each package
installed successfully.

Once you have the basic requirements in place, you will need to install Pootle’s dependencies, which come in shape
of Python packages. Instead of installing them system-wide, we recommend using virtualenv (and virtualenvwrapper
for easing the management of multiple virtualenvs). This way you can install all the dependencies at specific versions
without interfering with system-wide packages. You can test on different Python/Django versions in parallel as well.

Detailed setup

For installing the dependencies in an isolated environment, we will use virtualenv – more specifically virtualenvwrap-
per, which eases the process of managing and switching between multiple virtual environments. Install virtualenwrap-
per as follows for bash (examine platform specific installation instructions for other environments):

$ sudo pip install virtualenvwrapper

virtualenvwrapper will need to be configured in order to specify where to store the created environments:

$ export WORKON_HOME=~/envs
$ mkdir -p $WORKON_HOME
$ source /usr/local/bin/virtualenvwrapper.sh # Or /usr/bin/virtualenvwrapper.sh

94 Chapter 1. All you need to know

https://git-scm.com/
https://www.python.org
https://www.python.org
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/install.html

Pootle Documentation, Release 2.8.2

Note: You may want to add the above-mentioned commands and environment variables to your .bashrc file (or
whatever file your shell uses for initializing user customizations).

Now that the commands provided by virtualenv and virtualenvwrapper are available, we can create our virtual envi-
ronment.

$ mkvirtualenv pootle_env

Replace pootle_envwith a meaningful name that describes the environment you are creating. mkvirtualenv accepts
any options that virtualenv accepts. We could for example specify to use the Python 3.3 interpreter by passing
the -p python3.3 option.

Note: After running mkvirtualenv, the newly created environment is activated. To deactivate it just run:

(pootle_env) $ deactivate

To activate a virtual environment again use workon as follows:

$ workon pootle_env

First, upgrade the version of pip and setuptools as follows:

(pootle_env) $ pip install --upgrade pip setuptools

Time to clone Pootle’s source code repository. The main repository lives under translate/pootle in GitHub.

Note: If you have a GitHub account, fork the main translate/pootle repository and replace the repository
URL with your own fork.

(pootle_env) $ git clone https://github.com/translate/pootle.git

Install Pootle and its development dependencies into your virtualenv. This makes it easy to run Pootle locally and is
needed for various development actitivies. The [dev] target will install some extra packages to aid development (you
can examine these in requirements/dev.txt).

(pootle_env) $ pip install -e .[dev]

Note: Some requirements may depend on external packages. For these you may need to install extra packages on
your system in order to complete their installation.

With all the dependencies installed within the virtual environment, Pootle is almost ready to run. In development
environments you will want to use settings that differ from those used in production environments.

(pootle_env) $ pootle init --dev

Note: To learn more about how settings work in Pootle read the settings documentation.

Once the configuration is in place, you’ll need to setup the database schema and add initial data.

1.5. Developers 95

https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html#command-mkvirtualenv
https://virtualenv.pypa.io/en/latest/reference/#cmdoption--python
https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html#command-mkvirtualenv
https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html#command-workon
https://github.com/translate/pootle/

Pootle Documentation, Release 2.8.2

(pootle_env) $ pootle migrate
(pootle_env) $ pootle initdb

Now ensure that you have built the assets by following the instructions for frontend development.

Finally, run the development server.

(pootle_env) $ pootle runserver

Once all is done, you can start the development server anytime by enabling the virtual environment (using the workon
command) and running the pootle runserver command.

Happy hacking!!

1.5.5 Windows Development Environment Setup

Note: Ensure that you are executing all of the following steps with Administrator privileges!

Install prerequisites

Download the latest Redis installer from: https://github.com/MSOpenTech/redis/releases

During the installation you will be asked to set what port Redis should listen on; leave it at the default (6379).

Download the latest Nodejs installer from: https://nodejs.org/en/

Detailed setup

Note: For convenience these instructions consistently specify paths C:\pootle_venv, C:\git\pootle and
C:\temp, but you can change these to suit your environment and needs.

Note: Depending on how correctly your environment is set up (depending on factors beyond your control such as
virus scanners, Windows system health, and so on), you may need to use the command python -m pip for the
following steps if the basic pip commands fail. Similarly, any other Python command that should ‘just work’ might
need to be invoked with python -m to avoid issues.

For installing the dependencies in an isolated environment, set up a fresh virtualenv.

> pip install virtualenv
> virtualenv C:\pootle_venv

Activate the new virtualenv and upgrade pip:

> C:\pootle_venv\Scripts\activate
(pootle_venv)> pip install --upgrade pip setuptools

Clone your fork of the Pootle master using your favourite Windows implementation of Git so that you have a working
copy somewhere accessible on your computer (e.g. C:\git\pootle).

Then go to the Pootle requirements\base.txt and comment out the following packages:

96 Chapter 1. All you need to know

https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html#command-workon
https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-runserver
https://github.com/MSOpenTech/redis/releases
https://nodejs.org/en/

Pootle Documentation, Release 2.8.2

lxml
python-levenshtein
scandir

These three packages are difficult to build on Windows, so we will download pre-built versions to install manually,
saving them into your temporary folder:

• http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml

• http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-levenshtein

• http://www.lfd.uci.edu/~gohlke/pythonlibs/#scandir

Now install them explicitly:

(pootle_venv)> pip install C:\temp\lxml-3.6.4-cp27-cp27m-win32.whl
(pootle_venv)> pip install C:\temp\python_Levenshtein-0.12.0-cp27-none-win32.whl
(pootle_venv)> pip install C:\temp\scandir-1.2-cp27-none-win32.whl

At this point, you may be able to install Pootle and its requirements using the following command. However, pip
installation of requirements may fail with “directory was not empty” or “file not found” issues, in which case you need
to use the commands in the next note block.

(pootle_venv)> cd C:\git\pootle
(pootle_venv)> pip install -e .[dev]

Note: “Directory was not empty” and “file not found” issues come from modern versions of Windows’ tighter control
over permissions for special folders. By default, pip stores temporary files in your user\AppData folder which
may not allow access in all circumstances. By downloading the packages to a folder with no special permissions and
building and installing them from there we can circumvent these problems:

(pootle_venv)> pip download -d C:\temp -r requirements\dev.txt -b C:\temp
(pootle_venv)> pip install -r requirements\dev.txt -b C:\temp -t C:\pootle_
→˓venv\Lib\site-packages\ --no-index --find-links="C:\temp"
(pootle_venv)> cd C:\git\pootle
(pootle_venv)> pip install -e .

Now that all the requirements are lined up, we are ready to initialise Pootle. You should be able to initialise the Pootle
demo database the same way as on a Linux system.

Note: Depending on how successfully your system has engaged the virtual environment, you may have to exe-
cute pootle commands with python pootle/runner.py from the pootle root folder instead (e.g. python
pootle/runner.py migrate instead of pootle migrate).

(pootle_venv)> pootle init --dev
(pootle_venv)> pootle migrate
(pootle_venv)> pootle initdb

Next, you will need to set up the client-side bundles with NPM. It might be necessary to deactivate the virtual en-
vironment or use a separate command window to perform this step, but it might also ‘just work’ from within the
venv.

C:\git\pootle> cd pootle\static\js
C:\git\pootle\pootle\static\js> npm install

1.5. Developers 97

http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-levenshtein
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scandir

Pootle Documentation, Release 2.8.2

Once NPM install has completed, the actual javascript bundles can be compiled:

(pootle_venv)> cd C:\git\pootle
(pootle_venv)> pootle webpack --dev

The webpack command will keep running after it’s completed, to monitor your javascript files for changes so that it
can auto-recompile as you work. You’ll need to either exit it with Ctrl+C once it has settled down, or else open up a
new command prompt and activate your virtual environment there too.

One last javascript pack needs to be compiled to complete the client-side preparations:

(pootle_venv)> pootle compilejsi18n

Now create and verify a super-user as normal:

(pootle_venv)> pootle createsuperuser
[Follow on-screen prompts.]
(pootle_venv)> pootle verify_user [username]

Pootle is now ready to be fired up!

You will need to run one RQWorker and one Pootle server, so you’ll need two command prompt windows (as both
will remain active until you disable the server):

(pootle_venv)> pootle rqworker

(pootle_venv)> pootle runserver

Congratulations, Pootle should now be running comfortably! Happy hacking on Windows!!

1.5.6 Front-end Development

Parts of Pootle front-end development require a Node.js run-time and packages installed via npm. This is only the case
for developing or building Pootle.

Setting Things Up

In order to setup the front-end development enviroment, it’s necessary to have Node.js installed. Please check the
installation instructions for your OS.

Warning: If you are using versions provided by you system then you need at least npm >= v1.4.3 for installation
to work correctly. To upgrade, use [sudo] npm install npm@latest -g.

Once Node.js is available, Pootle dependencies need to be installed.

$ cd pootle/static/js
$ npm install

This will read the package.json file and install the development dependencies.

Building Scripts

Simply run:

98 Chapter 1. All you need to know

https://www.npmjs.com/
https://nodejs.org/download/

Pootle Documentation, Release 2.8.2

(env) $ pootle webpack --dev

This will make sure to build all the necessary scripts and create the relevant bundles with source maps support. It will
also watch for changes in scripts so you don’t need to constantly be running this.

For creating a production-ready build, use:

(env) $ pootle webpack

This will also run the output through UglifyJS, making the output build considerably lighter in size.

Note that this step is also done as part of the make assets command, so you may only want to run the latter.

1.5.7 Customizing Pootle

In some cases it might be desirable to customize the styling of Pootle to fit in with your other websites or other aspects
of your identity. It might also be required to add a common header or footer for proper visual integration and even
adjust and enhance existing functionality.

It’s highly recommended to put any custom changes separate from the distributed files, so that upgrades are unlikely
to affect your customizations.

Customizing templates

In case you need to change a template, copy it into your custom TEMPLATE:DIRS directory with the same path name
as it had before.

Warning: If you edit any templates, keep in mind that changes to the text could result in untranslated text for
users of the non-English user interface.

You can customize specific blocks of templates by indicating which template the current template is customizing. Use
the {% overextends %} template tag for that (requires to install the django-overextends package). This must be
the first tag in the template.

{% overextends 'browser/overview.html' %}

{% block pre_content %}
{{ block.super }}
<h1>My custom content</h1>
{% endblock %}

Check the original templates in order to know which blocks can be customized.

On upgrades, you will want to check if the templates and the contained blocks differ.

Customizing JavaScript

You can place any custom scripts in your custom STATICFILES_DIRS directory and make them part of
the default Pootle bundles by adding a very simple manifest.json file under the js/ directory of your custom
STATICFILES_DIRS.

This file must contain an object of key-values where the keys correspond to the entry points defined by Pootle and the
values are arrays of module names to include in the output bundle. Check out the pootle/static/js/webpack.config.js
file to see the existing entry points.

1.5. Developers 99

https://github.com/mishoo/UglifyJS2
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-TEMPLATES-DIRS
https://pypi.python.org/pypi/django-overextends
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-STATICFILES_DIRS
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-STATICFILES_DIRS

Pootle Documentation, Release 2.8.2

Example:

{
"common": ["login.js", "extra_module.js"]

}

In the example above, the login.js and the extra_module.js JavaScript modules will be added as part of the common
bundle. If common didn’t exist as an entry point before, a new bundle will be output.

Note that the manifest.json file has to be valid JSON, otherwise it will be omitted.

Custom scripts can require() Pootle modules that are part of the core bundles by prefixing paths with pootle/.
For instance the require('pootle/models') call will make Pootle’s own models module available in the
scope of a 3rd party script.

Needless to say, you can refer to your custom scripts the same way as you would refer to any other static asset, i.e. by
using the {% static %} template tag.

Customizing CSS

Create any needed files under your custom STATICFILES_DIRS and reference them from your custom templates
using the {% static %} template tag. You can also inline styles in your templates as usual.

Customizing images

You should put your custom images in your custom STATICFILES_DIRS. From CSS you would just reference them
using a relative path.

On the contrary, if you want to reference images from HTML code or inline CSS, you should use the {% static
%} template tag.

Customising robots.txt

The site robots.txt file uses a static template. There is no dynamic content. Place your custom robots.txt file in your
custom templates folder and this will be served instead of Pootle’s default robots.txt file.

Larger installs will want to serve this file statically, bypassing Django completely. You can safely serve the robots.txt
template file as is, statically, via your configured webserver.

Installing JS build libraries

Before you can rebuild your static assets with any CSS or JavaScript customisations, you will need to install some
Node.js libraries.

Before proceeding please make sure you have Node.js and npm installed in your system.

(env) $ cd $pootle_dir
(env) $ cd pootle/static/js/
(env) $ npm install

$pootle_dir is the directory where Pootle is installed.

100 Chapter 1. All you need to know

https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-STATICFILES_DIRS
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-STATICFILES_DIRS

Pootle Documentation, Release 2.8.2

Rebuilding assets after customization

Before rebuilding your assets for the first time you must install the JavaScript build libraries.

After doing any customizations, you will need to regenerate any modified bundles and gather all the static assets in a
single place for public consumption.

You will need to activate your virtual environment before running these commands.

(env) $ pootle webpack
(env) $ pootle collectstatic --noinput --clear -i node_modules
(env) $ pootle assets build

1.5.8 Supported Browsers

Pootle targets the latest stable versions of major modern web browsers.

Pootle should not only work correctly, but it should also look great in Firefox, Chrome and Safari.

Internet Explorer is an exception, where we support the latest two stable versions (as of today, IE11+). Here Pootle
should work well, but might look imperfect.

Older browser versions might work properly too, but we are not committed to ensure such support.

A nice to have goal is making Pootle usable in smaller screens such as iPads. But this is not a hard requirement.

If you are about to use a feature which might not be available in the set of supported browsers, check the Can I Use. . .
website first.

1.5.9 Testing

Warning: Work in progress. For now only Python testing is being added. Future coverage will include JavaScript
code too.

Pootle tests use the full-featured pytest testing tool and its integration with Django via pytest-django.

To test simply run:

.. code-block:: console

(env) $ py.test

from the root of the repository. Note that you need to install the testing requirements into your virtualenv first (re-
quirements/tests.txt).

Note: Since the test runner automatically sets the DEBUG setting to False, the static assets need to be collected
before running the view tests. You can run make assets for building them.

The py.test runner command offers several options which are extended by plugins as well. Check its documentation
for further details.

1.5. Developers 101

http://caniuse.com/
http://docs.pytest.org/en/latest/
https://pytest-django.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-DEBUG
http://docs.pytest.org/en/latest/

Pootle Documentation, Release 2.8.2

Settings for Tests

Some testing-specific settings are loaded from the tests/settings.py file and override any previous setting you might
have set in the settings/*.conf files.

Writing Tests

Writing new tests is easy. Just write a function whose name starts with test_ and place it in an appropriate module
under the tests/ subdirectory.

You’ll need to use plain Python assertions in test functions. Check pytest’s documentation for more information on
assertions.

In order to use a fixture, you simply need to reference its name as a function argument. Pytest does the rest of the
magic. There are other ways to reference and use fixtures as well, but most of the time you’ll find yourself passing
them as function arguments.

What to Test

You’ll usually want to test model behavior. These tests should test one function or method in isolation. If you end
up needing to test for multiple things, then you might need to split the function/method into more specific units. This
allows to structure the code better.

When testing models, it’s a suggested practice to avoid DB access because it makes the tests run slower, so think
twice if your test actually needs DB access. At the same time, pytest-django encourages you to follow these best
practices and disables DB access by default. If your test needs DB access, you need to explicitly request it by using
the @‘pytest.mark.django_db marker.

While testing views/integration tests can also help catch regressions, they’re slower to run and end up in less useful
failures, so better to write fewer of these.

Fixtures

Pootle tests include some pytest fixtures you can reuse. They’re located in tests/fixtures/ and are loaded when the test
runner is being set up.

If you have a fixture which is very specific you can place it in a usual conftest.py file in its proper context,
whereas the aforementioned directory is meant to be for storing shared or general-purpose fixtures.

Model Fixtures

Model fixtures are stored under tests/fixtures/models/, and they are basically factory functions returning an instance of
the desired model. Note that these might depend on other fixtures too.

For now these model fixtures require DB access, but since that’s not what every single test might need, we might want
to combine this with other more complete solutions like factory_boy in the future.

1.5.10 Release Process

This document describes the release process Pootle follows starting from version 2.5.

102 Chapter 1. All you need to know

http://docs.pytest.org/en/latest/assert.html
http://docs.pytest.org/en/latest/assert.html
http://docs.pytest.org/en/latest/fixture.html
https://pytest-django.readthedocs.io/en/latest/helpers.html#pytest-mark-django-db-request-database-access
https://factoryboy.readthedocs.io/en/latest/

Pootle Documentation, Release 2.8.2

Principles

• Align Pootle releases with Django releases, keeping compatibility with the latest version of the framework and
avoiding the use, and maintenance headache, of deprecated code.

• Time-based feature releases every six months, this ensures that users, who don’t want to run from master, and
packagers have regular features updates.

• Master is always stable, this ensures that anyone can run a production server from master. It also reduces our
effort of maintaining multiple branches in development. Lastly, it helps create a discipline of landing stable
features.

Rules

The principles above extended into these rules.

1. Feature releases are made every six months.

2. Feature releases (as distinct from a bug fix release) are only against the latest Django version that Pootle supports
i.e. we won’t backport features.

3. Security fixes are made to the last two time-based releases.

4. Older time-based releases are no longer supported.

5. Pootle should run on Django N and N-1.

6. master is always releasable.

7. All schema related and major changes are made in feature branches.

8. One month before a time-based release, when master is in a stabilising period, schema and feature changes
should not landed on master.

Version Numbering

A Pootle version number consists of Major-Minor-Point-Bugfix as in 2.5.0 or 2.6.1.2

Pootle’s minor number is changed to indicate the latest version of Django that is supported. Thus when the latest
version of Django is released, and Pootle gains support for this version, then the Pootle minor number will change.

Note: Pootle 2.5.0 is an exception to this rule. It did not support Django 1.5 at the time of release.

