

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Translate Toolkit

Welcome to Translate Toolkit’s documentation. This documenation covers both
user’s and programmer’s perspective.








User’s Guide

This part has the user’s documentation for the tools included in the
Translate Toolkit.



	Features

	Installation

	Converters

	Tools

	Scripts

	Use Cases

	Supported formats








Developer’s Guide

If you are a developer interested in using the Translate Toolkit for
building new tools, make sure to read through this part.



	Translate Styleguide

	Documentation

	Building

	Testing

	Command Line Functional Testing

	Contributing

	Translate Toolkit Developers Guide

	Making a Translate Toolkit Release

	Deprecation of Features








Additional Notes

Changelog and legal information are included here.



	Changelog

	Release Notes

	History of the Translate Toolkit

	License








API Reference

This part covers any function, class or method included within the
Translate Toolkit that you can use to programatically build new
localization tools.



	API
	Module overview

	Module list















          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Features


	Work with ONE localisation format.  You’ll no longer be editing DTD files
in one tool, .properties in another, OpenOffice GSI in a third.  Simply do
all your localisation in a PO or XLIFF editor

	Converters for a number of formats
	OpenOffice.org SDF/GSI

	Mozilla: .properties, DTD, XHTML, .inc, .ini, etc

	Others: Comma Separated Value, TMX, XLIFF, TBX, PHP, WordFast TXT, Qt .ts,
txt, .ini, Windows .rc, ical, subtitles, Mac OS X strings





	File access to localization files through the format API in all the above
formats, as well as .qph, .qm, .mo

	Output valid target file types.  We make sure that your output files
(e.g. .properties) contain all comments from the original file and preserves
the layout of the original as far as possible.  If your PO entry is marked as
fuzzy we use the English text, not your half complete translation.  The
converters for OpenOffice.org and Mozilla formats will also perform simple
checks and corrections to make sure you have none of those hard to find
localisation bugs.

	Our checker has over 42 checks to find
errors such as: missing or translated variables, missing accelerator keys,
bad escaping, start capitalisation, missing sentences, bad XML and much more.

	Language awareness, taking language conventions for capitalisation, quotes
and other punctuation into account

	Find conflicting translations easily, cases where you have translated a
source word differently or used a target word for 2 very different English
concepts

	Extract messages using simple text or a regular expression allowing you
to quickly find and extract words that you need to fix due to glossary
changes.

	Merge snippets of PO files into your existing translations.

	Create word, string and file counts of your files.  Making it much easier
to budget time as string counts do not give you a good indication of expected
work.

	Create a set of PO files with debugging entries to allow you to easily
locate the source of translations.  Very useful in OpenOffice.org which
provides scant clues as to where the running application has sourced the
message.



The Translate Toolkit is also a powerful API for writing translation and
localisation tools, already used by our own and several other projects. See the
base class section for more information.





          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Installation

This is a guide to installing the Translate Toolkit on your system.  If the
Translate Toolkit is already packaged for your system, this is probably the
easiest way to install it. For Windows users, we provide installers. For
several Linux distributions, the package might be available through your
package manager.

These packages might not be the absolute newest, or you might want to install
from our packaged releases for some other reason.

If your system already has the toolkit prepackaged, then please let us know
what steps are required to install it.


Prerequisites


	Remove old versions of toolkit on Debian



The dollowing advice only applies to manual installation from tar ball.


	Find location of your python packages:

python -c "from distutils.sysconfig import get_python_lib; print get_python_lib()"







	Delete toolkit package from your Python site-packages directory e.g.:

rm /usr/local/lib/python2.5/dist-packages/translate -R












Building

For build instructions, see the Building page.




Download

Download a stable released version [http://sourceforge.net/projects/translate/files/Translate%20Toolkit/].  Or
if you have a python environment, run easy_install translate-toolkit.  For
those who need problems fixed, or who want to work on the bleeding edge, get
the latest source from Git.

For most Windows users, the file named “translate-toolkit-...-setup.exe” is the
best choice and contains everything you need if you just want to run Toolkit
commands.  If you want to use it for development, you will need to install it
with easy_install or from the source package.

If you install the complete “setup” version in Windows, or if you install
through your distribution’s package manager, you should automatically have all
the dependencies you need. If you are installing from the Version Control
System, or from a source release, you should check the README file for
information on the dependencies that are needed. Some of the dependencies are
optional. The README file documents this.




Installing packaged versions

Get the package for your system:







	-setup.exe
	A complete Windows installer containing all dependencies,
including Python


	.exe
	An installer for a Windows with Python and other
dependencies already installed


	RPM
	If you want to install easily on an RPM based system


	.tar.gz
	for source based installing on Linux


	.deb
	for Debian GNU/Linux (etch version)





The RPM package can be installed by using the following command:

rpm -Uvh translate-toolkit-1.0.1.rpm





To install a tar.bz2:

tar xvjf translate-toolkit-1.1.0.tar.bz2
cd translate-toolkit-1.1.0
su
./setup.py install





On Windows simply click on the .exe file and follow the instructions.

On Debian (if you are on etch), just type the following command:

aptitude install translate-toolkit





If you are using an old Debian stable system, you might want to install the
.tar.bz2 version. Be sure to install python and python development first with:

apt-get install python python-dev





Alternatively newer packages might be in testing.




Installing from Git

If you want to try the bleeding edge, or just want to have the latest fixes
from a stabilising branch then you need to use Git to get your sources.:

git clone https://github.com/translate/translate.git





This will retrieve the master branch of the Toolkit.  Further Git
instructions [http://git.or.cz/course/svn.html] are also available.

Once you have the sources you have two options, a full install:

su
./setup.py install





or, running the tools from the source directory

./setuppath # Only needed the first time
. setpath  # Do this once for a session








Verify installed version

To verify which version of the toolkit you have installed run:

[l10n@server]# moz2po --version
moz2po 1.1.0











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Converters







Converters change many different formats to PO and back again. Sometimes only
one direction is supported, or conversion is done using non-PO formats.  The
converters follow a general pattern of usage,
understanding that will make the converters much easier to use and understand.


	moz2po – Mozilla .properties and .dtd converter.  Works with
Firefox and Thunderbird

	oo2po – OpenOffice.org SDF converter (Also works as
oo2xliff).

	odf2xliff – Convert OpenDocument (ODF) documents to XLIFF
and vice-versa.

	prop2po – Java property file (.properties) converter

	php2po – PHP localisable string arrays converter.

	sub2po – Converter for various subtitle files

	txt2po – Plain text to PO converter

	po2wordfast – Wordfast Translation Memory converter

	po2tmx – TMX (Translation Memory Exchange) converter

	pot2po – initialise PO Template files for translation

	csv2po – Comma Separated Value (CSV) converter. Useful for
doing translations using a spreadsheet.

	csv2tbx – Create TBX (TermBase eXchange) files from Comma
Separated Value (CSV) files

	html2po – HTML converter

	ical2po – iCalendar file converter

	ini2po – Windows INI file converter

	json2po – JSON file converter

	web2py2po – web2py translation to PO converter

	rc2po – Windows Resource .rc (C++ Resource Compiler)
converter

	symb2po – Symbian-style translation to PO converter

	tiki2po – TikiWiki [http://tikiwiki.org/] language.php
converter

	ts2po – Qt Linguist .ts converter

	xliff2po – XLIFF (XML Localisation Interchange File
Format) converter






Tools

The PO tools allow you to manipulate and work with PO files


Quality Assurance




These tools are especially useful for measuring and improving translation
quality.


	poconflicts – extract messages that have conflicting translation

	pofilter – filter PO files to find common errors using a number
of tests

	pogrep – find strings in your PO files

	pomerge – merge file extracted using pofilter back into the original
files

	porestructure – restructures PO files according to poconflict
directives

	junitmsgfmt – run msgfmt and provide JUnit type output for use in
continuous integration systems like Hudson and Jenkins






Other tools





	tmserver – a Translation Memory server, can be queried over HTTP
using JSON

	poterminology – extracts potential terminology from your translation
files

	pocount – Count words and strings in PO, XLIFF and other types of
translatable files

	podebug – Add debug strings to messages

	posegment – Break a PO or XLIFF files into sentence segments, useful
for creating a segmented translation memory

	pocompile – create an MO (Machine Object) file from a PO or XLIFF
file

	poswap – uses a translation of another language that you would rather
use than English as source language

	poclean – produces a clean file from an unclean file
(Trados/Wordfast) by stripping out the tw4win indicators

	pretranslate – fill any missing translations from translation memory
via fuzzy matching.

	Levenshtein distance – edit distance algorithms for translation
memory matching








Scripts




The scripts are for working with and manipulating PO files.  Unlike the
tools which are written in Python, the scripts are written in bash.
Some of them are packaged since version 1.0 of the Toolkit, but you might need
to download them from version control and do a manual installation .


	moz-l10n-builder – Create Mozilla XPIs and rebuild Windows installers
from existing translations

	Mozilla L10n Scripts – Build Mozilla products Firefox and Thunderbird

	phase – Helps manage a project divided into phases of work, including
sending, checking, etc

	pocompendium – Creates various types of PO compendium (i.e. combines
many PO files into a single PO file)

	pocommentclean – Remove all translator comments from a PO file

	pomigrate2 – Migrate older PO files to new POT files

	popuretext – Extracts all the source text from a directory of POT
files

	poreencode – Converts PO files to a new character encoding

	posplit – Split a PO file into translate, untranslated and fuzzy
files







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
General Usage

The tools follow a general usage convention which is helpful to understand.