Every six months, when a new release train is ready to be shipped, Pootle’s point version will be incremented.

Any critical security fixes will automatically result in a new bugfix release.

Examples

Understanding the number and release train with some examples:

Django 1.5 is the latest version of Django:

• Pootle is named 2.5 and should support Django 1.5.

• Pootle 2.5.0 is released as the first time-based release.

• Next time-based release would be 2.5.1.

1.5. Developers 103

Pootle Documentation, Release 2.8.2

A security issue is detected in Pootle 2.5.0

• The first security release 2.5.0.1 is made

• Next time-based release is still 2.5.1

Django 1.6 is released:

• Current Pootle release is 2.5.4, next Pootle release will be 2.6.0

• When 2.6.0 is out we will support Pootle 2.6.0 and 2.5.4, all previous versions will be unsupported.

A security issue is discovered which impacts all our supported time-based releases:

• We release 2.6.0.1 and 2.5.4.1

Time-based release 2.6.1 is released six months after 2.6.0

• We now support 2.6.1 and 2.6.0

• Support is dropped for 2.5.4 which is now a year old.

The Release Train: Point Releases Every Six Months

Within the priciple that master is always deployable we aim to ensure a period of stability to allow easier release in
the month prior to a time-based release.

First-Fifth month All major work and features are allowed, strings may be broken.

Sixth month Feature work that doesn’t change the DB schema, bug fixes, refinements and translations. Strings are
frozen.

If for some reason there’s feature work that changes the schema during month six of the release train, the feature will
go in its own branch and won’t be merged until the next release train starts.

Security fixes are applied anytime in the release train.

Branching Strategy

The next Pootle version is always baked in the master branch. Exceptions are security fixes which are committed in
master and cherry-picked to the currently supported time-based release branches.

A new time-based release is made off of master, incrementing the point version. Every time a new release happens, a
new branch is created. These branches are named after their version numbers: if master is to become version 2.6.2,
then the new branch will be named stable/2.6.2. The actual release is also tagged, in this case as 2.6.2.

Security fixes are made on the relevant release branches. So the first security release on stable/2.6.2 would be tagged
as 2.6.2.1.

Features that produce schema changes or are quite invasive go into feature branches named feature/<feature-name>.
Once the feature is ready to be integrated within the first phase of the release train, they’re merged into master.

1.5.11 Glossary

Translation Store A file that stores translations (e.g. a PO file) — although it could also be used to refer to other
ways of storing translations.

Contains a number of Translation Units, which contain messages.

104 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

Translation Unit At the simplest level contains a single source string (the original message) and a single target string
(the translated message).

XLIFF refers to this as a unit, Gettext calls it a message or string. Some industry tools talk of segments. To
maintain consistency we refer to string in the GUI and unit in the code.

Monolingual formats (like .properties, OpenOffice SDF, DTD, HTML, etc.) only contain a source strings.

However when handling plurals the source may actually contain different variants of a message for different
plural forms (e.g. in English, the singular and plural), and the target as well (the number of variants in source
and target strings are often different because different languages handle plurals differently).

Language They refer to the languages translated into.

Project They refer to the different programs/sets of messages we translate.

Translation Project A set of translation stores translating a project into a language.

Template A translation file that contains only the source or original texts.

Translation States

Untranslated A unit that is not translated i.e. blank.

Incomplete See: Needs Attention i.e. Untranslated + Fuzzy

Translated The unit has a translation.

Fuzzy In Gettext PO fuzzy means that a unit will needs to be reviewed and will not be used in production. On Pootle
for the user we call this ‘Needs Work’ as the term fuzzy is either technical for some users, or confusing to those
who use the term fuzzy for Translation Memory, as in ‘fuzzy match’.

Needs work See: Fuzzy

Needs review Currently see: Fuzzy In the future this will actually mean that the translated string still requires review.

Needs attention Untranslated + Fuzzy

Pootle internals

Context object (ctx_obj) An object representing the context that encloses the current view.

If we are navigating through the files for an existing translation project, the context object will refer to the
current translation project.

Similarly, if we are in the overview page for a language, the context will point to the current language object. In
the overview page for a project, the context object points to the current project.

At a higher level, the root directory is considered the context object.

Resource object (resource_obj) An object representing the resource that the current view is referring to.

For example, if we are navigating through the files and directories for an existing translation project, the resource
object will refer to the current file or directory object.

If the current view refers to multiple resources, the resource object is the same as the context object.

1.5.12 Styleguide

Pootle developers try to stick to some development standards that are gathered in this document.

1.5. Developers 105

Pootle Documentation, Release 2.8.2

Python and documentation

For Python code and documentation Pootle follows the Translate Styleguide adding extra clarifications listed below.

• Python style conventions

• Documentation style conventions

Pootle-specific Python guidelines

Pootle has specific conventions for Python coding style.

Imports

Like in Python import conventions in Translate styleguide, but imports should be grouped in the following order:

1. __future__ library imports

2. Python standard library imports

3. Third party libraries imports (Including Translate Toolkit ones)

4. Django imports

5. Django external apps imports

6. Other Pootle apps imports

7. Current package (or app) imports, using explicit relative imports (See PEP 328)

Check Python import conventions in Translate styleguide for other conventions that the imports must follow.

import re
import sys.path as sys_path
import time
from datetime import timedelta
from os import path

from lxml.html import fromstring
from translate.storage import versioncontrol

from django.contrib.sites.models import Site
from django.db import models
from django.db.models import Q
from django.db.models.signals import post_save

from tastypie.models import ApiKey

from pootle_language.models import Language
from pootle_translationproject.models import TranslationProject

from .forms import GoalForm
from .models import Tag

Order in models

Model’s inner classes and methods should keep the following order:

106 Chapter 1. All you need to know

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide-general
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide-docs
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide-imports
https://www.python.org/dev/peps/pep-0328/#guido-s-decision
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/developers/styleguide.html#styleguide-imports

Pootle Documentation, Release 2.8.2

• Database fields

• Non database fields

• Default objects manager

• Custom manager attributes (i.e. other managers)

• class Meta

• def natural_key() (Because it is tightly related to model fields)

• Properties

• Any method decorated with @classmethod

• def __unicode__()

• def __str__()

• Any other method starting with __ (for example __init__())

• def save()

• def delete()

• def get_absolute_url()

• def get_translate_url()

• Any custom methods

Fields in models and forms

• If the field declaration fits in one line:

– Put all the options on that line,

– Don’t put a comma after the last option,

– The parenthesis that closes the field declaration goes just after the last option.

• If the field declaration spans to several lines:

– Each option goes on its own line (including the first one),

– The options are indented 4 spaces,

– The last option must have a comma after it,

– The closing parenthesis in the field declaration goes on its own line, aligned with the first line in the field
declaration.

class SampleForm(forms.Form):
Field declaration that spans to several lines.
language = forms.ChoiceField(

label=_('Interface Language'),
initial="",
required=False,
widget=forms.Select(attrs={

'class': 'js-select2 select2-language',
}),
help_text=_('Default language for using on the user interface.'),

)
One line field declaration.
project = forms.ModelChoiceField(Project, required=True)

1.5. Developers 107

Pootle Documentation, Release 2.8.2

URL patterns

When writing the URL patterns:

• URL patterns can be grouped by putting a blank line between the groups.

• On each URL pattern:

– Specify the URL pattern using the url() function, not a tuple.

– Each parameter must go on its own line in all cases, indenting them one level to allow easily seeing the
different URL patterns.

– In URLs:

* Use hyphens, never underscores.

* To split long URLs use implicit string continuation. Note that URLs are raw strings.

• URL pattern names must be named like pootle-{app}-{view} (except in some specific cases):

– {app} is the app name, which sometimes can be shortened, e.g. using tp to avoid the longish transla-
tionproject. The chosen app name must be used consistently across all the URL patterns for the app.

– {view} is a unique string which might consist on several words, separated with hyphens, that might not
match the name of the view that is handled by the URL pattern.

– The exceptions to this naming convention are:

* URL patterns for AJAX views must be named like pootle-xhr-{view}.

* URL patterns in pootle_app app must be named like:

· pootle_app admin URLs must be named like pootle-admin-{view}

· Other pootle_app URLs must be named like pootle-{view}.

urlpatterns = patterns('pootle_project.views',
Listing of all projects.
url(r'^$',

'projects_index'),

Whatever URLs.
url(r'^incredibly-stupid/randomly-long-url-with-hyphens-that-is-split-'

r'and-continued-on-next-line.html$',
'whatever',
name='pootle-project-whatever'),

Admin URLs.
url(r'^(?P<project_code>[^/]*)/admin.html$',

'project_admin'),
url(r'^(?P<project_code>[^/]*)/permissions.html$',

'project_admin_permissions',
name='pootle-project-admin-permissions'),

)

Variables naming

In order to have a more consistent code the use of specific names for some heavily used variables is encouraged:

108 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

• ctx: Name for the dictionary with the context passed to a template for rendering. Also known as context,
template variables or template vars.

Good.
ctx = {

'language': language,
}

Bad.
context = {
...

templatevars = {
...

template_vars = {
...

Settings naming

Pootle specific settings must be named like POOTLE_*, for example: POOTLE_ENABLE_API,
POOTLE_VCS_DIRECTORY or POOTLE_MARKUP_FILTER

Pootle-specific documentation guidelines

For documenting several things, Pootle defines custom Sphinx roles.

• Settings:

.. setting:: POOTLE_TITLE

To link to a setting, use :setting:`POOTLE_TITLE`.

• Icons:

Some reference to |icon:some-icon| in the text.

This allows you to easily add inline images of icons used in Pootle. The icons are all files from pootle/
static/images/sprite. If you were referring to an icon icon-edit.png then you would use the
syntax |icon:icon-edit|. The icon reference is always prefixed by icon: and the name of the icon is
used without the extension.

E.g. |icon:icon-google-translate| will insert this icon.

• Pootle and Django commands:

.. django-admin:: sync_stores

To link to a command, use :djadmin:`sync_stores

JavaScript

Follow the great Airbnb JavaScript Style Guide. Go check it out for all the details.

1.5. Developers 109

https://github.com/airbnb/javascript/blob/master/README.md

Pootle Documentation, Release 2.8.2

As a summary, that includes:

• 2-space indent.

• Single quotes.

• pascalCase variable naming.

In addition to that:

• Try to be in the 80 (+4) soft character limit, but be wise to know when to make exceptions.

• Use ES2015.

• Avoid jQuery.

When dealing with existing or legacy code, also keep in mind to:

• Prefix with $ Variables holding jQuery objects.

• Use js- to prefix selectors for elements queried via JavaScript.

React + JSX

For React + JSX code also follow the Airbnb React/JSX Style Guide, with the following exceptions:

• Naming extensions: Use .js extension for React components (not .jsx).

• Use React.createClass({}) over extending React.Component.

Also bear in mind the following:

• Event handler naming: handle*() for methods, on*() for props.

• propTypes: sort them alphabetically, but also group them to place isRequired types first.

HTML

Indenting

• Indent using 2 spaces. Don’t use tabs.

• Although it’s desirable to avoid lines longer than 80 characters, most of the time the templating library
doesn’t easily allow this. So try not to extend too much the line length.

Template naming

• If a template name consists on several words they must be joined using underscores (never hyphens), e.g.
my_precious_template.html

• If a template is being used in AJAX views, even if it is also used for including it on other templates, the
first word on its name must be xhr, e.g. xhr_tag_form.html.

• If a template is intended to be included by other templates, and it is not going to be used directly, start its
name with an underscore, e.g. _included_template.html.

Quoting

• Always use double quotes for HTML attribute values.

• Always use single quotes for Django template tags and template filters located inside HTML attribute
values.

110 Chapter 1. All you need to know

http://babeljs.io/docs/learn-es2015/
http://youmightnotneedjquery.com/
https://github.com/airbnb/javascript/blob/master/react/README.md

Pootle Documentation, Release 2.8.2

<!-- Good -->

CSS

Indenting

• Indent using 4 spaces. Don’t use tabs.

• Put selectors and braces on their own lines.

Good:

.foo-bar,

.foo-bar:hover
{

background-color: #eee;
}

Bad:

.foo-bar, .foo-bar:hover {
background-color: #eee;

}

Naming

• Selectors should all be in lowercase and consequent words should be separated using dashes. As an
example, rather use .tm-results and not .TM_results.

1.5.13 Deprecation

From time to time features, commands, configurations will be deprecated. We deprecate and manage backward com-
patibility within the following guidelines:

1. Our priority is the movement of Pootle development forward. Thus:

(a) We don’t want to have to maintain backward compatibility for too long as it hampers forward mobility.

(b) We won’t maintain backward compatibility if that prevents or impacts the needs of the new feature, refac-
toring, etc.

(c) We won’t maintain backward compatibility if the cost of that far outweights the effort of reconfiguring
Pootle.

2. We don’t want there to be major disruptions that we can avoid with point release. That is it shouldn’t be painful
as we shift features.

3. Nothing is forever. We won’t maintain deprecation or backward compatibility for long.

The “rules” of deprecation

So some rough “rules”. These apply to features, management commands and settings.

1. If it’s not released. Drop it and tell others on Pootle development channel. If it has settings add them to the
settings deprecation infrastructure to force removal if required.

1.5. Developers 111

https://gitter.im/translate/dev

Pootle Documentation, Release 2.8.2

2. If it is obsolete or replaced with an equivalent then drop with no fanfare and add settings to the deprecation
infrastructure so that an admin will remove settings from their settings files. Add to release notes if needed.

3. If it has been renamed. Put that in the release notes and allow fallback for one version. Use deprecation
infrastructure for settings to allow old settings to continue to work until the N+1 release. After that its a hard
failure. For commands simply rename.

4. If things changed. For settings put that in release notes and do a hard failure to ensure that admins will recon-
figure. For commands, just put those notes in the release notes and in the command features.

5. If removed. Put in release notes. For settings choose either hard or soft failure depending on whether something
needs to be done by the admin. Put in release notes together with a guide on how to work around the missing
feature if its possible. for commands simply make sure they are highlighted as removed in the release notes.

Implementing a deprecated setting

1. Add the newly deprecated setting to pootle/core/utils/deprecation.py DEPRECATIONS.

2. Move the deprecated setting to the deprecated section in the settings document. With the needed ..
deprecated:: N.M marker.

3. Add to the release notes.

1.5.14 Making a Pootle Release

This page is divided in four sections. The first one lists the tasks that must be performed before creating a package.
The second section includes a list of tasks to get a valid package. The third one to get the package published and the
release announced. The last one lists and suggests some possible cleanup tasks to be done after releasing.

Note: Please note that this is not a complete list of tasks. Please feel free to improve it.

Pre-release tasks

Before starting the release process it is necessary to perform some previous tasks.

Upload and announce new translations

We need to give localizers enough time to localize Pootle. They need time to do the actual translation and to feedback
on any errors that they might encounter.

First upload the new translations:

1. Create the new templates:

$ git clone git@github.com:translate/pootle.git pootle-translations
$ cd pootle-translations
$ make pot

2. Upload the templates to Pootle for translation.

3. Update current translations against templates either on Pootle or in code and commits these updated files to Git.

Announce the new translations on the following channels:

• The News tab on Pootle – for those not on any mailing list

112 Chapter 1. All you need to know

Pootle Documentation, Release 2.8.2

• The translate-announce@lists.sourceforge.net and the translate-pootle@lists.sourceforge.net mailing lists – for
those who might miss the news.

String freeze

A string freeze would normally run between an RC and a final version. We want to give a string freeze at
least 2-4 weeks before a release. They must be announced, explicitly stating the duration, on the translate-
announce@lists.sourceforge.net and the translate-pootle@lists.sourceforge.net mailing lists.

Note: If we do have a string freeze break then announce it to people. The string freeze breaks usually are only allowed
to fix mistakes on the translatable strings.

Create the package

The first steps are to create and validate a package for the next release.

Get a clean checkout

We work from a clean checkout to ensure that everything you are adding to the build is what is in the repository and
doesn’t contain any of your uncommitted changes. It also ensures that someone else could replicate your process.

$ git clone git@github.com:translate/pootle.git pootle-release
$ cd pootle-release
$ git submodule update --init

Update requirements versions

Update the minimum version number for the requirements in:

• requirements/

• pootle/checks.py

• docs/server/requirements.rst

Make sure version numbers displayed on documentation examples match the latest requirements on the above files.

Check copyright dates

Update any copyright dates in docs/conf.py:copyright and anywhere else that needs fixing.

$ git grep 2013 # Should pick up anything that should be examined

Set build settings

Create ~/.pootle/pootle_build.conf with the following content:

1.5. Developers 113

mailto:translate-announce@lists.sourceforge.net
mailto:translate-pootle@lists.sourceforge.net
mailto:translate-announce@lists.sourceforge.net
mailto:translate-announce@lists.sourceforge.net
mailto:translate-pootle@lists.sourceforge.net

Pootle Documentation, Release 2.8.2

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""Configuration file to build Pootle.

Must be placed in ~/.pootle/pootle_build.conf
"""

Django now requires to set some secret key to be set.
SECRET_KEY = '__BuildingPootle_1234567890__'

Silence some checks so the build output is cleaner.
SILENCED_SYSTEM_CHECKS = [

'pootle.W004', # Pootle requires a working mail server
'pootle.W006', # sqlite database backend is unsupported
'pootle.W010', # DEFAULT_FROM_EMAIL has default setting
'pootle.W011', # POOTLE_CONTACT_EMAIL has default setting

]

Update checks descriptions

The quality checks descriptions are kept as a static HTML page that has to be regenerated in order to ensure the
descriptions match the currently available quality checks.

$ mkvirtualenv build-checks-templates
(build-checks-templates)$ pip install --upgrade setuptools pip
(build-checks-templates)$ pip install -r requirements/build.txt
(build-checks-templates)$ export POOTLE_SETTINGS=~/.pootle/pootle_build.conf
(build-checks-templates)$ DJANGO_SETTINGS_MODULE=pootle.settings ./setup.py build_
→˓checks_templates
(build-checks-templates)$ deactivate
$ unset POOTLE_SETTINGS
$ rmvirtualenv build-checks-templates

Update translations

Update the translations from the Pootle server

1. Download all translations

$ make get-translations

2. Update pootle/locale/LINGUAS to list the languages we would like to ship. While we package all PO
files, this is an indication of which ones we want packagers to use. The requirement is roughly 80% translated
with no obvious variable errors. Languages with a small userbase can be included.