Input & Output

The last two arguments of your command are the input and output
files/directories:

moz2po <input> <output>





You can of course still us the -i and -o options which allows you
to reorder commands

moz2po -o <output> -i <input>








Error Reporting

All tools accept the option --errorlevel.  If you find a bug, add this
option and send the traceback to the developers.

moz2po <other-options> --errorlevel=traceback








Templates

If you are working with any file format and you wish to preserve comments and
layout then use your source file as a template.

po2dtd -t <source-file> <input> <output>





This will use the files in <source-file> as a template, merge the PO files
in <input>, and create new DTD files in <output>

If you ran this without the templates you would get valid DTD files but they
would not preserve the layout or all the comments from the source DTD file

The same concept of templates is also used when you merge files.

pomerge -t <old> <fixes> <new>





This would take the <old> files merge in the <fixes> and output new PO
files, preserving formatting, into <new>.  You can use the same directory
for <old> and <new> if you want the merges to overwrite files in
<old>.




source2target

The converters all follow this convention:


	source = the format from which you are converting e.g. in oo2po we are converting from OpenOffice.org SDF/GSI

	target = the format into which you are converting e.g. in oo2po we are converting to Gettext PO






Getting Help

The --help option will always list the available commands for the tool.

moz2po --help











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
moz2po

moz2po converts Mozilla files to PO files.  It wraps converters that handle
.properties, .dtd and some strange Mozilla files.  The tool can work with files
from Mozilla’s Mercurial repository.  The tools
thus provides a complete roundtrip for Mozilla localisation using PO files and
PO editors.


Note

This page should only be used as a reference to the command-line
options for moz2po and po2moz. For more about using the Translate Toolkit
and PO files for translating Mozilla products, please see the page on
Mozilla L10n Scripts.




Usage

moz2po [options] <dir> <po>
po2moz [options] <po> <dir>





Where:







	<dir>
	is a directory containing valid Mozilla files


	<po>
	is a directory of PO or POT files





Options (moz2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in inc, it, *, dtd, properties formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in it.po, it.pot, manifest, xhtml.po, xhtml.pot, ini.po, ini.pot, rdf, js, *, html.po, html.pot, inc.po, inc.pot, dtd.po, dtd.pot, properties.po, properties.pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in it, *, properties, dtd, inc formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2moz):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in dtd.po, dtd.pot, ini.po, ini.pot, inc.po, inc.pot, manifest, it.po, it.pot, *, html.po, html.pot, js, rdf, properties.po, properties.pot, xhtml.po, xhtml.pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in dtd, *, inc, it, properties formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in dtd, *, inc, it, properties formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-lLOCALE, --locale=LOCALE


		set output locale (required as this sets the directory names)

	
--removeuntranslated


		remove untranslated strings from output

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Examples


Creating POT files


See also

Creating Mozilla POT files.



After extracting the en-US l10n files, you can run the following command:

moz2po -P l10n/en-US pot





This creates a set of POT (-P) files in the pot directory from the
Mozilla files in l10n/en-US for use as PO Templates.

If you want to create a set of POT files with another base language try the
following:

moz2po -P l10n/fr-FR fr-pot





This will create a set of POT files in fr-pot that have French as your
source language.




Creating PO files from existing non-PO translations

If you have existing translations (Mozilla related or other Babelzilla files)
and you wish to convert them to PO for future translation then the following
generic instructions will work:

moz2po -t en-US af-ZA af-ZA_pofiles





This will combine the untranslated template en-US files from en-US combine
them with your existing translations in af-ZA and output PO files to
af-ZA_pofiles.

moz2po -t l10n/fr l10n/xh po/xh





For those who are not English fluent you can do the same with another
languages.  In this case msgid will contain the French text from
l10n/fr.  This is useful for translating where the translators other
languages is not English but French, Spanish or Portuguese.  Please make sure
that the source languages i.e. the msgid language is fully translated as
against en-US.




Creating Mercurial ready translations

po2moz -t l10n/en-US po/xh l10n/xh





Create Mozilla files using the templates files in l10n/en-US (see above for
how to create them) with PO translations in po/xh and ouput them to
l10n/xh.  The files now in l10n/xh are ready for submission to Mozilla
and can be used to build a language pack or translated version of Mozilla.