$ make linguas

Check the output and make any adjustments such as adding back languages that don’t quite make the target but
you wish to ship.

3. Build translations to check for errors:

$./setup.py build_mo # Build all LINGUAS enabled languages
$./setup.py build_mo --check # Not all of these are errors

114 Chapter 1. All you need to know

http://pootle.locamotion.org/projects/pootle

Pootle Documentation, Release 2.8.2

Create release notes

We create our release notes in reStructured Text, since we use that elsewhere and since it can be rendered well in some
of our key sites.

First we need to create a log of changes in Pootle, which is done generically like this:

$ git log $previous_version..HEAD > docs/releases/$version.rst

Or a more specific example:

$ git log 2.5.0..HEAD > docs/releases/2.5.1.rst

Edit this file. You can use the commits as a guide to build up the release notes. You should remove all log messages
before the release.

Note: Since the release notes will be used in places that allow linking we use links within the notes. These should
link back to products websites (Virtaal, Pootle, etc), references to Translate and possibly bug numbers, etc.

Read for grammar and spelling errors.

Note: When writing the notes please remember:

1. The voice is active. ‘Translate has released a new version of Pootle’, not ‘A new version of Pootle was released
by Translate’.

2. The connection to the users is human not distant.

3. We speak in familiar terms e.g. “I know you’ve been waiting for this release” instead of formal.

We create a list of contributors using this command:

$ git log 2.5.0..HEAD --format='%aN, ' | awk '{arr[$0]++} END{for (i in arr){print
→˓arr[i], i;}}' | sort -rn | cut -d\ -f2-

Cane caches

Bump the version for each of the apps so the caches are caned after upgrade:

• apps.py for each of the apps that have a version

Up version numbers

Update the version number in:

• pootle/__init__.py:VERSION

• Documentation examples, especially docs/server/installation.rst and docs/server/
upgrading.rst

The version tuple should follow the pattern:

(major, minor, micro, candidate, extra)

1.5. Developers 115

http://virtaal.org
http://pootle.translatehouse.org
http://translatehouse.org

Pootle Documentation, Release 2.8.2

E.g.

(1, 10, 0, 'final', 0)
(2, 7, 0 'alpha', 1)

When in development we use ‘alpha’ with extra of 0. The first release of a minor version will always have a
micro of .0. So 2.6.0 and never just 2.6.

Install nvm

Most likely your system will provide a nodejs version older than the one that is required. nvm is a tool that allows to
quickly install and switch nodejs versions.

Follow the nvm installation instructions.

Build the package

Building is the first step to testing that things work. From your clean checkout run:

$ mkvirtualenv build-pootle-release
(build-pootle-release)$ nvm install stable
(build-pootle-release)$ pip install --upgrade setuptools pip
(build-pootle-release)$ pip install -r requirements/build.txt
(build-pootle-release)$ pip install -e .[dev]
(build-pootle-release)$ export PYTHONPATH="${PYTHONPATH}:`pwd`"
(build-pootle-release)$ export POOTLE_SETTINGS=~/.pootle/pootle_build.conf
(build-pootle-release)$./setup.py build_mo # Build all LINGUAS enabled
→˓languages
(build-pootle-release)$./setup.py build_mo --all # If we are shipping an RC
(build-pootle-release)$ make build
(build-pootle-release)$ deactivate
$ unset POOTLE_SETTINGS

This will create a tarball in dist/ which you can use for further testing.

Note: We use a clean checkout just to make sure that no inadvertant changes make it into the release.

Test install and other tests

The easiest way to test is in a virtualenv. You can test the installation of the new release using:

$ mkvirtualenv test-pootle-release
(test-pootle-release)$ pip install --upgrade setuptools pip
(test-pootle-release)$ pip install dist/Pootle-$version.tar.bz2
(test-pootle-release)$ pip install mysqlclient
(test-pootle-release)$ pootle init

You can then proceed with other tests such as checking:

1. Documentation is available in the package

2. Assets are available in the package

116 Chapter 1. All you need to know

https://github.com/creationix/nvm#installation

Pootle Documentation, Release 2.8.2

3. Quick SQLite installation check:

(test-pootle-release)$ pootle migrate
(test-pootle-release)$ pootle initdb
(test-pootle-release)$ pootle runserver --insecure
(test-pootle-release)$ # Browse to localhost:8000

4. MySQL installation check:

(a) Create a blank database on MySQL:

mysql -u $db_user -p$db_password -e 'CREATE DATABASE `test-mysql-pootle`
→˓DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;'

(b) Change the database settings in the settings file created by pootle init (by default ~/.pootle/
pootle.conf) to use this new MySQL database

(c) Run the following:

(test-pootle-release)$ pootle migrate
(test-pootle-release)$ pootle initdb
(test-pootle-release)$ pootle runserver --insecure
(test-pootle-release)$ # Browse to localhost:8000

(d) Drop the MySQL database you have created:

mysql -u $db_user -p$db_password -e 'DROP DATABASE `test-mysql-pootle`;'

5. MySQL upgrade check:

(a) Download a database dump from Pootle Test Data repository

(b) Create a blank database on MySQL:

mysql -u $db_user -p$db_password -e 'CREATE DATABASE `test-mysql-pootle`
→˓DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;'

(c) Import the database dump into the MySQL database:

mysql -u $db_user -p$db_password test-mysql-pootle < $db_dump_file

(d) Run the following:

(test-pootle-release)$ pootle migrate
(test-pootle-release)$ pootle runserver --insecure
(test-pootle-release)$ # Browse to localhost:8000

(e) Drop the MySQL database you have created:

mysql -u $db_user -p$db_password -e 'DROP DATABASE `test-mysql-pootle`;'

6. Check that the instructions in the Installation guide are correct

7. Check that the instructions in the Upgrade guide are correct

8. Check that the instructions in the Hacking guide are correct

9. Meta information about the package is correct. This is stored in setup.py, to see some options to display
meta-data use:

1.5. Developers 117

https://github.com/translate/pootle-test-data

Pootle Documentation, Release 2.8.2

$./setup.py --help

Now you can try some options like:

$./setup.py --name
$./setup.py --version
$./setup.py --author
$./setup.py --author-email
$./setup.py --url
$./setup.py --license
$./setup.py --description
$./setup.py --long-description
$./setup.py --classifiers

The actual long description is taken from /README.rst with some tweaking for releasing.

Finally clean your test environment:

(test-pootle-release)$ deactivate
$ rmvirtualenv test-pootle-release

Publish the new release

Once we have a valid package it is necessary to publish it and announce the release.

Tag and branch the release

You should only tag once you are happy with your release as there are some things that we can’t undo.

You can safely branch, if required, for a stable/ branch before you tag.

$ git checkout -b stable/2.8.x
$ git push origin stable/2.8.x

If you branch you will want to update the README.rst file so that it points correctly to branched versions of badges
and documentation. Review and test the actual links created, you don’t need to commit everything.

$ workon build-pootle-release
(build-pootle-release)$./setup.py update_readme -w
(build-pootle-release)$ git diff README.rst
(build-pootle-release)$ git commit README.rst -m "Adjust README to branch"
(build-pootle-release)$ deactivate

Also if you branch you will want to limit requires.io to requirements in the branch. To do so check how it was done in
this commit:

$ nano .requires.yml
$ git add .requires.yml
$ git commit -m "Requirements: Limit requires.io to branch requirements"

Tag the release:

$ git tag -a 2.8.0 -m "Tag version 2.8.0"
$ git push --tags

118 Chapter 1. All you need to know

https://github.com/translate/pootle/commit/a94ea7af

Pootle Documentation, Release 2.8.2

Release documentation

We need a tagged release or branch before we can do this. The docs are published on Read The Docs.

• https://readthedocs.org/dashboard/pootle/versions/

Use the admin pages to flag a version that should be published. When we have branched the stable release we use the
branch rather then the tag i.e. stable/2.5.x rather than 2.5.0 as that allows any fixes of documentation for the
2.5 releases to be immediately available.

Change all references to docs in the Pootle code to point to the branched version as apposed to the latest version.

Deactivate documentation that is no longer applicable.

Publish on PyPI

Note: You need a username and password on Python Package Index (PyPI) and have rights to the project before you
can proceed with this step.

These can be stored in $HOME/.pypirc and will contain your username and password. Check Create a PyPI account
for more details.

Run the following to publish the package on PyPI:

$ workon build-pootle-release
(build-pootle-release)$ pip install --upgrade pyopenssl ndg-httpsclient pyasn1 twine
(build-pootle-release)$ twine upload dist/Pootle-*
(build-pootle-release)$ deactivate
$ rmvirtualenv build-pootle-release

Create a release on Github

Do the following to create the release:

1. Go to https://github.com/translate/pootle/releases/new

2. Draft a new release with the corresponding tag version

3. Convert the major changes (no more than five) in the release notes to Markdown with Pandoc. Bugfix releases
can replace the major changes with This is a bugfix release for the X.X.X branch.

4. Add the converted major changes to the release description

5. Include at the bottom of the release description a link to the full release notes at Read The Docs

6. Attach the tarball to the release

7. Mark it as pre-release if it’s a release candidate

Update Pootle website

We use github pages for the website. First we need to checkout the pages:

$ git checkout gh-pages

1.5. Developers 119

https://readthedocs.org/dashboard/pootle/versions/
https://pypi.python.org/pypi
https://packaging.python.org/tutorials/distributing-packages/#create-an-account
https://github.com/translate/pootle/releases/new
http://pandoc.org/

Pootle Documentation, Release 2.8.2

1. In _posts/ add a new release posting. Use the same text used for the Github release description, including
the link to the full release notes.

2. Change $version as needed. See _config.yml and git grep $old_release

3. git commit and git push – changes are quite quick so easy to review.

Announce to the world

Let people know that there is a new version:

1. Announce on mailing lists using plain text emails using the same text (adjusting what needs to be adjusted)
used for the Github release description:

Warning: This has to be explicitly reviewed and approved by Dwayne so we don’t repeat the same email
over and over.

• translate-announce@lists.sourceforge.net

• translate-pootle@lists.sourceforge.net

• translate-devel@lists.sourceforge.net

2. Adjust the Pootle channel notice. Use /topic [new topic] to change the topic. It is easier if you copy
the previous topic and adjust it.

3. Email important users

4. Tweet about it

5. Update Pootle’s Wikipedia page

Post-Releasing Tasks

These are tasks not directly related to the releasing, but that are nevertheless completely necessary.

Bump version to N+1-alpha1

If this new release is a stable one, bump the version in master to {N+1}-alpha1. The places to be changed are
the same ones listed in Up version numbers. This prevents anyone using master being confused with a stable release
and we can easily check if they are using master or stable.

Add release notes for dev

After updating the release notes for the about to be released version, it is necessary to add new release notes for the
next release, tagged as dev.

Other possible steps

Some possible cleanup tasks:

• Remove your pootle-release checkout.

• Update and fix these releasing notes:

120 Chapter 1. All you need to know

mailto:translate-announce@lists.sourceforge.net
mailto:translate-pootle@lists.sourceforge.net
mailto:translate-devel@lists.sourceforge.net
https://gitter.im/translate/pootle
https://en.wikipedia.org/wiki/Pootle

Pootle Documentation, Release 2.8.2

– Make sure these releasing notes are updated on master.

– Discuss any changes that should be made or new things that could be added.

– Add automation if you can.

• Add new sections to this document. Possible ideas are:

– Pre-release checks

– Change URLs to point to the correct docs: do we want to change URLs to point to the $version docs
rather then latest?

– Building on Windows, building for other Linux distros.

– Communicating to upstream packagers.

1.5.15 Plugins

Warning: Pootle’s plugin system is currently in an early stage of development, and may be subject to change in
the future. If you have any questions or are intending to use it in your own applications you can chat with us on
the Translate development channel.

You can customize or extend Pootle using plugins.

A Pootle plugin is a Django application that hooks into the core functionality in Pootle.

Signals, providers and getters

Pootle emits Signals when key events happen. You can listen to these signals using a receiver to trigger custom
behaviour. Pootle uses Django’s Signals framework for handling these types of events.

Pootle allows plugins to override the default behaviour using a Getter function, which are decorated with the
pootle.core.plugin.getter decorator. Once Pootle has received a response from a plugin for a Getter
function it stops processing any further configured functions.

Pootle allows developers to change or extend the data used by the system, by adding Provider functions, which are
decorated with the pootle.core.plugin.provider decorator. With Provider functions Pootle will gather
data from all plugins configured to provide for a given Provider function.

Application file structure

• __init__.py

• apps.py - Django application configuration

• receivers.py - receivers for signals

• getters.py - getter functions

• providers.py - provider functions

1.5. Developers 121

https://gitter.im/translate/dev

Pootle Documentation, Release 2.8.2

Creating a plugin application

Your application requires a Django application configuration

For an application named pootle_custom you need to add lines similar to the following in the __init__.py:

default_app_config = 'pootle_custom.apps.PootleCustomConfig'

With the above configuration you should add an apps.py.

At a minimum this should define the PootleCustomConfig class with its name and verbose_name.

It can also be used to activate receivers, providers and getters. The following application configuration activates all of
them for the “custom” application.

import importlib

from django.apps import AppConfig

class PootleCustomConfig(AppConfig):

name = "pootle_custom"
verbose_name = "Pootle Custom"

def ready(self):
importlib.import_module("pootle_custom.receivers")
importlib.import_module("pootle_custom.providers")
importlib.import_module("pootle_custom.getters")

Setting up a provider

The following is an example of providing custom context_data to the Pootle LanguageView.

Add a file called providers.py with the following:

from pootle.core.delegate import context_data
from pootle.core.plugin import provider

from pootle_language.views import LanguageView

@provider(context_data, sender=LanguageView)
def provide_context_data(**kwargs):

return dict(
custom_var1="foo",
custom_var2="bar")

Setting up a getter

The following is an example of customizing the Unit search_backend for an application.

Add a file called getters.py with the following:

from pootle.core.delegate import search_backend
from pootle.core.plugin import getter

122 Chapter 1. All you need to know

https://docs.djangoproject.com/en/1.10/ref/applications/#configuring-applications-ref

Pootle Documentation, Release 2.8.2

from pootle_store.models import Unit
from pootle_store.unit.search import DBSearchBackend

class CustomSearchBackend(DBSearchBackend):
pass

@getter(search_backend, sender=Unit)
def get_search_backend(**kwargs):

return CustomSearchBackend

Setting up a receiver

Pootle uses the django.core.signals module to handle events.

The following is an example of a receiver that emits a log warning whenever a Store cache is expired.

Add a file called receivers.py with the following code:

import logging

from django.core.signals import receiver

from pootle.core.signals import cache_cleared
from pootle_store.models import Store

@receiver(cache_cleared, sender=Store)
def handle_cache_cleared(**kwargs):

logging.warning(
"Store cache cleared: %s"
% kwargs["instance"].pootle_path)

1.6 Frequently Asked Questions (FAQ)

Caught out by a problem installing or running Pootle? We hope you’ll find some answers here. Ideal candidates are
specific installation issues that we can’t integrate into the main docs. Feel free to provide updates with your own
findings.

1.6.1 Installation

Does Pootle run under Python 3?

Pootle does not, yet, support Python 3 but it definitely is a goal.

Our first priority has been cleaning up the code and getting onto the latest version of Django. We’ve achieved that with
Pootle 2.8.0.

We also want to be Django warning free, we’ve also achieved that in Pootle 2.8.0.

All of these where needed to ease to migration to Python 3.

Currently, we’re trying to eliminate Python 2 specific changes and we’re coding pylint checks to prevent any regression.

1.6. Frequently Asked Questions (FAQ) 123

https://docs.djangoproject.com/en/1.10/topics/signals/#connecting-receiver-functions

Pootle Documentation, Release 2.8.2

If you want to help make this happen sooner, patches are welcome.

ModuleNotFoundError: No module named ‘syspath_override’

File "/home/pootle/env/lib/python3.6/site-packages/pootle/runner.py", line 19, in
→˓<module>

import syspath_override # noqa
ModuleNotFoundError: No module named 'syspath_override'

You are running Pootle using Python 3, change your virtual environment to Python 2 and try again.

Something like this will be needed to setup your virtual environment.

$ mkvirtualenv --python=/path/to/python2 pootle

locale.Error: unsupported locale setting

Pootle assumes that you have the en_US.utf8 locale installed on your server. If for some reason your server does
not include this (you’re not American or you are using a very minimal server) then you need to install that locale.

On a Debian based server simply run:

$ sudo dpkg-reconfigure locales

Installing missing system dependencies

Pootle may require you to install additional system dependencies. The majority of these relate to the installation of
lxml, required by Pootle for XLIFF and other XML based support.

lxml requires compilation so we depend on build components as well as libraries for libxml, libxslt and Python.

On Debian based system the following will install all additional system requirements:

$ sudo apt-get install build-essential libxml2-dev libxslt-dev python-dev python-pip
→˓zlib1g-dev

What is the optimal size for translation files?

There are too many variables to give a definitive numbers.

In terms of a servers ability to handle large files, this will depend on the size or shape of the database, available system
resources, the database configuration and the activity on the site.

What is helpful to be aware of is that Pootle does work on a file level. So really large translation files might become
unwealdy to process, and queries to find untranslated units in the file may take longer then expected.

Our general advice is to keep related translations in the same file and this should work fine. If performance does appear
to be a problem then break the large files into logical divisions to create smaller files.

124 Chapter 1. All you need to know

CHAPTER 2

Additional Notes

2.1 Release Notes

The following are release notes used on PyPI and mailing lists for Pootle releases.

These are the changes that have happened in Pootle and may affect your server. Also be aware of the important changes
in the Translate Toolkit as many of these also affect Pootle.

If you are upgrading Pootle, you might want to see some tips to ensure your upgrade goes smoothly.