Issues

You can perform the bulk of your work (99%) with moz2po.

Localisation of XHTML is not yet perfect, you might want to work with the files
directly.

Issue 203 [https://github.com/translate/translate/issues/203] tracks the outstanding features which would allow
complete localisation of Mozilla including; all help, start pages, rdf files,
etc. It also tracks some bugs.

Accesskeys don’t yet work in .properties files and in several cases where the
Mozilla .dtd files don’t follow the normal conventions, for example in
security/manager/chrome/pippki/pref-ssl.dtd.po. You might also want to
check the files mentioned in this Mozilla bug 329444 [https://bugzilla.mozilla.org/show_bug.cgi?id=329444] where mistakes in the
DTD-definitions cause problems in the matching of accelerators with the text.

You might want to give special attention to the following files since it
contains customisations that are not really translations.


	mail/chrome/messenger/downloadheaders.dtd.po

	toolkit/chrome/global/intl.properties.po



Also, all width, height and size specifications need to be edited with feedback
from testing the translated interfaces.

There are some constructed strings in the Mozilla code which we can’t do much
about. Take good care to read the localisation notes. For an example, see
mail/chrome/messenger/downloadheaders.dtd.po. In that specific file, the
localisation note from the DTD file is lost, so take good care of those.

The file extension of the original Mozilla file is required to tell the Toolkit
how to do the conversion.  Therefore, a file like foo.dtd must be named
foo.dtd.po in order to po2moz to recognise it as a DTD file.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
oo2po

Convert between OpenOffice.org GSI/SDF files and the PO format.  This tool
provides a complete roundtrip; it preserves the structure of the GSI file and
creates completely valid PO files.

oo2xliff will convert the SDF files to XLIFF format.


Usage

oo2po [options] <sdf> <output>
po2oo [options] [-t <en-US.sdf>] -l <targetlang> <input> <sdf|output>





or for XLIFF files:

oo2xliff [options] -l <targetlang> <sdf> <output>
xliff2oo [options] [-t <en-US.sdf>] -l <targetlang> <input> <sdf|output>





Where:







	<sdf>
	is a valid OpenOffice.org GSI or SDF files


	<output>
	is a directory for the resultant PO/POT/XLIFF files


	<input>
	is a directory of translated PO/XLIFF files


	<targetlang>
	is the ISO 639 [http://en.wikipedia.org/wiki/ISO_639] language code used in the
sdf file, e.g. af





Options (oo2po and oo2xliff):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in oo format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po) (only available in oo2po

	
-lLANG, --language=LANG


		set target language to extract from oo file (e.g. af-ZA) (required for oo2xliff)

	
--source-language=LANG


		set source language code (default en-US)

	
--nonrecursiveinput


		don’t treat the input oo as a recursive store

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)

	
--multifile=MULTIFILESTYLE


		how to split po/pot files (single, toplevel or
onefile)




Options (po2oo and xliff2oo):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in oo format

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in oo format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-lLANG, --language=LANG


		set target language code (e.g. af-ZA) [required]

	
--source-language=LANG


		set source language code (default en-US)

	
-T, --keeptimestamp


		don’t change the timestamps of the strings

	
--nonrecursiveoutput


		don’t treat the output oo as a recursive store

	
--nonrecursivetemplate


		don’t treat the template oo as a recursive store

	
--filteraction=ACTION


		action on pofilter failure: none (default), warn,
exclude-serious, exclude-all

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)

	
--multifile=MULTIFILESTYLE


		how to split po/pot files (single, toplevel or
onefile)







Examples

These examples demonstrate most of the useful invocations of oo2po:


Creating POT files

oo2po -P en-US.sdf pot





Extract messages from en-US.sdf and place them in a directory called pot.
The -P option ensures that we create POT files instead of PO files.

oo2po -P --source-language=fr fr-FR.sdf french-pot





Instead of creating English POT files we are now creating POT files that
contain French in the msgid.  This is useful for translators who are not
English literate.  You will need to have a fully translated sdf in the source
language.




Creating PO files from existing work

oo2po --duplicates=merge -l zu zu-ZA.sdf zulu





Extract all existing Zulu (zu) messages from zu-ZA.sdf and place them in a
directory called zulu.  If you find duplicate messages in a file then merge
them into a single message (This is the default behaviour for traditional PO
files).  You might want to use pomigrate2 to ensure that your PO files
match the latest POT files.:

cat GSI_af.sdf GSI_xh.sdf > GSI_af-xh.sdf
oo2po --source-language=af -l xh GSI_af-xh.sdf af-xh-po





Here we are creating PO files with your existing translations but a different
source language.  Firstly we combine the two SDF files.  Then oo2po creates a
set of PO files in af-xh-po using Afrikaans (af) as the source language and
Xhosa (xh) as the target language from the combined SDF file GSI_af-xh.sdf




Creating a new GSI/SDF file

po2oo -l zu zulu zu_ZA.sdf





Using PO files found in zulu create an SDF files called zu_ZA.sdf for
language zu:

po2oo -l af -t en-US.sdf --nofuzzy --keeptimestamp --filteraction=exclude-serious afrikaans af_ZA.sdf





Create an Afrikaans (af) SDF file called af_ZA.sdf using en-US.sdf as a
template and preserving the timestamps within the SDF file while also
eliminating any serious errors in translation.  Using templates ensures that
the resultant SDF file has exactly the same format as the template SDF file.
In an SDF file each translated string can have a timestamp attached.  This
creates a large amount of unuseful traffic when comparing version of the SDF
file, by preserving the timestamp we ensure that this does not change and can
therefore see the translation changes clearly.  We have included the nofuzzy
option (on by default) that prevent fuzzy PO messages from getting into the SDF
file.  Lastly the filteraction option is set to exclude serious errors:
variables failures and translated XML will be excluded from the final SDF.






helpcontent2

The escaping of helpcontent2 from SDF files was very confusing,
issue 295 [https://github.com/translate/translate/issues/295] implemented a fix that appeared in version 1.1.0 (All known issues
were fixed in 1.1.1).  Translators are now able to translate helpcontent2 with
clean escaping.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
odf2xliff and xliff2odf

Convert OpenDocument (ODF) files to XLIFF localization files. Create translated
ODF files by combining the original ODF files with XLIFF files containing
translations of strings in the original document.

XLIFF is the XML Localization Interchange File Format developed by OASIS [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff] (The
Organization for the Advancement of Structured Information Standards) to allow
translation work to be standardised no matter what the source format and to
allow the work to be freely moved from tool to tool.

If you are more used to software translation or l10n, you might want to read a
bit about Document translation. This should help you to get the
most out of translating ODF with XLIFF.


Usage

odf2xliff [options] <original_odf> <xliff>
xliff2odf [options] -t <original_odf> <xliff> <translated_odf>





Where:







	<original_odf>
	is an ODF document whose strings have to be translated


	<xliff>
	is an XLIFF file


	<translated_odf>
	is an ODF file to generate by replacing the strings in


	
	<original_odf> with the translated strings in <xliff>





Options (odf2xliff):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in ODF format

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in XLIFF format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp




Options (xliff2odf):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in XLIFF formats

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in ODF format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in ODF format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp







Examples

odf2xliff english.odt english_français.xlf





Create an XLIFF file from an ODT file (the source ODF file could also be any of
the other ODF files, including ODS, ODG, etc.).

xliff2odf -t english.odt english_français.xlf français.odt





Using english.odt as the template document, and english_français.xlf as the
file of translations, create a translated file français.odt.




Bugs

This filter is not yet extensively used – we appreciate your feedback.  For
more information on conformance to standards, see the XLIFF or
OpenDocument Format pages.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
prop2po

Convert between Java property files (.properties) and Gettext PO format.

Note: this tool completely eliminates the need for native2ascii as po2prop does the correct escaping to
the Latin1 encoding that is needed by Java.

The following other formats are also supported via the –personality parameter:


	Adobe Flex

	Skype .lang

	Mac OS X .strings

	Mozilla .properties




Usage

prop2po [options] <property> <po>
po2prop [options] -t <template> <po> <property>





Where:







	<property>
	is a directory containing property files or an individual
property file


	<po>
	is a directory containing PO files and an individual
property file


	<template>
	is a directory of template property files or a single
template property file





Options (prop2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in properties format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in properties format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--personality=TYPE


		override the input file format: flex, java, mozilla,
java-utf8, skype, gaia, strings
(for .properties files, default: java)

	
--encoding=ENCODING


		override the encoding set by the personality

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2prop):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in properties format

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in properties format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--personality=TYPE


		override the input file format: flex, java, mozilla,
java-utf8, skype, gaia, strings
(for .properties files, default: java)

	
--encoding=ENCODING


		override the encoding set by the personality (since 1.8.0)

	
--removeuntranslated


		remove key value from output if it is untranslated

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Examples

These examples demonstrate most of the useful invocations of prop2po:


Creating POT files

prop2po -P properties pot





Extract messages from properties directory and place them in a directory
called pot.  The -P option ensures that we create POT files instead of
PO files.:

prop2po -P file.properties file.pot





Extract messages from file.properties and place them in file.pot.