2.1.1 Final releases

2.8 series

Pootle 2.8.2 release notes

Released on 15 September 2017

Welcome to Pootle 2.8.2!

If you want to try it, check one of the following:

• Installation instructions

• Upgrading instructions

Changes

• Fix for deployments without git command.

• Updated UI language discovery to try simpler language codes before trying a fallback.

• Updated documentation.

125

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/releases/index.html#release-notes
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/releases/index.html#release-notes

Pootle Documentation, Release 2.8.2

Credits

This release was made possible by the following people:

Leandro Regueiro, Dwayne Bailey, Ryan Northey.

And to all our bug finders, testers and translators, a Very BIG Thank You.

Pootle 2.8.1 release notes

Released on 31 August 2017

Welcome to Pootle 2.8.1!

If you want to try it, check one of the following:

• Installation instructions

• Upgrading instructions

Changes

• pootle command can now be run with no VIRTUAL_ENV environment variable set.

• Updated documentation

Credits

This release was made possible by the following people:

Leandro Regueiro, boite.

And to all our bug finders, testers and translators, a Very BIG Thank You.

Pootle 2.8 release notes

Released on 16 August 2017

Welcome to Pootle 2.8!

If you want to try it, check one of the following:

• Installation instructions

• Upgrading instructions

Changes in Requirements

• Django>=1.10.5,<1.11

• zlib1g-dev required for lxml

• MySQL support uses mysqlclient instead of MySQLdb

• django-transaction-hooks is no longer used

126 Chapter 2. Additional Notes

Pootle Documentation, Release 2.8.2

Major Changes

• Performed a security audit. Made various changes to close potential security vectors including DOS type atacks.

• Browse view optimisation. The performance of the brose mode now scales well for large projects. Statistics are
now in real time.

• Improved editor performance. Retrieval of editable units now correctly retrieves pages and prevents massive
database load.

• Timeline data. The timeline data has been migrated and improved to store more data changes and clean up past
data. This is a step to providing more detailed change history and is needed to do unit level comparisons for
Pootle FS.

• Statistics generation and display. We no longer use rqworkers to calculate statistics. Instead these are live and
always correct being updated on unit changes. The system is faster then previous statistics calculations.

• Pootle FS (beta) - provides bidirectional version control synchronisation.

Details of changes

Below we provide much more detail. These are by no means exhaustive, view the git log for complete information.

• MySQL now uses the mysqlclient database driver instead of MySQLdb, this is Django’s preferred database
driver.

• Performed a security audit

• JavaScript fixes addressing performance and memory leaks in the editor

• Improved editor performance

• Extensive review and fixes to RTL layout

• Refactored code for syncing stores - as part of the internal rework of core functionality in Pootle we reworked
synchronisation code. This will eventually be dropped when we move fully onto Pootle FS.

• Changed the default robots.txt. It is now a static file which you can adjust for your site. The site is allow
by default.

• Editor:

– Suggestions:

* Support rejecting/accepting suggestions with comments

· Suggesters are emailed based on new POOTLE_EMAIL_FEEDBACK_ENABLED setting

* Accept suggestion without can review permissions if submitted translation is 100% match.

* Users cannot submit suggestions that match a previously submitted suggestion or the current transla-
tion.

– Current unit is shown at the top of the unit list with one context row, this makes it is easier to use the
navigation bar and prevents UI jumpiness.

– Faster terminology matching yielding more results by using stemming.

– Special non-display characters are depicted by symbols from a custom-built font:

* Properly display whitespace as special character e.g. non breaking space, newline, tab.

* Technical details of escape sequences are omitted in the output displayed to end users, making it easier
to enter correct data.

2.1. Release Notes 127

https://github.com/translate/pootle/compare/2.7.6...2.8.0
https://docs.djangoproject.com/en/1.10/ref/databases/#mysql-db-api-drivers
https://docs.djangoproject.com/en/1.10/ref/databases/#mysql-db-api-drivers

Pootle Documentation, Release 2.8.2

– Buttons to add language specific special characters display helpful information in tooltips.

– Errors fixed:

* Fixed bugs in muting/unmuting checks

* Fixed filtering translations by month

* Fixed TypeError error when filter in editor gets no units

* Fixed bug that prevented translators from clicking on context rows to edit those context units

– Translation memory:

* Display original and translations side-by-side for TM results

* AmaGama Translation Memory is now queried using CORS

* AmaGama is only queried if the source language is supported by amaGama

– Perform all highlighting in the client.

– Clearly present plurals to translator.

– Allow text from the similar translations area to be selected.

– Force word wrapping on long strings with no spaces.

– Improvements on timeline.

– Cross-language translation is now restricted to admins. It heavily impacts performance and translators are
unlikely to require it while admins may have a valid reason to use it.

– Removed ability to clear language or project dropdown to prevent performance degradation. This prevents
users inadvertantly hitting very expensive queries.

– Alternate source language translations are no longer displayed for anonymous users to prevent performance
costs for users who aren’t able to translate.

– Editor is disabled for users without the required permissions. Reviewing suggestions is similarly disabled
without required permissions.

– Check categories can now be used in dropdown to filter units. You can review all ‘critical’ check failures
at once.

– Auto-matched translations are now highlighted to indicate that they came from translation memory to
prevent confusing users.

– Incomplete plural translations may now be submitted.

– String error reporting form is now clearer and prevents empty reports from being submitted.

• Added suggestion bulk management:

– Provides filtering by user, etc.

– Allows to review multiple suggestions at once and reject/accept them at once optionally providing a com-
ment for the suggesters

• Configuration system - a generic system to store configuration information for Pootle.

• Plugin framework - allowing Pootle to use plugins to expand its functionality.

• Comment system

• Removed Plurr format checks

• Removed ENChecker

128 Chapter 2. Additional Notes

Pootle Documentation, Release 2.8.2

• Added support to have several formats in the same project

• Browse pages:

– Refactored stats backend:

* We now store statistics in the database and have removed the need for rqworkers to calculate stats.

* The stats refresh notice has been removed as all stats are now up-to-date, always.

* Faster stats retrieval is now possible as stats are always up-to-date and we can get it directly from the
database.

– Disabled items are hidden by default but admin users can select to shown them.

– Changed order of columns to highlight latest activity and pending work:

* Last updated data is now only shown to admin users

– Altered order in which some items are listed by default:

* Projects and languages are sorted by most recent translators changes to highlight activity

* Virtual folders are sorted by priority to highlight most important strings to translate

– Hid most of the special ‘templates’ language data as it is unnecessary and can be confusing.

– Got rid of fat cookies:

* Increases responsiveness and removes security issue

* Most data is now stored in user session instead

* Sidebar is no longer automatically open for anonymous users when an announcement changes.

– Leaderboard on top panel and expanded stats panel:

* The top panel will show the three users with the highest score.

* Expanded stats shows the top contributors scores and other detailed information about current loca-
tion.

– Numbers are rendered in a locale aware fashion.

– Improvements to the statistics table for overly long filenames and smaller screens.

– Files dropdown no longer keeps references to empty directories.

– Fixed issue where the “Back” button would sometimes not work.

– Fixed issue with project dropdown when there are projects without a name.

• Search:

– No longer autocompletes

– Added pluggable search backend

– Search widget is disabled if user cannot translate. This is to prevent any load on the server for users who
are not able to contribute.

– Old ‘Exact Match’ was separated into ‘Case-sensitive match’ and ‘Phrase match’ allowing finer-grained
searches and removing the previous confusion about the actual intent of the options.

• Added team page:

– Only for languages so far, and only available to language managers

– Replaces permissions with roles

2.1. Release Notes 129

Pootle Documentation, Release 2.8.2

– Provides direct access to suggestion bulk management

• Revamped user profile page. The aim is to slowly draw more information onto this page and make it a hub for
translators.

• Removed for performance reasons:

– Removed statistics from user profiles. Will be brought back in the future.

– Removed export view. This has been replaced with TMX export functionality, download still remains.

– Removed performance hogging “More stats” in admin dashboard. While it has some useful information
there are better ways to get this data.

• Removed reports feature. This was a potential security area and data leak. We will bring this back now that we
have finer grained change tracking.

• Pootle’s own localization changes:

– Updated translations. You can still contribute translation updates for your language.

– Now compilejsi18n is used to compile JavaScript translations into assets, thus requiring django-statici18n
app.

– Password reset email is now localizable in Pootle.

– Multiple changes in localizable strings to ease translation.

– Select2 localization is bundled to ensure Select2 is shown localized.

• Upload and download:

– Disabled upload for non-PO projects as conflict handling currently only works in PO.

– Admins can upload translations as other user allowing correct crediting for translations.

– Fixed error for stores with no revision.

– Added the ability to download TMX exports.

• New Machine Translation providers:

– Caighdeán - Irish

– Welsh

• Refactoring of models to increase performance, including dropping unnecessary indices.

• User input is sanitized for outgoing emails

• Usernames using latin1 characters are now allowed

• Improved RQ usage and new management commands

• Changed Pootle logo and styling

• Added the ability to use a custom logo with POOTLE_CUSTOM_LOGO

• Documentation updates

Pootle FS (beta)

Pootle FS enables synchronization of Pootle against a filesystem, or version control system, handling conflict resolu-
tion and other situations of two files being out of sync.

Pootle FS follows a git like command execution. We’ve designed it such that we expect there to be no data loss when
conflicts are discovered. Any conflicts are turned into suggestions which can be resolved in Pootle.

130 Chapter 2. Additional Notes

http://pootle.locamotion.org/projects/pootle/
http://django-statici18n.readthedocs.io/en/latest/commands.html#compilejsi18n
http://django-statici18n.readthedocs.io/en/latest/index.html
https://github.com/kscanne/caighdean/blob/master/API.md
http://techiaith.cymru/api/translation/?lang=en

Pootle Documentation, Release 2.8.2

Pootle FS is still in beta as we’d like to make sure that all the bugs are washed out before making it an official and
default part of Pootle.

sync_stores and update_stores are still the default method of interacting with Pootle. We expect these to remain
for some time, but expect the next version of Pootle to use to Pootle FS infrastructure to manage and handle these
commands.

• Added admin UI to set up projects configuration and language mapping

• CLI - adds info, fetch, resolve, sync, add and rm commands

• LanguageMapper - allows differing codes on the filesystem vs Pootle

• FileMapper - maps the file layout on the filesystem to the expected Pootle layout

• Store de/serialization - makes it possible to customise and adapt file serialisation, most likely for slight deviations
from the official file format specification.

• Removed the ability to add new TPs from the admin UI for Pootle FS projects, we will initialise new TPs
differently in Pootle FS.

Development changes

• Updated and pinned PyPI requirements:

– From now on requirements will be pinned in order to simplify support and development.

• Tests:

– Massive improvement in test framework.

– Coverage increased from 55% to 94%.

– Moved to tox.

– Travis caching and optimisations.

– Added JavaScript testing.

• Code sanity:

– Python code cleanup/linting pep8/pyflakes/pep257 to increase code health.

– Javascript code linting and cleanups.

– CSS code linting and cleanups.

• Code polishing:

– Moved all commands to argparse.

– Moved shortcuts to Mousetrap.

– JS improvements, move to React components.

• Triage meetings are now held on a weekly basis.

Command changes and additions

• Running Pootle commands using manage.py is no longer supported, use pootle instead.

• pootle command warns if configuration is missing.

• Changed commands:

2.1. Release Notes 131

Pootle Documentation, Release 2.8.2

– verify_user and purge_user now accept multiple usernames.

– refresh_scores now recalculates user scores and accepts multiple usernames. It can be run across
projects and/or languages.

– contributors command has been refactored in order to return more accurate results and has new
options --since, --until and --mailmerge. The --from-revision option has been removed.

– flush_cache flushes default, redis caches, accepts --rqdata, --django-cache options.

– export is now able to export zipped TMX files per translation project with the --tmx option.
--rotate option allows old files to be removed.

– init now creates a development configuration with --dev option.

• Added new commands:

– list_serializers allows to view serializers and deserializers installed on your system.

– config allows to get, set, list, append and clear configuration settings.

– init_fs_project.

– set_filetype.

– schema allows to dump the database schema on MySQL which is useful for diagnosing differences in
database schema.

– update_data allows to update the stats data.

• Removed commands:

– run_cherrypy.

– start has been removed, use runserver instead.

– refresh_stats.

– clear_stats.

Changes in settings

• Changes in settings:

– MySQL database connections should now use STRICT_TRANS_TABLES.

– POOTLE_TM_SERVER no longer receives the MIN_SCORE parameter, as it was misleading and had ques-
tionable effects.

– POOTLE_TM_SERVER now accepts a MIN_SIMILARITY parameter, to filter out results which might be
irrelevant. To learn more, check the documentation on MIN_SIMILARITY .

– Changed the default value for ACCOUNT_SESSION_REMEMBER so now sessions are always remem-
bered.

– POOTLE_MARKUP_FILTER defaults to 'markdown', and None, 'html', 'textile' and
'restructuredtext' values have been deprecated. Deployments using any deprecated markup must
migrate manually to Markdown. This setting will be removed in the future since Markdown will be the
only available markup.

• Added new settings:

– POOTLE_SCORES accepts custom settings for user scores calculation.

– POOTLE_SEARCH_BACKEND to allow configuring the search backend to be used.

132 Chapter 2. Additional Notes

https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-runserver
https://django-allauth.readthedocs.io/en/latest/configuration.html

Pootle Documentation, Release 2.8.2

– POOTLE_EMAIL_FEEDBACK_ENABLED to allow disabling sending emails to suggesters when sugges-
tions are accepted or rejected.

– POOTLE_CUSTOM_LOGO, POOTLE_FAVICONS_PATH , POOTLE_FS_WORKING_PATH and
POOTLE_CANONICAL_URL settings to allow easy customisations.

– POOTLE_SQL_MIGRATIONS.

– AMAGAMA_SOURCE_LANGUAGES.

• Removed settings:

– POOTLE_QUALITY_CHECKER since the custom quality checkers feature is gone.

– POOTLE_SCORE_COEFFICENTS has been removed and replaced with POOTLE_SCORES.

Credits

This release was made possible by the following people:

Ryan Northey, Dwayne Bailey, Julen Ruiz Aizpuru, Taras Semenenko, Leandro Regueiro, Igor Afanasyev, Claude
Paroz, Safa Alfulaij, Rene Ladan, Kevin Scannell, Jason P. Pickering, Eamonn Lawlor, Alexander Lakhin, Robbie
Cole, Rhoslyn Prys, Prasasto Adi, Nootan Ghimire, Mikhail Paulyshka, Mike Robinson, leonardcj, Henrik Feldt,
Francesc Ortiz, Allan Nordhøy, Christian Lohmaier, Burhan Khalid, benbankes, Arash Mousavi, Andy Kittner, Adam
Chainz.

And to all our bug finders, testers and translators, a Very BIG Thank You.

2.7 series

Welcome to the new Pootle 2.7.6

Released on 20 June 2016

Bugfix release for 2.7.5.

2.7.6 vs 2.7.5

Changes since 2.7.5:

• Fixed assets

View the git log for complete information.

Credits

This release was made possible by the following people:

Leandro Regueiro.

And to all our bug finders, testers and translators, a Very BIG Thank You.

2.1. Release Notes 133

https://github.com/translate/pootle/compare/2.7.5...2.7.6

Pootle Documentation, Release 2.8.2

Welcome to the new Pootle 2.7.5

Released on 21 May 2016

Bugfix release for 2.7.4.

2.7.5 vs 2.7.4

Changes since 2.7.4:

• Fixed build process

• Expanded list or RTL languages

View the git log for complete information.

Credits

This release was made possible by the following people:

Leandro Regueiro, Dwayne Bailey, Ryan Northey, Jason P. Pickering.

And to all our bug finders, testers and translators, a Very BIG Thank You.

Welcome to the new Pootle 2.7.4

Released on 19 May 2016

Bugfix release for 2.7.3.

2.7.4 vs 2.7.3

Changes since 2.7.3:

• Updated some requirements to prevent failures on rebuilding assets.

• Requirements use ranges to prevent installing broken versions (issue 4737)

View the git log for complete information.

Credits

This release was made possible by the following people:

Leandro Regueiro, Taras Semenenko, Mikhail Paulyshka, Dwayne Bailey.

And to all our bug finders, testers and translators, a Very BIG Thank You.

Welcome to the new Pootle 2.7.3

Released on 27 April 2016

Bugfix release for 2.7.2.

134 Chapter 2. Additional Notes

https://github.com/translate/pootle/compare/2.7.4...2.7.5
https://github.com/translate/pootle/issues/4737
https://github.com/translate/pootle/compare/2.7.3...2.7.4

Pootle Documentation, Release 2.8.2

Major Changes

• Several critical security fixes that prevent potential XSS attacks

• Pootle no longer supports the MySQL’s MyISAM database backend, users are strongly encouraged to convert
their database to InnoDB.

• The editor for static pages now highlights the content’s markup and displays a live preview.

• Added support for Elasticsearch-based external Translation Memory servers.

• Changed connection logic and added checks for misconfigured Translation Memory servers.

• Significant speed up when importing files.

Below we provide much more detail. These are by no means exhaustive, view the git log for complete information.

Changes not reported on previous releases

There are some changes that haven’t being reported on their corresponding release notes at the time:

• In release 2.7.0 support was dropped for allowing to allow users to specify their preferred UI language on
Pootle. Pootle now uses the preferred languages as reported by the user’s browser and falls back to English if
the specified languages can’t be used. See Setting language preferences in a browse for more information. The
ability to specify Pootle UI language will be added back (issue 4230).

Details of changes

• Several critical security fixes that prevent potential XSS attacks

• Store update has been refactored which has brought a significant speed up when importing files.

• Static pages and announcements:

– The editor for static pages now highlights the content’s markup and displays a live preview of the rendered
contents (issue 3346, issue 3766).

– Project and language announcements are now also displayed on their respective overview pages.

• Translation memory:

– update_tmserver:

* Renamed --overwrite to --refresh.

* Translations from disabled projects must be explicitly included with
--include-disabled-projects.