Creating PO files from existing work

prop2po --duplicates=msgctxt -t reference zu zu-po





Extract all existing Zulu messages from zu directory and place the resultant
PO files in a directory called zu-po.  If you find duplicate messages in a
file then use Gettext’s mgsctxt to disambiguate them.  During the merge we use
the .properties files in reference as templates and as the source of the
English text for the msgid.  Once you have your PO files you might want to use
pomigrate2 to ensure that your PO files match the latest POT files.




Creating .properties files from your translations

po2prop -t reference zu-po zu





Using our translations found in zu-po and the templates found in reference
we create a new set of property files in zu.  These new property files will
look exactly like those found in the templates, but with the text changed to
the translation.  Any fuzzy entry in our PO files will be ignored and any
untranslated item will be placed in zu in English.  The .properties file
created will be based on the Java specification and will thus use escaped
Unicode.  Where:

ṽḁḽṻḝ





Will appear in the files as:

\u1E7D\u1E01\u1E3D\u1E7B\u1E1D





To get output as used by Mozilla localisation do the following:

po2prop --personality=mozilla -t reference zu-po zu





This will do exactly the same as above except that the output will now appear
as real Unicode characters in UTF-8 encoding.






Doing away with native2ascii

The native2ascii [http://docs.oracle.com/javase/7/docs/technotes/tools/windows/native2ascii.html]
command is the traditional tool of property file localisers.  With prop2po
there is no need to use this command or to ever work directly with the escaped
Unicode.

If you are working mostly with Gettext PO files then this is a double benefit
as you can now use your favourite PO editor to translate Java applications.
Your process would now look like this:

prop2po some.properties some.po





Firstly create a PO file that you can translate.  Now translate it in your
favourite PO editor.:

po2prop -t some.properties some.po some-other.properties





Using the original properties file as a template we preserve all layout and
comments, combined with your PO translation we create a new translate
properties file.  During this whole process we have not needed to understand or
process any escaping prop2po and po2prop handle that all automatically.

If you have existing translations you can recover them as follows:

prop2po -t some.properties translations.properties translations.po





This takes the default English properties file and combines it with your
translate properties file and created a PO file.  You now continue translating
using your PO file.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
php2po

Converts PHP localisable string arrays to Gettext PO format.


Usage

php2po [options] <php> <po>
po2php [options] <po> <php>





Where:







	<php>
	is a valid PHP localisable file or directory of those files


	<po>
	is a directory of PO or POT files





Options (php2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in php format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2php):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in php format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Formats Supported

Check PHP format document to see to which extent the PHP
format is supported.




Examples

This example looks at roundtrip of PHP translations as well as recovery of
existing translations.

First we need to create a set of POT files.:

php2po -P lang/en pot/





All .php files found in the lang/en directory are converted to Gettext POT
files and placed in the pot directory.

If you are translating for the first time then you can skip the next step. If
you need to recover your existing translations then we do the following:

php2po -t lang/en lang/zu po-zu/





Using the English PHP files found in lang/en and your existing Zulu
translation in lang/zu we create a set of PO files in po-zu.  These
will now have your translations. Please be aware that in order for that to work
100% you need to have both English and Zulu at the same revision, if they are
not you will have to review all translations.

You are now in a position to translate your recovered translations or your new
POT files.

Once translated you can convert back as follows:

po2php -t lang/en po-zu/ lang/zu





Your translations found in the Zulu PO directory, po-zu, will be converted
to PHP using the files in lang/en as templates and placing your new
translations in lang/zu.

To update your translations simply redo the POT creation step and make use of
pot2po to bring your translation up-to-date.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
sub2po

sub2po allows you to use the same principles of PO files with
Subtitles. In PO only items that change are marked fuzzy and
only new items need to be translated, unchanged items remain unchanged for the
translation.


Usage

sub2po [options] <foo.srt> <foo.po>
po2sub [options] [-t <foo.srt>] <XX.po> <foo-XX.srt>





Where:







	foo.srt
	is the input subtitle file


	foo.po
	is an empty PO file that may be translated


	XX.po
	is a PO file translated into the XX language


	foo-XX.srt
	is the foo.srt file translated into language XX





Options (sub2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in .srt format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2sub):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in srt format

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in txt format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)





Examples

To create the POT files is simple:

sub2po -P SUBTITLE_FILE subtitles.pot





A translator would copy the POT file to their own PO file and then create
translations of the entries. If you wish to create a PO file and not a POT file
then leave off the -P option.

To convert back:

po2sub -t SUBTITLE_FILE   subtitles-XX.po  subtitles-XX.srt








Translating

Translate as normal. However, see the issues mentioned at
Subtitles.




Bugs

There might be some issues with encodings, since the srt files don’t specify
them. We assume files to be encoded in UTF-8, so a conversion should solve this
easily. Note that most of the handling of the srt files come from gaupol.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
txt2po

txt2po allows you to use the same principles of PO files with normal text
files.  In PO only items that change are marked fuzzy and only new items need
to be translated, unchanged items remain unchanged for the translation.


Usage

txt2po [options] <foo.txt> <foo.po>
po2txt [options] [-t <foo.txt>] <XX.po> <foo-XX.txt>





Where:







	foo.txt
	is the input plain text file


	foo.po
	is an empty PO file that may be translated


	XX.po
	is a PO file translated into the XX language


	foo-XX.txt
	is the foo.txt file translated into language XX





Options (txt2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in *, txt formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--encoding=ENCODING


		The encoding of the input file (default: UTF-8)

	
--flavour=FLAVOUR


		The flavour of text file: plain (default), dokuwiki, mediawiki

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2txt):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in txt format

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in txt format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-wWRAP, --wrap=WRAP


		set number of columns to wrap text at

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)

	
--encoding
	encoding of the template file







A roundtrip example


Preparing input files

With txt2po a text file is broken down into sections.  Each section is
separated by a line of whitespace.  Each section will appear as a msgid in the
PO file.  Because of this simple method of breaking up the input file it might
be necessary to alter the layout of your input file.  For instance you might
want to separate a heading from a paragraph by using whitespace.

For steps in a process you would want to leave a blank line between each step
so that each step can be translated independently.

For a list of items you might want to group them together so that a translator
could for example place them in alphabetic order for their translation.

Once the input file is prepared you can proceed to the next step.




Creating the POT files

This is simple:

txt2po -P TEXT_FILE text_file.pot





A translator would copy the POT file to their own PO file and then create
translations of the entries.  If you wish to create a PO file and not a POT
file then leave off the -P option.

You might want to manually edit the POT file to remove items that should not be
translated.  For instance if part of the document is a license you might want
to remove those if you do not want the license translated for legal reasons.




Translating

Translate as normal.  However translators should be aware that writers of the
text file may have used spaces, dashes, equals, underscores and other aids to
indicate things such as:

* Headings and sub-headings
* Code examples, command lines examples
* Various lists
* etc





They will need to adapt these to work in their language being aware of how they
will appear once they are merged with the original text document.




Creating a translated text file

With the translations complete you can create a translated text file like
this:

po2txt -w 75 -t TEXT_FILE translated.po TEXT_FILE.translated





This uses the original text file as a template and creates a new translated
text file using the translations found in the PO file.

The -w command allows you to reflow the translated text to N
number of characters, otherwise the text will appear as one long line.






Help with Wiki syntax


dokuwiki

To retrieve the raw syntax for your dokuwiki page add ‘?do=export_raw’ to you
URL.  The following would retrieve the DokuWiki home page [https://www.dokuwiki.org/dokuwiki] in raw dokuwiki format
https://www.dokuwiki.org/dokuwiki?do=export_raw

wget https://www.dokuwiki.org/dokuwiki?do=export_raw -O txt2po.txt
txt2po --flavour=dokuwiki -P txt2po.txt txt2po.pot
# edit txt2po.pot
po2txt -t txt2po.txt fr.po fr.txt





First we retrieve the file in raw dokuwiki format, then we create a POT file
for editing.  We created a French translation and using po2txt plus the
original file as a template we output fr.txt which is a French version of the
original txt2po.txt.  This file can now be uploaded to the wiki server.




MediaWiki

To retrieve the raw media wiki syntax add ‘?action=raw’ to you wiki URL.  The
following retrieves the Translate Toolkit page from Wikipedia in raw MediaWiki
format http://en.wikipedia.org/wiki/Translate_Toolkit?action=raw or
http://en.wikipedia.org/w/index.php?title=Pootle&action=raw.

To process follow the instructions above but substituting the MediaWiki
retrieval method.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
po2wordfast

Convert Gettext PO files to a Wordfast Translation Memory translation memory file.

Wordfast [http://en.wikipedia.org/wiki/Wordfast] is a popular Windows based computer-assisted translation tool.


Usage

po2wordfast [options] --language <target> <po> <wordfast>





Where:







	<po>
	a PO file or directory


	<wordfast>
	a Wordfast translation memory file





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in tmx format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-lLANG, --language=LANG


		set target language code (e.g. af-ZA) [required]

	
--source-language=LANG


		set source language code (default: en)







Examples

po2wordfast -l xh-ZA browser.po browser.txt





Use the Xhosa (xh-ZA) translations in the PO file browser.po to create a
Wordfast translation memory file called browser.txt







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
po2tmx

Convert Gettext PO files to a TMX
translation memory file.  TMX is the Translation Memory eXchange format
developed by OSCAR.