* Added support for Elasticsearch-based external Translation Memory servers, which can be populated
from translation files or directories on disk. This effectively brings the ability to display TM results
from different TM servers, sorting them by their score.

* Translations saved from Pootle now include a timestamp.

* Fixed missing index error issue 4120.

– POOTLE_TM_SERVER:

* The default TM server has been renamed to local. Make sure to adjust your settings.

* Added a new WEIGHT option to raise or lower the TM results score for each specific TM server.

* Added several checks to ensure this setting is not misconfigured.

2.1. Release Notes 135

https://github.com/translate/pootle/compare/2.7.2...2.7.3
https://www.w3.org/International/questions/qa-lang-priorities.en
https://github.com/translate/pootle/issues/4230
https://github.com/translate/pootle/issues/3346
https://github.com/translate/pootle/issues/3766
https://github.com/translate/pootle/issues/4120

Pootle Documentation, Release 2.8.2

– Changed connection logic for Translation Memory servers to handle connection issues and misconfigura-
tions on the settings.

• Database:

– InnoDB is the supported MySQL backend. Deployments using MyISAM must migrate to either MySQL
(InnoDB) or PostgreSQL.

– Close a database connection before and after each rqworker job once it. exceeds the maximum age to
imitate Django’s request/response cycle issue 4094.

• Editor:

– Non-critical checks can once again be muted/unmuted.

– Fixed units sorting issue for admin users issue 4116.

• Import/export and upload/download:

– Fixed running export command without options.

– Added a new --user to import to attribute changes to specified user on file import.

– Ignore non project filetypes when uploading zip files issue 4124.

– Only authenticated users with translate rights can upload translations.

– Any authenticated user can now download translations.

– Translations from Terminology project can now also be downloaded.

• initdb:

– Now has an --no-projects option to prevent creating the default projects at set up.

– Now loads the translations for the default projects and languages and triggers their stats calculation.

– Doesn’t throw errors when accidentally being run more than once.

• The Apertium MT backend has been dropped.

• Report string errors form subject and body can be overriden.

• Language managers can now edit their language’s special characters by using the Special Characters page
accessible through the browse dropdown in the language overview page.

• Added extra data to reports.

• Added more languages for Yandex machine translation.

• Fixed test_checks errors when being run with no options and without the --check option.

• Pulled latest translations.

. . . and lots of refactoring, new tests, cleanups, improved documentation and of course, loads of bugs were fixed.

Credits

This release was made possible by the following people:

Julen Ruiz Aizpuru, Leandro Regueiro, Ryan Northey, Dwayne Bailey, Taras Semenenko.

And to all our bug finders, testers and translators, a Very BIG Thank You.

136 Chapter 2. Additional Notes

https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://github.com/translate/pootle/issues/4094
https://github.com/translate/pootle/issues/4116
https://github.com/translate/pootle/issues/4124

Pootle Documentation, Release 2.8.2

Welcome to the new Pootle 2.7.2 final

Released on 22 September 2015

Bugfix release for 2.7.1.

Changes in Requirements

• Django >= 1.7.10, < 1.8

• Translate Toolkit >= 1.13.0

• Python >= 2.7, < 3.0

• Redis >= 2.8.4

• Django transaction hooks

• Unix-based operating system.

Major Changes

• Bugfixes for some important issues.

• Pulled latest translations.

Below we provide much more detail. These are by no means exhaustive, view the git log for complete information.

Details of changes

• Prevent local TM from crashing if elasticsearch is unavailable. elasticsearch version must now be
1.6.0 at most.

• Prevent regular users from seeing disabled projects translation stats.

• If disabled, do not the display contact form on sign in and sign up.

• Fixed regression for admin users on export view.

• Fixed issue with translatable extraction tools that prevented several texts from being translated.

• Pulled latest translations.

. . . and cleanups, improved documentation.

Credits

This release was made possible by the following people:

Dwayne Bailey, Leandro Regueiro, Julen Ruiz Aizpuru, Ryan Northey, Taras Semenenko.

And to all our bug finders, testers and translators, a Very BIG Thank You.

2.1. Release Notes 137

https://github.com/translate/pootle/compare/stable/2.7.1...2.7.2

Pootle Documentation, Release 2.8.2

Welcome to the new Pootle 2.7.1 final

Released on 18 September 2015

Bugfix release for 2.7.0.

Changes in Requirements

• Django >= 1.7.10, < 1.8

• Translate Toolkit >= 1.13.0

• Python >= 2.7, < 3.0

• Redis >= 2.8.4

• Django transaction hooks

• Unix-based operating system.

Major Changes

• Updated translations.

• Added django-transaction-hooks

• Changed user delete behaviour

• Lots of command changes and additions

• Improved upload

Below we provide much more detail. These are by no means exhaustive, view the git log for complete information.

Details of changes

Translation statistics

• Last activity snippets for stats are not kept in the cache anymore. The markup is now built on the client. This
requires refreshing all server stats using the refresh_stats command (issue 3835).

• Renamed refresh_stats_rq command to refresh_stats. The old refresh_stats command is
now gone.

• POT files are no longer included in the translations stats. This allows to achieve a 100% translation status for a
project if all the languages are completely translated.

• Fixed issue with empty directories preventing stats from being fully calculated.

• Public virtual folders with pending suggestions are now always displayed.

Django transaction hooks

• To ensure async jobs are scheduled at the correct time django-transaction-hooks is now required. This depen-
dency will be unnecessary once Django 1.9 becomes Pootle’s minimum requirement.

• You must update your database connection to use one of the django-transaction-hooks backends:

138 Chapter 2. Additional Notes

https://github.com/translate/pootle/compare/stable/2.7.0...2.7.1
https://github.com/translate/pootle/issues/3835
https://pypi.python.org/pypi/django-transaction-hooks/

Pootle Documentation, Release 2.8.2

– mysql: transaction_hooks.backends.mysql

– postgres: transaction_hooks.backends.postgresql_psycopg2

Changed user delete behaviour

On deleting a user account their submissions, suggestions and reviews are now re-assigned to the “nobody” user.

If you wish to remove the user’s contributions also, you can use the purge_user command, or call user.
delete(purge=True) to delete the user programatically.

File uploads

• The uploading user now receives the credit for the upload.

• Handling of upload errors have been improved, displaying more useful messages now.

• In case of upload conflict the new translations are turned into suggestions.

Command changes and additions

• Added a contributors command to get the list of contributors (issue 3867).

• Added a find_duplicate_emails command to find duplicate emails.

• Added a merge_user command to get merge submissions, comments and reviews from one user account to
another. This is useful for fixing users that have multiple accounts and want them to be combined. No profile
data is merged. By default it removes the original user account after successful merge.

• Added a purge_user command to purge a user from the site and revert any submissions, comments and
reviews that they have made. This is useful to revert spam or a malicious user.

• Added a verify_user command to automatically verify a user account

• Renamed refresh_stats_rq command to refresh_stats, replacing the old command of the same
name. refresh_stats is able to calculate the stats for disabled projects (old refresh_stats_rq was
unable to do it).

– Errata: the removal of the old refresh_stats has removed the following options:

* --calculate-checks and --check – Use calculate_checks instead.

* --calculate-wordcount

• Added a update_user_email command to update a user’s email address.

• Added a --no-rq option to run commands in a single process without using RQ workers.

• Now it is possible specify the parameters to set up your database directly through init command.

Editor

• Editor now request confirmation before navigating away from modified units in order to prevent data loss. This
also includes non-saved comments. Going to the previous, next, and a specific unit will trigger the prompt, as
well as changing filters or searching. It is also triggered by typing a different URL, reloading the page or closing
the browser window.

• Fixed issue that didn’t allow users with only just suggestion rights to send suggestions.

2.1. Release Notes 139

https://github.com/translate/pootle/issues/3867

Pootle Documentation, Release 2.8.2

• Suggestion related events are now displayed on the timeline.

• Critical and not critical failing checks are now displayed separately in the editor.

• Potential errors when managing the suggestions are now displayed to users.

• Fixed a regression that prevented users from rejecting their own suggestions even if they don’t have enough
permissions to reject suggestions.

Misc changes

• Disabled projects are visually differentiated in the projects drop-down (issue 3996). Since the in-cache data
structure supporting this changed, it’s necessary to clear the cache. Assuming your default cache lives in the
DB number 1, you can clear it as follows:

$ redis-cli -n 1 KEYS "*method-cache:Project:cached_dict:*" | xargs redis-cli -n
→˓1 DEL

• Admins can now always see and navigate disabled projects.

• Pulled latest translations.

• Scores now include suggestions.

• A link is now displayed on the sidebar so admin users can quickly edit the announcements.

• Now previously hidden errors during login and sign up are displayed to the user.

• Improved usage of system checks so sysadmins get better feedback on whether something is wrong with Pootle.

. . . and lots of refactoring, new tests, cleanups, improved documentation and of course, loads of bugs were fixed.

Credits

This release was made possible by the following people:

Julen Ruiz Aizpuru, Ryan Northey, Taras Semenenko, Leandro Regueiro, Dwayne Bailey, Jerome Leclanche, Kevin
Scannell, Daniel Widerin.

And to all our bug finders, testers and translators, a Very BIG Thank You.

Welcome to the new Pootle 2.7.0 final

Released on 4 August 2015

This is the first release of Pootle that combines the work of Evernote and Translate.

Changes in Requirements

• Django >= 1.7, < 1.8

• Translate Toolkit >= 1.13.0

• Python >= 2.7, < 3.0

• Redis >= 2.8

• Unix-based operating system.

140 Chapter 2. Additional Notes

https://github.com/translate/pootle/issues/3996
http://toolkit.translatehouse.org/download.html

Pootle Documentation, Release 2.8.2

Major Changes

• Switched license from GPLv2 to GPLv3.

• The Evernote Pootle fork and Translate Pootle are now merged into the same code base and are being actively
developed together.

• Major UI revamp - browsing pages are consistent across all views. Navigation is now much easier, more con-
sistent and more powerful. The editor is cleaner and works to prevent errors early.

• Backgrounding statistics calculations - so Pootle and its users are never bogged down or delayed by real time
stats calculations. Instead these are backgrounded and updated when available.

• A number of features have been removed and will be recovered in future releases.

Below we provide much more detail. These are by no means exhaustive, view the git log for complete information.

Details of changes

Major user interface revamp

Browsing

• Pootle browsing pages now have a single column and wide stats table that shows the same data in the different
views. This create a consistent look while browsing through languages and projects.

• No home page. Users are redirected to their preferred language pages instead, falling back to the project listings
page.

• Critical errors and pending suggestions are prominently displayed on the browsing page and not hidden.

• New navigation scheme:

– All directories/files for a project are displayed in a new drop-down.

– Directories/files can be navigated and translated across multiple languages in a project.

– Tabs have been replaced in favor of drop-down menus.

– The editor search box is now displayed in the action links section, keeping its positioning consistent with
the browsing page.

– A new action link in the editor, Go back to browsing, allows users to go back to the same place they entered
translation mode from.

• When there are failing checks, browsing tables now display the number of units which have failing checks, not
the total number of failing checks.

• Table sorting is now remembered across browsing pages, and not separately in project, language and translation
project pages.

• User actionable items in the navbar have been moved to a drop-down.

• When selecting languages, redirect logic is now smarter.

• Different last activity messages for new translations and edits.

• Filters allow sorting units according to their last action date.

• Implemented project specific announcements in a sidebar. These make use of static pages. Notifications are
per-project and are displayed across languages (automatically adapting any hyperlinks).

2.1. Release Notes 141

https://github.com/evernote/
https://github.com/translate/pootle/compare/stable%2F2.5.1...master

Pootle Documentation, Release 2.8.2

• Announcements for language and translation project have been also implemented.

• Major speed improvements when calculating last action information.

Editor

• New features:

– Added context search URL prefix for projects, which allow integrating screenshots for units. This is the
ability to provide a search URL (link to a search engine) where to look up the text of the current unit in.

– Translation similarities are calculated in the client and sent to the server to calculate the user’s score. The
score changes are logged over time. Along with this, the best matches are highlighted in the editor.

• Navigation:

– The editor now displays the numbering for units, not pages.

– When going through all units in the translation editor, users will be automatically redirected back to brows-
ing.

– If the currently-submitted unit has failing checks then the editor won’t advance to the next unit and it will
be updated displaying the unresolved checks. The same behavior applies when a suggestion is accepted.

– The Submit/Suggest button is disabled until a change, over the initial state of the unit, is detected.

• Checks:

– Quality checks are always displayed and can be individually muted/unmuted.

– When a users mutes or unmutes a quality check, the action will be recorded in the unit’s timeline.

– A custom set of new quality checks has been incorporated. It is still possible to instead use the old quality
checks.

– It is possible filter the strings using the checks categories.

• Usability improvements and other fixes:

– Location comments are always displayed, providing a shortcut link to display the same source unit across
languages.

– The same string can’t be suggested more than once at the same time, avoiding duplicated suggestions
pending review.

– TM diffs now display what has been removed and what’s being added.

– Latest translator comments can be “removed” or, in other words, can be blanked. The action is recorded
in the timeline.

Users

• New welcome page for anonymous users, which displays the top scorers over the last 30 days.

• User score is displayed in the header and dynamically updated when translation actions are made.

• Revamped user profile pages. These now display user’s latest activity and their personal properties.

142 Chapter 2. Additional Notes

Pootle Documentation, Release 2.8.2

Miscellaneous

• Rewritten contact form. It used to both contact the site owners from any page as well as to report any issues
with strings.

• Support for old web browsers has been dropped, despite this change Pootle might work on such browsers. More
information on Pootle’s supported browsers.

• Several layout improvements that take into account different screen sizes.

• Implemented export view for cross-language and cross-project views.

• Implemented global search. This allows to perform searches and edit units in collections that span multiple
projects across languages, multiple languages across projects, or even the whole server.

• Timeline tracks all changes done to units.

• Uploads and downloads have been changed slightly. There are no options to overwrite or suggest. Your files
will be accepted if no changes have been made online while you you translated offline. If changes were made
while offline then the upload will be rejected. In such case download a the file again, use your offline tools or
TM to retranslate and try another upload.

• Added the initial implementation of virtual folders. This feature is meant to replace the now gone goals.

Statistics calculations

• Statistics handling has received a major rewrite (in fact 3 rewrites). RQ is used to queue and manage the
calculation of invalidated statistics. On the frontend, stats are now loaded asynchronously, thus any pending
calculations no longer block page loads. This results in a major usability improvement for Pootle users.

• POOTLE_WORDCOUNT_FUNC allows a custom word counting method to be used.

• A new counter pootle.core.utils.wordcount.wordcount has been incorporated (it omits place-
holders and words that shouldn’t be translated). Non-empty units with 0 words are immediately translated and
marked as fuzzy.

• Browsing pages now report the last time a unit was added to a store/project. In the browsing tables a Last
Updated column is displayed and in the extended stats Created and Last Updated dates.

• Statistics are also available for the All Projects view.

Administrators

• Only admins can set the fuzzy flag on the unit. Non-admin users are not shown the fuzzy checkbox by default,
but in case it’s displayed (because the unit was already fuzzy, or some other action turned it fuzzy, such as using
MT), they are always forced to clear the flag.

• Projects can be disabled from the administration page, allowing them to be hidden temporarily while retaining
statistics.

• The view permission is now project-centric, it can be set server-wide or for projects, but not for individual
language-project combinations.

Sysadmins

• Direct upgrade is now only possible from 2.6.0. Thus to upgrade from older releases first upgrade to 2.6.0

2.1. Release Notes 143

http://python-rq.org/

Pootle Documentation, Release 2.8.2

• The ability to deploy using Fabric has been dropped. We advise to use the recommended upgrade and install
instructions in the documentation.

• Redis is now required for all caching, memcached and other alternatives will not work.

• Exports no longer work if they are directly served by the web server. Apache users can refer to Apache and
mod_wsgi for a suggested configuration.

• Registration and authentication is now handled by django-allauth. gives Pootle implicit support for OpenID,
OAuth, OAuth2 and Persona sign-in protocols. Check out the documentation on users auth for further details.

• Integrated ElasticSearch-based local TM server into Pootle. Unit submissions update the index instantly. To
configure adjust POOTLE_TM_SERVER and to load the TM use the update_tmserver management com-
mand.

• The report target for reporting string errors has been dropped in favor of a report email address. The report
is now sent using an automatically pre-filled contact form. If the project doesn’t have a report email then the
reports are sent to POOTLE_CONTACT_REPORT_EMAIL.

• Using the Django dumpdata and loaddata commands to move between databases is no longer supported.
If you need to move, please use proper SQL scripts instead.

• Captcha implementation details have been refined.

• Yandex.Translate is now available as a Machine Translation backend.

• POOTLE_QUALITY_CHECKER can be used to point to a custom quality check handler.

• Xapian and Lucene are no longer required for searching and Pootle will not make use of them. You can safely
remove supporting libraries and packages if these services were used only for Pootle.

• POOTLE_REPORTS_MARK_FUNC allows a site wide function to provide marks to user graphs.

• Pootle no longer runs on Windows. Pootle uses RQ which makes use of fork() therefore Pootle will only run
on systems that implement fork(). Importantly that means that Pootle is no longer supported on Windows. It
would be possible to run Pootle on Windows if the rqworkers are run on a system that supports fork().

Command changes and additions

• Improved the way update_stores inserts and deletes units in the store (issue 3802).

• In update_stores if a directory doesn’t exist while running the command, the project will be disabled. Thus
the update_translation_projects command has been removed, it’s functionality has been merged
into update_stores with this change.

• Added the changed_languages management command.

• Individual quality checks can now be recalculated via the --check flag passed to the refresh_stats
management command.

• Added --calculate-checks parameter to the refresh_stats command.

• refresh_stats_rq was added to allow statistics to be refresh when running with multiple RQ workers.

• Added a new system user to attribute changes done by the management commands.

• Added command and store action logging.

• Added test_checks management command.

• Removed --directory and --path-prefix parameters from management commands. --project and
--language should be used instead to reduce the scope of commands.

144 Chapter 2. Additional Notes

https://readthedocs.org/projects/django-allauth/
https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-dumpdata
https://docs.djangoproject.com/en/1.10/ref/django-admin/#django-admin-loaddata
https://github.com/translate/pootle/issues/3802

Pootle Documentation, Release 2.8.2

• Removed the --modified-since flag from sync_stores and update_stores. Optimizations will
automatically be done based on the latest sync revision.

• New management commands: revision, refresh_scores, retry_failed_jobs, import,
export, dump and calculate_checks.

Deprecated settings

• All Pootle specific settings have been renamed and prefixed with POOTLE_. The following settings are impacted
and should be renamed accordingly in your settings file:

– TITLE -> POOTLE_TITLE

– CAN_CONTACT -> POOTLE_CONTACT_ENABLED

– CAN_REGISTER -> POOTLE_SIGNUP_ENABLED

– CONTACT_EMAIL -> POOTLE_CONTACT_EMAIL

– PODIRECTORY -> POOTLE_TRANSLATION_DIRECTORY

– MARKUP_FILTER -> POOTLE_MARKUP_FILTER

– USE_CAPTCHA -> POOTLE_CAPTCHA_ENABLED

– MT_BACKENDS -> POOTLE_MT_BACKENDS

– POOTLE_CONTACT_REPORT_EMAIL -> POOTLE_REPORT_STRING_ERRORS_EMAIL

– EXPORTED_FILE_MODE -> POOTLE_SYNC_FILE_MODE

– OBJECT_CACHE_TIMEOUT -> POOTLE_CACHE_TIMEOUT

– LEGALPAGE_NOCHECK_PREFIXES -> POOTLE_LEGALPAGE_NOCHECK_PREFIXES

– CUSTOM_TEMPLATE_CONTEXT -> POOTLE_CUSTOM_TEMPLATE_CONTEXT

• POOTLE_TOP_STATS_CACHE_TIMEOUT has been removed with the old top stats rendering and is replaced
by the new browsing UI.

• VCS_DIRECTORY is now deprecated as the integrated Version Control feature has been removed to come back
at a later date.

• CONTRIBUTORS_EXCLUDED_PROJECT_NAMES and CONTRIBUTORS_EXCLUDED_NAMES have been
removed along with the contributors’ page.

• DESCRIPTION has been removed, use static pages instead.

• ENABLE_ALT_SRC has been removed

• MIN_AUTOTERMS has been removed

• MAX_AUTOTERMS has been removed

• FUZZY_MATCH_MAX_LENGTH has been removed

• FUZZY_MATCH_MIN_SIMILARITY has been removed

• EXPORTED_DIRECTORY_MODE has been removed

2.1. Release Notes 145

Pootle Documentation, Release 2.8.2

Internal changes

• Switched to a custom user model. This merges the data and functionality available in auth.User and
PootleProfile before, and has allowed to remove the dependency on deprecated third party apps that were
bundled in the code.

• The multiple Suggestion models have been merged into a single model.

• Changed the way units needing to be sync’ed to disk is determined. Units now have a unique revision number
within the store they belong to and they’ll be synchronized based on the last_sync_revision field of the
store.

• Tests have been resurrected.

• Upgraded jQuery to 2.x and applied a bunch of fixes to the Tipsy plugin, avoiding ad-hoc hacks to remove
dangling tips.

• Translation projects now have a creation_time field.

• Dropped code for several external apps from Pootle codebase. Also upgraded to newer versions of those apps.

• Fixed and avoided any inconsistencies in the unit’s submitter information.

• URLs have been unified and all follow the same scheme. URLs ending in .html have been removed altogether.
reverse() and {% url %} are used almost everywhere.

• All templates are gathered in a single location (pootle/templates), and have been reorganized and sorted.

• Targetting modern browsers has allowed some CSS prefixes to be removed.

• Ability to list top scorers over a period of time.

Infrastructure

• All bugs have moved from Bugzilla to Github issues.

Removed features

There are two groups of features that have been dropped:

1. Those removed that we will likely recover in future Pootle releases.

2. Legacy features that will not be comming back

Recoverable features

The following features are removed from Pootle since 2.5.1.3 and will be recovered at some time. Where possible we
provide alternate approaches that can be used.

Note: sysadmins should take note of these changes and determine if this prevents use of Pootle within their environ-
ment. Essentially you will need to evaluate the use and need for each missing feature.

• Extension actions.

• Tags and Goals.

• Placeables support in the editor

146 Chapter 2. Additional Notes

https://github.com/translate/pootle/issues

Pootle Documentation, Release 2.8.2

• SQLite support.

• LDAP support.

• Monolingual file format support - perform file conversion to and from bilingual files outside of Pootle.

• Support for Version Control Systems - automate your version control integration outside of Pootle.

• News, notifications and RSS feeds - make use of announcement pages or use other channels of communication.

• Update against templates - do template updates outside of Pootle and use update_stores to load the changed
files.

• Public API.

• The Wikipedia lookup backend

• No Top Contributors tables - user scores likely provide the information you are looking for.

• Project/Language/Translation Project descriptions - these are migrated to announcements.

• Users can no longer specify their preferred Pootle UI language on their settings nor using the language picker.
Pootle UI now uses the preferred language as specified by user’s browser. See Setting language preferences in a
browse for more information. The ability to specify Pootle UI language will be added back (issue 4230).

Legacy features

We have dropped these features, some of which have been kept around to allow easy upgrades in the past:

Note: The removal of some of these feature required extensive changes to the upgrading code, which means that
upgrading directly from very old Pootle versions is no longer possible. In case you are trying to upgrade you must first
upgrade to 2.6 before continuing the upgrade process.

• .pending and .tm files support: Not necessary since the updatetm tool was removed in Pootle 2.5.0.

• Live translation: Rarely enabled, and its use was actively discouraged.

• Autosync: It was recommended to never use it. The files can be synced using sync_stores instead.

• The voting feature for terminology suggestions has also been removed, due to its low popularity and high
maintenance cost.

• Removed the zoom feature. Users should use their browsers zooming features.

• Hooks.

• Automatic terminology extraction. It’s encouraged to use an external tool to generate any glossaries, then load
them up on Pootle.

• Management commands: update_translation_projects, updatedb, upgrade, setup,
assign_permissions.

. . . and lots of refactoring, upgrades of upstream code, cleanups to remove old Django versions specifics, improved
documentation and of course, loads of bugs were fixed.

Credits

This release was made possible by the following people:

2.1. Release Notes 147

https://www.w3.org/International/questions/qa-lang-priorities.en
https://www.w3.org/International/questions/qa-lang-priorities.en
https://github.com/translate/pootle/issues/4230

Pootle Documentation, Release 2.8.2

Julen Ruiz Aizpuru, Taras Semenenko, Dwayne Bailey, Leandro Regueiro, Igor Afanasyev, Jerome Leclanche, Khaled
Hosny, pfennig59, Zahim Anass, Trejkaz (pen name), safaalfulaij, Peter Bengtsson, msaad, Mikhail Paulyshka, Miha
Vrhovnik, Kevin Scannell, Edmund Huber, Dídac Rios, Andras Timar.

And to all our bug finders, testers and translators, a Very BIG Thank You.

2.6 series

Welcome to the Pootle 2.6.4 Interim

Released on 04 April 2017

The 2.6.4 release is an interim release. It is used to migrate from Pootle 2.5.0 or newer to Pootle 2.7.x or newer
releases.

Warning: Do not run a Pootle instance using this version.

Changes in Requirements

• Django >= 1.6.11, < 1.7

• Translate Toolkit == 1.13.0

• Python >= 2.7, < 3.0

Major Changes

This release fixes issues that some users experienced upgrading via 2.6.3

Warning: If you are upgrading from Pootle 2.1.0 or older you must first upgrade to 2.1.6 before upgrading to this
version.

Warning: If you are upgrading from Pootle older than 2.5.0 you must first upgrade to 2.5.1.3 before upgrading to
this version.

Credits

This release was made possible by the following people:

Ryan Northey, Leandro Regueiro

And to all our bug finders, testers and translators, a Very BIG Thank You.

Welcome to the Pootle 2.6.3 Interim

Released on 30 March 2017

148 Chapter 2. Additional Notes

http://toolkit.translatehouse.org/download.html

Pootle Documentation, Release 2.8.2

The 2.6.3 release is an interim release. It is used to migrate from Pootle 2.5.0 or newer to Pootle 2.7.x or newer
releases.

Warning: Do not run a Pootle instance using this version.

Changes in Requirements

• Django >= 1.6.11, < 1.7

• Translate Toolkit == 1.13.0

• Python >= 2.7, < 3.0

Major Changes

This release fixes issues that some users experienced upgrading via 2.6.2

Warning: If you are upgrading from Pootle 2.1.0 or older you must first upgrade to 2.1.6 before upgrading to this
version.

Warning: If you are upgrading from Pootle older than 2.5.0 you must first upgrade to 2.5.1.3 before upgrading to
this version.

Credits

This release was made possible by the following people:

Ryan Northey, Leandro Regueiro

And to all our bug finders, testers and translators, a Very BIG Thank You.

Welcome to the Pootle 2.6.2 Interim

Released on 28 September 2015

The 2.6.2 release is an interim release. It is used to migrate from Pootle 2.5.0 or newer to Pootle 2.7.x or newer
releases.

Warning: Do not run a Pootle instance using this version.

Major Changes

This release fixes issue issue 4101 that some users experienced upgrading via 2.6.1.

2.1. Release Notes 149

http://toolkit.translatehouse.org/download.html
https://github.com/translate/pootle/issues/4101

Pootle Documentation, Release 2.8.2

Warning: If you are upgrading from Pootle 2.1.0 or older you must first upgrade to 2.1.6 before upgrading to this
version.

Warning: If you are upgrading from Pootle older than 2.5.0 you must first upgrade to 2.5.1.3 before upgrading to
this version.

Credits

This release was made possible by the following people:

Ryan Northey, Leandro Regueiro

And to all our bug finders, testers and translators, a Very BIG Thank You.

Welcome to the Pootle 2.6.1 Interim

Released on 15 September 2015

The 2.6.1 release is an interim release. It is used to migrate from Pootle 2.5.0 or newer to Pootle 2.7.x or newer
releases.

Warning: Do not run a Pootle instance using this version.

Major Changes

This release fixes issues that some users experienced upgrading via 2.6.0

Warning: If you are upgrading from Pootle 2.1.0 or older you must first upgrade to 2.1.6 before upgrading to this
version.

Warning: If you are upgrading from Pootle older than 2.5.0 you must first upgrade to 2.5.1.3 before upgrading to
this version.

Credits

This release was made possible by the following people:

Ryan Northey, Leandro Regueiro

And to all our bug finders, testers and translators, a Very BIG Thank You.

150 Chapter 2. Additional Notes

Pootle Documentation, Release 2.8.2

Welcome to the Pootle 2.6.0 Interim

Released on 29 June 2015

The 2.6.0 release is an interim release. It is used to migrate from Pootle 2.5.0 or newer to Pootle 2.7.0.

Warning: Do not run a Pootle instance using this version.

Changes in Requirements

• Django >= 1.6.5 < 1.7

• Translate Toolkit >= 1.12.0

• Python >= 2.6 < 3.0

Major Changes

Direct upgrade is now only possible from 2.5.0 and later.

We have dropped some legacy upgrade features. The removal of some of these feature means that upgrading directly
from ancient Pootle versions is no longer possible.

Warning: If you are upgrading from Pootle 2.1.0 or older you must first upgrade to 2.1.6 before upgrading to this
version.

Warning: If you are upgrading from Pootle older than 2.5.0 you must first upgrade to 2.5.1.3 before upgrading to
this version.

Credits

This release was made possible by the following people:

Leandro Regueiro, Julen Ruiz Aizpuru, Jerome Leclanche, Igor Afanasyev, Taras Semenenko, Dwayne Bailey, Khaled
Hosny, Arky, Peter Bengtsson, , Sebastian Silva, ricordisamoa, Miha Vrhovnik, Kevin KIN-FOO, Henrik Saari, Greg
Slepak, Folkert van Heusden, Clement Wong, Alexandre Segura, afan.

And to all our bug finders, testers and translators, a Very BIG Thank You.

2.5 series

Pootle bugfix release 2.5.1.3

Released on 2015-06-03

This is a bugfix release for the 2.5.1 branch. It is meant to provide a newer stable version until Pootle 2.7.0 is released.

2.1. Release Notes 151

Pootle Documentation, Release 2.8.2

Installation and Upgrade

• Installation

• Upgrade

Bugfixes

For a full list of changes, please check the git log.

• Added support for xliff extension for XLIFF files

• Fixed the missing assets issue with the provided package

• Fixed submission of untrusted input from editor

• Fixed upgrading from version 2.5.0

• Fixed notification when saving units

• Assorted documentation updates and fixes

Credits

The following people have made this release possible:

Dwayne Bailey, Leandro Regueiro, Miha Vrhovnik, Kevin KIN-FOO, Julen Ruiz Aizpuru.

Pootle bugfix release 2.5.1.2

Released on 2015-06-01

The 2.5.1.2 release is a bugfix release for the 2.5.1 branch. It is meant to provide a newer stable version until Pootle
2.7.0 is released.

Installation and Upgrade

• Installation

• Upgrade

Bugfixes

For a full list of changes, please check the git log.

• Added support for xliff extension for XLIFF files

• Fixed the missing assets issue with the provided package

• Fixed submission of untrusted input from editor

• Fixed upgrading from version 2.5.0

• Fixed notification when saving units

• Assorted documentation updates and fixes

152 Chapter 2. Additional Notes

https://github.com/translate/pootle/compare/2.5.1...2.5.1.3
https://github.com/translate/pootle/compare/2.5.1...2.5.1.2

Pootle Documentation, Release 2.8.2

Credits

The following people have made Pootle 2.5.1.2 possible:

Dwayne Bailey, Leandro Regueiro, Miha Vrhovnik, Kevin KIN-FOO, Julen Ruiz Aizpuru.

Pootle bugfix release 2.5.1.1

Released on 2014-04-29

The 2.5.1.1 release is a bugfix release for the 2.5.1 branch.

Installation and Upgrade

• Installation

• Upgrade

Bugfixes

For a full list of changes, please check the git log.

• Top stats are now cached for a much longer time and are configurable using
POOTLE_TOP_STATS_CACHE_TIMEOUT.

• Updated Google Translate support to work with the updated Google Translate API

• Fixed potential failures with zip exports

• Fixed several requirements issues with newer versions of Python and some libraries

• Fixed an obscure crash caused by pagination queries

• Fixed a potential crash when calculating statistics for a submission

• Fixed some javascript issues for users with corrupt cookies

• Assorted documentation updates and fixes

Credits

The following people have made Pootle 2.5.1.1 possible:

Julen Ruiz Aizpuru, Leandro Regueiro, Dwayne Bailey, Khaled Hosny, Jerome Leclanche, Igor Afanasyev and @qd-
inar.

Welcome to the new Pootle 2.5.1

Released on 24 January 2014

Yes, we did miss our 6 month release cycle! Many changes have gone into Pootle 2.5.1 which follows on from 2.5.0
released in May.

Pootle 2.5.1 has been in production for a number of users, so although it is a new official release, we’ve had many
people running their production Pootle server off this code. This includes Mozilla and Evernote. So you are in good
company.

2.1. Release Notes 153

https://github.com/translate/pootle/compare/2.5.1...2.5.1.1
https://mozilla.locamotion.org/
https://translate.evernote.com/

Pootle Documentation, Release 2.8.2

For those who can’t wait you might be interested to know what we’ve got planned on our roadmap for Pootle 2.5.2.

Changes in Requirements

• Django >= 1.4.10 (note that Django 1.5 and 1.6 are not yet supported)

• Translate Toolkit >= 1.11.0

• Python >= 2.6

Installation and Upgrade

• Installation

• Upgrade

Major Changes

These are by no means exhaustive, check the git log for more details.

• Tags – You can now tag and filter translation projects, making it easy to focus on a set of languages.

• Goals – you can now group files within a project to ensure that translators focus on the most important tasks
first.

• Extension Actions – you can create custom actions using Python scripts. These are displayed with current
actions and allow you to extend Pootle’s functionality.

• API – an initial Pootle API is in place (disabled by default).

Important server admin changes

• The minimum required Python version is now 2.6.x. While Django 1.4.x supports Python 2.5, it is no longer
supported by the Python Foundation neither by several third party apps.

• The database schema upgrade procedure has been redefined:

– The updatedb management command has been phased out in favor of South’s own migrate command.

– Post schema upgrade actions have been moved to the upgrade command.

– The automatic update has been removed.

• The setup management command was added to hide the complexities in the altering of the DB when installing
or upgrading Pootle.

• Fabric deployment scripts have been improved to make deployment easier.

• Security fixes identified by a Mozilla security audit have been implemented.

• Optimisations of asset caching such as Expires headers have been enabled.

• LDAP authentication backend moved to pootle.core.auth.ldap_backend.LdapBackend and re-
ceived various fixes.

• Static pages can now be used to track the acceptance of terms of use.

• The quality check for spell checking has been globally disabled. It wasn’t properly advertised nor documented,
and it didn’t perform well enough to be considered useful.

154 Chapter 2. Additional Notes

http://toolkit.translatehouse.org/download.html
https://github.com/translate/pootle/compare/stable%2F2.5.0...2.5.1-rc1
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#updatedb
https://south.readthedocs.io/en/latest/commands.html#migrate
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#upgrade
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.1/server/commands.html#setup

Pootle Documentation, Release 2.8.2

• css/custom/custom.css is now served as part of the common bundle.

Visual Changes

• User contribution are displayed in the users profile page.

• Breadcrumbs now follow the way a translator would interact with Pootle and are unified across all views of the
project.

• Global search allows you to search across all projects and all languages.

• Last activity messages show quickly what last change was made to the translations.

• The export view allows for easier proofreading by translators.

• Various RTL fixes.

. . . and lots of refactoring, upgrades of upstream code, cleanups to remove Django 1.3 specifics, missing documentation
and of course, loads of bugs were fixed

Credits

The following people have made Pootle 2.5.1 possible:

Julen Ruiz Aizpuru, Leandro Regueiro, Dwayne Bailey, Alexander Dupuy, Khaled Hosny, Arky, Fabio Pirola, Chris-
tian Hitz, Taras Semenenko, Chris Oelmueller, Peter Bengtsson, Yasunori Mahata, Denis Parchenko, Henrik Saari,
Hakan Bayindir, Edmund Huber, Dmitry Rozhkov & Darío Hereñú

Welcome to the new Pootle 2.5.0

Released on 18 May 2013

Finally! Translate has a new baby and we’re pretty proud of her. Many changes have gone into 2.5.0 which follows on
from 2.1.6 released more then two years ago. So many changes that it’s quite hard to list them all.

Why so long? Well we had the Egyptian revolution, a complete change in UI, and a load of features we wanted you to
have. It took much longer to stabilise it for you to enjoy.

Pootle 2.5.0 has been in production with many users, so although it is a new official release, we’ve had many people
running their production server off this code. This includes LibreOffice, Mozilla and Evernote. So you are in good
company.

Requirements

• Django 1.3 or 1.4

• Translate Toolkit >= 1.10.0

• lxml (now a runtime requirement)

Installation and Upgrade

• Installation

• Upgrade

2.1. Release Notes 155

https://www.google.co.uk/search?q=%23freealaa&tbm=isch
https://translations.documentfoundation.org/
https://mozilla.locamotion.org/
https://translate.evernote.com/
http://toolkit.translatehouse.org/download.html
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/installation.html
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/upgrading.html

Pootle Documentation, Release 2.8.2

Changes

These are by no means exhaustive, check the git log for more details

User Experience

We undertook a major UI rework – we now have a clean new translation interface, and overview page.

In the editor:

• We follow a new approach when you edit translations, you will see a list of units that meet some criterion.

• Translation Memory is displayed for the current unit – results are from Translate’s public Amagama server.

• Filters are easily accessible while you translate, so you can quickly change these within the translation interface.

• Context rows are provided in the translation interface when you are filtering and these can be hidden or expanded.

• A timeline is provided for a unit. This provides a history of the changes in translation text, state changes,
translator and dates of changes.

• Gravatars give credit to translators and suggesters.

In the overview page:

• The overview page allows you to drill down into certain types of units matching a translation state or with an
error.

• It is now easier to see what work needs attentions, as we highlight next actions for your project.

• With editable project and language descriptions you can supply description for projects. These are editable
using Markdown, reStructuredi or HTML.

• News alerts can now be sent via email to project participants.

• The overview page provides an expanded checks page that highlights all failing checks.

• Checks are classified into categories so that more urgent ones are highlighted to translators

Version Control

• Update the whole project at once avoiding slow file by file updates

• A separate VCS_DIRECTORY for VCS checkout is where Pootle now does all VC related work – this ensures
that we can work well with DVCS like Git.

• Detect new and removed files after a VCS update

• Management commands for VCS actions [Stuart Prescott]

• Add new files to VCS after updating from templates

Commands

New and changed commands:

• list_languages

• list_projects

• latest_change_id

156 Chapter 2. Additional Notes

http://amagama.translatehouse.org/
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#list-languages
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#list-projects
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#latest-change-id

Pootle Documentation, Release 2.8.2

• –modified-since flag for update_stores and sync_stores

• commit_to_vcs

• update_from_vcs

Infrastructure

• All documentation is now on Read The Docs

• We have a new website for Pootle

• We’re using Travis for Continuous Integration

• All our code is now on Github

Other important changes

• Static files are now handled by the django.contrib.staticfiles module. This means you will need to
run the pootle collectstatic command on production and serve the pootle/assets/ directory from your
webserver at /assets/. If you are upgrading from a previous version, you will need to replace the occurrences of
static with assets within your web server configuration.

• Static files are bundled into assets by using django-assets.

• Several features from translation projects have been merged into the Overview tab, including quality check fail-
ures and directory- and file-level actions. As a consequence the Review tab has been dropped and the Translate
tab serves solely to display the actual translation editor.

• Settings have been migrated from localsettings.py into settings/*.conf files. Your customizations now go in a
separate configuration file (or in settings/90-local.conf if running from a repository clone).

• The PootleServer script has been phased out in favor of a pootle runner script.

• If you will be using Pootle with Django 1.3, you have to keep the timezone on UTC, unless you are using
PostgreSQL. Users of PostgreSQL or Django 1.4 or later are free to set the time zone as they prefer. Also make
sure to use the minimum required South version when performing database upgrades.

• The update_from_templates management command has been renamed to
update_against_templates.

. . . and of course, loads of bugs were fixed

Credits

The following people have made Pootle 2.5.0 possible:

Julen Ruiz Aizpuru, Friedel Wolff, Alaa Abd el Fattah, Igor Afanasyev, Dwayne Bailey, Leandro Regueiro, Claude
Paroz, Chris Oelmueller, Taras Semenenko, Kevin Scannell, Christian Hitz, Thomas Kinnen, Alexander Dupuy, kha-
garoth, dvinella, Stuart Prescott, Roman Imankulov, Peter Bengtsson, Nagy Akos, Michael Tänzer, Gregory Oschwaldi
& Andy Nicholson.

2.1 series

Pootle 2.1.6

Released on 13 April 2011

2.1. Release Notes 157

http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-stores
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#sync-stores
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#commit-to-vcs
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/server/commands.html#update-from-vcs
http://docs.translatehouse.org/projects/pootle/en/stable-2.5.0/
http://pootle.translatehouse.org/
https://travis-ci.org/translate/pootle
https://github.com/translate/pootle
https://docs.djangoproject.com/en/1.10/ref/contrib/staticfiles/#django-admin-collectstatic
https://django-assets.readthedocs.io/en/latest/

Pootle Documentation, Release 2.8.2

It’s been 3 months since our last bug fix releases, it’s about time we give you Pootle 2.1.6.

Pootle is a web based system for translation and translation management.

Main focus of the release is incompatibility issues with the latest versions of Django (1.2.5 and 1.3.0).

Apart from that, version 2.1.6 has a handful of fixes. Here are the highlights:

• Fixed another bug with GNU style projects language detection.

• Added a separate project type for UTF-8 encoded Java properties.

• Fixed a bug that would under rare conditions hide some strings from translate page.

• Fixed a bug that caused some translation project level statistics to be miscalculated.

• Fix for Qt TS format based on changes in Translate Toolkit 1.9.0

On the first visit after upgrading upgrade screen will flash for a short period while translation statistics are recalculated,
if running under Translate Toolkit version 1.9.0 it might last longer as Qt TS files will be reparsed to benefit from
improvements to the format support.

Django 1.2.5 and 1.3.0 compatibility depends on Translate Toolkit version 1.9.0 or above but all users are encouraged
to upgrade their versions of Translate Toolkit. As always Pootle will benefit from fixes and performance improvements
in the latest versions.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

Pootle 2.1.5 released

Released on 18 Jan 2011

A quick bug fix release to celebrate the new Year. Please welcome Pootle 2.1.5!

Pootle is a web based system for translation and translation management.

This release fixes a couple of regressions introduced in the previous 2.1.4 release. Including a build mistake where the
files in the 2.1.4 tarball had very restrictive permissions.

Apart from that, version 2.1.5 has a handful of fixes. Here are the highlights:

• Fix regression causing update from templates to fail for GNU Style projects with subdirectories.

• Fix regression in handling obsolete units while committing to version control (reported by Mozilla).

• Clean stale file locks left in cases of external kills which running expensive commands.

• Fix security bug where project names would leak to users without view access on the server via news summary
on front page or profile edit form.

• Fix a bug that prevented Project level permissions from overriding very restrictive server wide permissions.

As always Pootle will benefit from fixes and performance improvements in the latest versions of Translate Toolkit.

• Feature list

• Download

• Installation instructions

158 Chapter 2. Additional Notes

http://pootle.translatehouse.org/
http://toolkit.translatehouse.org/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
https://sourceforge.net/projects/translate/files/Pootle/2.1.6/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
https://github.com/translate/pootle/issues
http://pootle.translatehouse.org/
https://sourceforge.net/projects/translate/files/Pootle/2.1.5/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
https://sourceforge.net/projects/translate/files/Pootle/2.1.5/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html

Pootle Documentation, Release 2.8.2

• Bugs

• More information

Enjoy it, The Translate Team

Pootle 2.1.4 Released

Released on 17 Dec 2010

We thought we’d wrap up the year with one more bug fix release, Please welcome Pootle 2.1.4

Pootle is a web based system for translation and translation management.

This release fixes a nasty bug where quality checks failed to update on file uploads. the upgrade screen will flash on
first visit after upgrade for a minute or two to correct this problem (might take longer if you used the quality checks
feature extensively).

Apart from that, version 2.1.4 has a handful of fixes. Here are the highlights:

• Once and for all Qt ts plurals should now work correctly.

• Fixed a bug where obsolete units could not be updated when uploading a new version of the file.

• Fixed a bug that affected some GNU/Linux systems causing server errors when using Turkish Locale.

• Fixed a bug in GNU style projects with a prefix where pt_BR would be detected as Breton instead of Brazilian
Portuguese

As always Pootle will benefit from fixes and performance improvements in the latest versions of Translate Toolkit.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

Pootle 2.1.3 released

Released on 26 Nov 2010

It’s been less than three weeks since the we released Pootle 2.1.2 but we’ve fixed a couple of critical bugs affecting
many users so it’s time for another bug fix release. Please welcome Pootle 2.1.3

Pootle is a web based system for translation and translation management.

This release includes a fix to a data loss bug, where recent translations are lost when updating from version control.
Users who depend on version control support are encouraged to upgrade immediately.

We’ve added support for CSV format. This will hopefully make it easier for less technical users to get their strings
inside Pootle by exporting from spreadsheet or similar office software. But it should not be treated as a replacement
for more solid formats like PO, Qt ts or XLIFF.

By popular demand we’ve improved Java properties support to accept properties files in any encoding. including
UTF-8.

Improved format support depends on the recently release Translate Toolkit 1.8.1

We also bring you translations for Chiga and Latvian.

2.1. Release Notes 159

https://github.com/translate/pootle/issues
http://pootle.translatehouse.org
https://sourceforge.net/projects/translate/files/Pootle/2.1.4/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
https://sourceforge.net/projects/translate/files/Pootle/2.1.4/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
https://github.com/translate/pootle/issues
http://pootle.translatehouse.org
https://sourceforge.net/projects/translate/files/Pootle/2.1.3/

Pootle Documentation, Release 2.8.2

Apart from that, version 2.1.2 has many bug fixes. Here are the highlights:

• Fix for database migration failing for some users

• Fix for errors on upgrades for users who deleted the English language

• Fix for errors on filenames with spaces and memcached

• Many fixes to language detection in GNU Style projects

• Various fixes to handling of escaped characters in translate page

As always Pootle will benefit from fixes in any the latest versions of Translate Toolkit, the recently released 1.8.1
includes many fixes specifically for Pootle 2.1.3 so upgrading translate toolkit is highly recommended.

• Feature list

• Download

• Installation instructions

• Bugs

• More information

Pootle 2.1.2 Released including security fix

Released on 15 Nov 2010

https://sourceforge.net/projects/translate/files/Pootle/2.1.2/Pootle-2.1.2.tar.bz2

This release includes an important security fix to a cross site scripting vulnerability in the translate page. All users are
encouraged to upgrade immediately.

The release also includes many improvements to the support of monolingual translation formats (like subtitles files
and Java properties) and to “GNU style” projects.

We also bring you translations for five new language (Zulu, Greek, Danish, Acoli and Fulah) and six more translations
are now 100% complete (Uighur, Chinese (China), Catalan, Asturian, Akan and Ganda).

Highlighted fixed and improvements:

• Fixed a PostgreSQL incompatibility bug.

• Fixed a regression where plural units in Qt ts where not parsed correctly.

• A new manage.py command update_translation_projects allows for detecting new languages added to projects
on the file system.

• More flexible options to all manage.py commands allowing users to limit commands to a set of projects and
languages.

• Pootle now supports GNU Style projects where filenames have a prefix preceding language codes.

• Pootle will ignore case differences when matching filenames to language codes.

• Improvements to fuzzy matching when updating monolingual projects from templates.

• Pootle will no longer modify templates files, translations to these files will be stored in database only to avoid
propagating these translations on update from templates.

• Users with administer permissions on a language or project now have all the other rights implied automatically
for that language or project.

• Users with only suggest right will be able to upload files using the “suggest only” merge method.

160 Chapter 2. Additional Notes

http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
https://sourceforge.net/projects/translate/files/Pootle/2.1.3/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
https://github.com/translate/pootle/issues
http://pootle.translatehouse.org
https://sourceforge.net/projects/translate/files/Pootle/2.1.2/Pootle-2.1.2.tar.bz2

Pootle Documentation, Release 2.8.2

• URLs in developer comments are now displayed as links.

• Fixed bug that caused unnecessary diffs to PO files tracked in version control.

• Local terminology no longer blocks suggestions from the server-wide terminology project.

• Pootle is now less fascistic about what language codes should look like, but users should try to stick to GNU
locale names when possible.

• Removed confusing initialize checkbox from Project admin page. No one knew what it was for, those who do
can uncomment a single line of code to bring it back.

Pootle 2.1.1 depends on at least version 1.8.0 of Translate Toolkit, and as always will benefit from fixes in any later
versions. so always use the latest.

This work was made possible by many volunteers and our funders:

• ANLoc, funded by IDRC http://africanlocalisation.net/

• Feature list

• Download

• Installation instructions

• Bugs

• More information

Pootle 2.1.1 Released including security fix

Released on 03 September 2010

With the coming of spring we thought it’s a good time to make the first bug fix release of the exciting new Pootle. We
bring you Pootle 2.1.1 get it while it is blooming from https://sourceforge.net/projects/translate/files/Pootle/2.1.1/

Pootle is a web based system for translation and translation management.

This release finally brings the ability to migrate data between different database engines. This means all of you stuck
with the default sqlite3 can now move to a database engine that scales better like MySQL or PostgreSQL.

Note that database migration depends on Django 1.2 or later.

As an added bonus we added database migration to the 2.0 branch and quietly slipped in the last bug fix release for
that series https://sourceforge.net/projects/translate/files/Pootle/2.0.6/ we made this bonus release so users still on the
2.0 branch using sqlite can migrate databases before they upgrade to 2.1 since the upgrade process is slow and the
database size under 2.1 is considerably larger.

For instructions and more details check Database migration docs.

We noticed some users running Pootle under apache fail to use memcached for caching and stick to the default local
memory cache backend. This causes buggy behavior as the default is not compatible with multiprocess servers. So for
2.1.1 we changed the default to a database cache backend. We still recommend using memcached but if for any reason
you can’t please update your localsettings.py.

Users upgrading from 2.1.0 will see the upgrade screen appear for a few seconds while Pootle prepares the database
for the new cache backend.

For more information check Caching System docs.

Apart from these two major changes 2.1.1 includes four new translations (Slovenian, Songhai, Tamil and Faroese) and
many fixes and performance improvements. Here are the highlights:

• Translation progress tables now show icons to indicate ability to change table sorting.

2.1. Release Notes 161

http://africanlocalisation.net/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
https://sourceforge.net/projects/translate/files/Pootle/2.1.2/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
https://github.com/translate/pootle/issues
http://pootle.translatehouse.org
https://sourceforge.net/projects/translate/files/Pootle/2.1.1/
https://sourceforge.net/projects/translate/files/Pootle/2.0.6/

Pootle Documentation, Release 2.8.2

• Apertium machine translation improved their Javascript APIs with the help of our Julen, Pootle has been updated
to use these new apis which make apertium a much more attractive option (specially for translation between
European languages).

• Pootle no longer attempts to save translations to disk when there are no new translations. Speeds up downloads.

• Pootle now keeps a cached copy of exported ZIP archives and XLIFF files to improve performance.

• Correct From header for emails sent by contact form.

• Fixed a bug where Pootle kept files open even when not needed. May make us more Windows friendly (but no
promises).

• Better handling of invalid file types on upload.

• Expensive serverwide stats on admin dashboard are not calculated on demand only. Should make admin page
loading more snappy.

• Don’t accept empty suggestions.

• Thanks to Terin Stock (terinjokes) it is now possible to send registration email as HTML emails.

Pootle 2.1.1 depends on at least version 1.8.0 of Translate Toolkit, and as always will benefit from fixes in any later
versions. So always use the latest.

This work was made possible by many volunteers and our funders:

• ANLoc, funded by IDRC http://africanlocalisation.net/

• Feature list

• Download

• Installation instructions

• Bugs

• More information

Older releases

Older releases

Older release more for your entertainment and to track Pootle’s history.

Version 2.1

Released on August 17th 2010.

• Pootle no longer depends on statsdb and SQLite.

• Files on disk are only synced with the database on download or commit. The old behaviour can be restored at
the cost of performance. A manage.py command can sync to files on the command line.

• The database is now much larger. This should have no negative impact on performance, but we strongly suggest
using MySQL or PostgreSQL for the best performance.

• Pootle 2.1 will upgrade the database automatically from Pootle 2.0 installations. You need to have South in-
stalled. Install it from your distribution, or http://south.aeracode.org/ or with easy_install South (the
upgrade could take quite a while, depending on your installation size).

• Pending files are not used for suggestions any more, and will also be migrated to the database during upgrade.

162 Chapter 2. Additional Notes

http://africanlocalisation.net/
http://docs.translatehouse.org/projects/pootle/en/latest/features/index.html
https://sourceforge.net/projects/translate/files/Pootle/2.1.1/
http://docs.translatehouse.org/projects/pootle/en/latest/server/installation.html
https://github.com/translate/pootle/issues
http://pootle.translatehouse.org
http://south.aeracode.org/

Pootle Documentation, Release 2.8.2

• New settings are available in localsettings.py – compare your existing one to the new one.

• Pootle 1 installations can easily migrate everything excluding project permissions. We encourage administrators
to configure permissions with the new permission system which is much simpler to use, since permissions on
the language and project level are now supported.

• Have a look at the optimization guide to ensure your Pootle runs well.

Version 2.0

Released on December 7th 2009.

• Pootle now uses the Django framework and data that previously was stored in flat files (projects, languages,
users and permissions) is now stored in a database. Migration scripts are provided.

• Review all suggestions before migrating, and note that assignments are not yet supported in Pootle 2.0.

Version 1.2.0

Released on October 8th 2008.

• The name of the directory for indexing databases changed from .poindex-PROJECT-LANGUAGE to .transla-
tion_index. Administrators may want to remove the old indexing directories manually.

• The enhanced search function needs all indexing databases to be regenerated, otherwise it won’t find anything.
To achieve this, just remove all .translation_index directories under your projects:

find /path/to/projects/ -type d -name ".translation_index" -exec rm -rf {} \;

• If you used testing versions of Pootle 1.2, you almost definitely need to regenerate your statistics database.
Pootle might be able to do it automatically, but if not, delete ~/.translate_toolkit/stats.db.

Version 1.0

Released on May 25th 2007.

XLIFF support Pootle 1.0 is the first version with support for XLIFF based projects. In the admin interface the
project type can be specified as PO / XLIFF (this really just tells Pootle for which type of files it should look -
it won’t convert your project for you). This property is stored in pootle.prefs in the variable localfiletype
for each project.

Configurable logos You are now able to configure the logos to use in pootle.prefs. At the moment it will probably be
easiest to ensure that the same image sizes are used as the standard images.

Localized language names Users can now feel more at home with language names being localized. This functional-
ity is actually provided by the toolkit and your system’s iso-codes package.

Treestyle: gnu vs nongnu Pootle automatically detects the file layout of each project. If you want to eliminate the
detection process (which can be a bit slow for big projects) or want to override the type that Pootle detected, you
can specify the treestyle attribute for the project in pootle.prefs. Currently this can not be specified through
the admin interface.

Version 0.11

Released on March 8th 2007.

2.1. Release Notes 163

Pootle Documentation, Release 2.8.2

• If the user has the appropriate privileges (ovewrite right) he/she will be able to upload a file and completely
overwrite the previous one. Obviously this should be done with care, but was a requested feature for people that
want to entirely replace existing files on a Pootle server.

• The server administrator can now specify the default access rights (permissions) for the server. This is the rights
that will be used for all projects where no other setup has been given. See pootle.prefs for some examples.

• The default rights in the default Pootle setup has changed to only allow suggesting and to not allow translation.
This means that the default server setup is not configured to allow translation, and that users must be specifically
assigned the translate (and optionally review) right, or alternatively, the default rights must be configured to
allow translation (see the paragraph above).

• The baseurl will now be used, except for the /doc/ directory, that currently still is offered at /doc/.

• The default installation now uses English language names in preperation for future versions that will hopefully
have language names translated into the user interface language. To this end the language names must be in
English, and names with country codes must have the country code in simple noun form in brackets. For
example Portuguese (Brazil); in other words, not Portuguese (Brazilian).

Version 0.10

Released on August 29th 2006.

Statistics The statistics pages are greatly reworked. We now have a page that shows a nice table, that you can sort,
with graphs of the completeness of the files. This is the default view. What is confusing is that the stats page
does not work directly with editing. To get the editing features, click on the editing link in the top bar.

The quick statistics files (pootle-projectname-zu.stats) now also store the fuzzy stats that are needed to render
the statistics tables. Your previous files from 0.9 can not supply this information. Pootle 0.10 will automatically
update these files, but if you (for some reason) want/need to go back to Pootle 0.9, you will have to delete these
files. Not all .stats files need to be deleted, only the ones starting with pootle-projectname.

SVN and CVS committing You can now commit to SVN or CVS. A default commit message is added, you cannot
edit this message. Your ability to commit depends on the rights you have on the checkout and since you cannot
supply a password it needs to be a non-blocking method. This feature is probably not useful for a very public
server unless it is managing multiple translations of your own project and you have direct control over it and
CVS/SVN accounts. It will work well in a standalone situation like a Translate@thon etc, where it is a public
event but the server is controled by yourself for the event and then you can simply commit changes at the end.
For more information, see version control information.

Terminology Pootle can now aid translators with terminology. Terminology can be specified to be global per lan-
guage, and can be overriden per project for each language. A project called “terminology” (with any full name)
can contain any files that will be used for terminology matching. Alternatively a file with the name pootle-
terminology.po can be put in the directory of the project, in which case the global one (in the terminology
project) will not be used. Matching is done in real time. Note that this does not work with GNU-style projects
(where all the files are in one directory and have names according to the language code).

Translation Memory Pootle can now aid translators by means of a translation memory. The suggestions are not
generated realtime – it is done on the server by means of a commandline program (updatetm). Files with
an appended .tm will be generated and read by Pootle to supply the suggestions. For more information see
updatetm.

2.2 License

The Pootle code and documentation is released under the GNU General Public License (GPL), version 3 or later.

164 Chapter 2. Additional Notes

mailto:Translate@thon
http://www.gnu.org/licenses/gpl.html

Index

Symbols
–after-revision

changed_languages command line option, 75
–all

flush_cache command line option, 71
verify_user command line option, 86

–atomic
command line option, 69

–check
calculate_checks command line option, 70
test_checks command line option, 75

–config
init command line option, 80

–data
dump command line option, 75

–db
init command line option, 80

–db-host
init command line option, 80

–db-name
init command line option, 80

–db-port
init command line option, 80

–db-user
init command line option, 80

–dev
init command line option, 80
webpack command line option, 81

–display-name
update_tmserver command line option, 77

–django-cache
flush_cache command line option, 70

–dry-run
update_tmserver command line option, 77

–force
add command line option, 82
fetch command line option, 83
rm command line option, 84
sync_stores command line option, 71

update_stores command line option, 72
–from-filetype

set_filetype command line option, 74
–include-anonymous

contributors command line option, 73
–include-disabled-projects

update_tmserver command line option, 77
–lru

flush_cache command line option, 70
–mailmerge

contributors command line option, 73
–matching

set_filetype command line option, 74
–modified-since

list_languages command line option, 73
list_projects command line option, 73

–no-delete
merge_user command line option, 85

–no-projects
initdb command line option, 80

–no-rq
command line option, 69

–noinput
command line option, 69

–overwrite
resolve command line option, 83
sync_stores command line option, 71
update_stores command line option, 72

–pootle-wins
resolve command line option, 83

–project, –language
command line option, 68

–rebuild
update_tmserver command line option, 77

–refresh
update_tmserver command line option, 77

–reset
refresh_scores command line option, 71

–restore
revision command line option, 74

165

Pootle Documentation, Release 2.8.2

–rotate
export command line option, 79

–rqdata
flush_cache command line option, 70

–since
contributors command line option, 73

–skip-missing
sync_stores command line option, 71

–sort-by
contributors command line option, 73

–source, –target
test_checks command line option, 75

–stats
dump command line option, 76

–store
update_data command line option, 69

–target-language
update_tmserver command line option, 78

–tm
update_tmserver command line option, 77

–tmx
export command line option, 79

–unit
test_checks command line option, 75

–until
contributors command line option, 74

–user
import command line option, 79

-P –pootle_path
fs command line option, 82

-a <key> <value>, –append <key> <value>
config command line option, 76

-c <key>, –clear <key>
config command line option, 76

-d, –deserializers
list_serializers command line option, 72

-g <key>, –get <key>
config command line option, 76

-j, –json
config command line option, 76

-l <key>, –list <key>
config command line option, 76

-m, –model
list_serializers command line option, 72

-o <field>, –object-field <field>
config command line option, 76

-p –fs_path
fs command line option, 82

-s <key> <value>, –set <key> <value>
config command line option, 76

-t –type
state command line option, 84

A
add

django-admin command, 82
add command line option

–force, 82
add_vfolders

django-admin command, 78
AMAGAMA_SOURCE_LANGUAGES

setting, 60
AMAGAMA_URL

setting, 60

C
calculate_checks

django-admin command, 70
calculate_checks command line option

–check, 70
changed_languages

django-admin command, 75
changed_languages command line option

–after-revision, 75
clear_stats

django-admin command, 86
command line option

–atomic, 69
–no-rq, 69
–noinput, 69
–project, –language, 68

commit_to_vcs
django-admin command, 87

config
django-admin command, 76

config command line option
-a <key> <value>, –append <key> <value>, 76
-c <key>, –clear <key>, 76
-g <key>, –get <key>, 76
-j, –json, 76
-l <key>, –list <key>, 76
-o <field>, –object-field <field>, 76
-s <key> <value>, –set <key> <value>, 76
content_type, 76
object, 76

content_type
config command line option, 76

contributors
django-admin command, 73

contributors command line option
–include-anonymous, 73
–mailmerge, 73
–since, 73
–sort-by, 73
–until, 74

CONTRIBUTORS_EXCLUDED_NAMES
setting, 62

166 Index

Pootle Documentation, Release 2.8.2

CONTRIBUTORS_EXCLUDED_PROJECT_NAMES
setting, 62

D
DESCRIPTION

setting, 62
django-admin command

add, 82
add_vfolders, 78
calculate_checks, 70
changed_languages, 75
clear_stats, 86
commit_to_vcs, 87
config, 76
contributors, 73
dump, 75
export, 78
fetch, 82
find_duplicate_emails, 85
flush_cache, 70
fs, 81
import, 79
info, 83
init, 79
initdb, 80
last_change_id, 87
list_languages, 73
list_projects, 73
list_serializers, 72
merge_user, 85
purge_user, 85
refresh_scores, 71
refresh_stats, 86
resolve, 83
retry_failed_jobs, 69
revision, 74
rm, 83
run_cherrypy, 87
schema, 76
set_filetype, 74
start, 87
state, 84
sync, 84
sync_stores, 71
test_checks, 75
unstage, 84
update_data, 69
update_from_vcs, 87
update_stores, 71
update_tmserver, 77
update_user_email, 85
verify_user, 86
webpack, 81

dump

django-admin command, 75
dump command line option

–data, 75
–stats, 76

E
ENABLE_ALT_SRC

setting, 62
environment variable

POOTLE_SETTINGS, 56
PYTHONPATH, 88

export
django-admin command, 78

export command line option
–rotate, 79
–tmx, 79

EXPORTED_DIRECTORY_MODE
setting, 62

F
fetch

django-admin command, 82
fetch command line option

–force, 83
find_duplicate_emails

django-admin command, 85
flush_cache

django-admin command, 70
flush_cache command line option

–all, 71
–django-cache, 70
–lru, 70
–rqdata, 70

fs
django-admin command, 81

fs command line option
-P –pootle_path, 82
-p –fs_path, 82

FUZZY_MATCH_MAX_LENGTH
setting, 62

FUZZY_MATCH_MIN_SIMILARITY
setting, 62

I
import

django-admin command, 79
import command line option

–user, 79
info

django-admin command, 83
init

django-admin command, 79
init command line option

–config, 80

Index 167

Pootle Documentation, Release 2.8.2

–db, 80
–db-host, 80
–db-name, 80
–db-port, 80
–db-user, 80
–dev, 80
The configuration file to write to., 80

initdb
django-admin command, 80

initdb command line option
–no-projects, 80

L
last_change_id

django-admin command, 87
list_languages

django-admin command, 73
list_languages command line option

–modified-since, 73
list_projects

django-admin command, 73
list_projects command line option

–modified-since, 73
list_serializers

django-admin command, 72
list_serializers command line option

-d, –deserializers, 72
-m, –model, 72

M
MAX_AUTOTERMS

setting, 62
merge_user

django-admin command, 85
merge_user command line option

–no-delete, 85
MIN_AUTOTERMS

setting, 62

O
object

config command line option, 76

P
PARSE_POOL_CULL_FREQUENCY

setting, 61
PARSE_POOL_SIZE

setting, 61
POOTLE_CACHE_TIMEOUT

setting, 57
POOTLE_CANONICAL_URL

setting, 58
POOTLE_CAPTCHA_ENABLED

setting, 59
POOTLE_CONTACT_EMAIL

setting, 57
POOTLE_CONTACT_ENABLED

setting, 57
POOTLE_CONTACT_REPORT_EMAIL

setting, 57
POOTLE_CUSTOM_LOGO

setting, 58
POOTLE_CUSTOM_TEMPLATE_CONTEXT

setting, 58
POOTLE_EMAIL_FEEDBACK_ENABLED

setting, 58
POOTLE_FAVICONS_PATH

setting, 58
POOTLE_FS_WORKING_PATH

setting, 60
POOTLE_INSTANCE_ID

setting, 57
POOTLE_LEGALPAGE_NOCHECK_PREFIXES

setting, 58
POOTLE_LOG_DIRECTORY

setting, 57
POOTLE_MARKUP_FILTER

setting, 58
POOTLE_META_USERS

setting, 58
POOTLE_MT_BACKENDS

setting, 61
POOTLE_QUALITY_CHECKER

setting, 62
POOTLE_REPORTS_MARK_FUNC

setting, 59
POOTLE_SCORE_COEFFICIENTS

setting, 62
POOTLE_SCORES

setting, 59
POOTLE_SETTINGS, 56
POOTLE_SIGNUP_ENABLED

setting, 58
POOTLE_SQL_MIGRATIONS

setting, 57
POOTLE_SYNC_FILE_MODE

setting, 60
POOTLE_TITLE

setting, 57
POOTLE_TM_SERVER

setting, 60
POOTLE_TM_SERVER-INDEX_NAME

setting, 61
POOTLE_TM_SERVER-MIN_SIMILARITY

setting, 61
POOTLE_TM_SERVER-WEIGHT

setting, 61

168 Index

Pootle Documentation, Release 2.8.2

POOTLE_TOP_STATS_CACHE_TIMEOUT
setting, 62

POOTLE_TRANSLATION_DIRECTORY
setting, 61

POOTLE_WORDCOUNT_FUNC
setting, 62

purge_user
django-admin command, 85

PYTHONPATH, 88

R
refresh_scores

django-admin command, 71
refresh_scores command line option

–reset, 71
refresh_stats

django-admin command, 86
resolve

django-admin command, 83
resolve command line option

–overwrite, 83
–pootle-wins, 83

retry_failed_jobs
django-admin command, 69

revision
django-admin command, 74

revision command line option
–restore, 74

rm
django-admin command, 83

rm command line option
–force, 84

run_cherrypy
django-admin command, 87

S
schema

django-admin command, 76
set_filetype

django-admin command, 74
set_filetype command line option

–from-filetype, 74
–matching, 74

setting
AMAGAMA_SOURCE_LANGUAGES, 60
AMAGAMA_URL, 60
CONTRIBUTORS_EXCLUDED_NAMES, 62
CONTRIBUTORS_EXCLUDED_PROJECT_NAMES,

62
DESCRIPTION, 62
ENABLE_ALT_SRC, 62
EXPORTED_DIRECTORY_MODE, 62
FUZZY_MATCH_MAX_LENGTH, 62
FUZZY_MATCH_MIN_SIMILARITY, 62

MAX_AUTOTERMS, 62
MIN_AUTOTERMS, 62
PARSE_POOL_CULL_FREQUENCY, 61
PARSE_POOL_SIZE, 61
POOTLE_CACHE_TIMEOUT, 57
POOTLE_CANONICAL_URL, 58
POOTLE_CAPTCHA_ENABLED, 59
POOTLE_CONTACT_EMAIL, 57
POOTLE_CONTACT_ENABLED, 57
POOTLE_CONTACT_REPORT_EMAIL, 57
POOTLE_CUSTOM_LOGO, 58
POOTLE_CUSTOM_TEMPLATE_CONTEXT, 58
POOTLE_EMAIL_FEEDBACK_ENABLED, 58
POOTLE_FAVICONS_PATH, 58
POOTLE_FS_WORKING_PATH, 60
POOTLE_INSTANCE_ID, 57
POOTLE_LEGALPAGE_NOCHECK_PREFIXES,

58
POOTLE_LOG_DIRECTORY, 57
POOTLE_MARKUP_FILTER, 58
POOTLE_META_USERS, 58
POOTLE_MT_BACKENDS, 61
POOTLE_QUALITY_CHECKER, 62
POOTLE_REPORTS_MARK_FUNC, 59
POOTLE_SCORE_COEFFICIENTS, 62
POOTLE_SCORES, 59
POOTLE_SIGNUP_ENABLED, 58
POOTLE_SQL_MIGRATIONS, 57
POOTLE_SYNC_FILE_MODE, 60
POOTLE_TITLE, 57
POOTLE_TM_SERVER, 60
POOTLE_TM_SERVER-INDEX_NAME, 61
POOTLE_TM_SERVER-MIN_SIMILARITY, 61
POOTLE_TM_SERVER-WEIGHT, 61
POOTLE_TOP_STATS_CACHE_TIMEOUT, 62
POOTLE_TRANSLATION_DIRECTORY, 61
POOTLE_WORDCOUNT_FUNC, 62
VCS_DIRECTORY, 62

start
django-admin command, 87

state
django-admin command, 84

state command line option
-t –type, 84

sync
django-admin command, 84

sync_stores
django-admin command, 71

sync_stores command line option
–force, 71
–overwrite, 71
–skip-missing, 71

Index 169

Pootle Documentation, Release 2.8.2

T
test_checks

django-admin command, 75
test_checks command line option

–check, 75
–source, –target, 75
–unit, 75

The configuration file to write to.
init command line option, 80

U
unstage

django-admin command, 84
update_data

django-admin command, 69
update_data command line option

–store, 69
update_from_vcs

django-admin command, 87
update_stores

django-admin command, 71
update_stores command line option

–force, 72
–overwrite, 72

update_tmserver
django-admin command, 77

update_tmserver command line option
–display-name, 77
–dry-run, 77
–include-disabled-projects, 77
–rebuild, 77
–refresh, 77
–target-language, 78
–tm, 77

update_user_email
django-admin command, 85

V
VCS_DIRECTORY

setting, 62
verify_user

django-admin command, 86
verify_user command line option

–all, 86

W
webpack

django-admin command, 81
webpack command line option

–dev, 81

170 Index

	All you need to know
	Features
	Installation
	Upgrading
	Administering a server
	Developers
	Frequently Asked Questions (FAQ)

	Additional Notes
	Release Notes
	License