	[*]	OSCAR (Open Standards for Container/Content Allowing Re-use), a special
interest group of the now defunct LISA (Localization Industry Standards
Association). The Gala LISA OSCAR Standards [http://www.gala-global.org/lisa-oscar-standards] page has more details on
the possble future for the standards.




If you are interested in po2tmx, you might also be interested in
posegment that can be used to perform some automated segmentation on
sentence level.


Usage

po2tmx [options] --language <target> <po> <tmx>





Where:







	<po>
	is a PO file


	<tmx>
	is a TMX file





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in tmx format

	
-lLANG, --language=LANG


		set target language code (e.g. af-ZA) [required]

	
--source-language=LANG


		set source language code (default: en)







Examples

po2tmx -l xh browser.po browser.tmx





Use the Xhosa (xh) translations in the PO file browser.po to create a TMX
file called browser.tmx




Bugs and issues


Markup stripping

po2tmx conforms to TMX v1.4 without stripping markup.  See the
TMX conformance page for more details.

It has not been widely tested so your mileage may vary.




TMX and PO in OmegaT

In some tools, like OmegaT, PO files are parsed without expanding escaped
sequences, even though such tools use TMX for translation memory.  Keep this in
mind when using po2tmx, because po2tmx converts \n and \t to newlines
and tabs in the TMX file.  If such a TMX file is used while translating PO
files in OmegaT, matching will be less than 100%.

In other tools, such as Swordfish, the PO comment “no-wrap” is interpreted in
the same way as the equivalent function in XML, which may also lead to
mismatches if TMXes from po2tmx are used.

There is nothing wrong with po2tmx, but if used in conjunction with tools that
handle PO files differently, it may lead to less than perfect matching.






Tips


TMX with only unique segments

To create a TMX with no duplicates (in other words, only unique strings), use
msgcat to first create a large PO file with non-uniques removed.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pot2po

Convert a Gettext PO Template file to a PO file and merge in existing
translations if they are present. A translation memory (compendium) can also be
used for fuzzy matching. This corresponds to a large extent with the program
“msgmerge” from the gettext package.


Usage

pot2po [options] <pot> <po>





Where:







	<pot>
	is a PO Template (POT) file or directory of POT files


	<po>
	is a PO file or a directory of PO files





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in pot format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in po, pot formats (old translations)

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--tm=TM
	The file to use as translation memory when fuzzy matching

	
-sMIN_SIMILARITY, --similarity=MIN_SIMILARITY


		The minimum similarity for inclusion (default: 75%)

	
--nofuzzymatching


		Disable all fuzzy matching







Examples

pot2po -t zu-1.0.1 pot-2.0.2 zu-2.0.2





Here we are initialising the PO files in zu-2.0.2 based on the POT files in
pot-2.0.2.  We are using the old translations in zu-1.0.1 as templates so
that we can reuse our existing translations in the new files.

If the POT files have undergone major reshuffling then you may want to use
pomigrate2 which can now use pot2po as its merging backend.  pomigrate2
will do its best to migrate your files to the correct locations before merging.
It will also make make use of a compendium if requested.:

pot2po --tm=compendium.po --similarity=60 -t xh-old pot xh-new





With this update we are using compendium.po as a translations memory (you can
make use of other files such as TMX, etc).  We will accept any match that
scores above 60%.




Merging

It helps to understand when and how pot2po will merge. The default is to follow
msgmerge’s behaviour but we add some extra features with fuzzy matching:


	If everything matches we carry that across

	We can resurrect obsolete messages for reuse

	Messages no longer used are made obsolete

	If we cannot find a match we will first look through the current and obsolete
messages and then through any global translation memory

	Fuzzy matching makes use of the Levenshtein distance
algorithm to detect the best matches






Performance

Fuzzy matches are usually of good quality. Installation of the
python-Levenshtein [https://pypi.python.org/pypi/python-Levenshtein] package
will speed up fuzzy matching. Without this a Python based matcher is used which
is considerably slower.




Bugs


	pomerge and pot2po should probably become one.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
csv2po

Convert between CSV (Comma Separated Value) files and the PO format.  This is
useful for those translators who can only use a Spreadsheet, a modern
spreadsheet can open CSV files for editing.  It is also useful if you have
other data such as translation memory in CSV format and you wish to use it with
your PO translations.

If you are starting out with your own CSV files (not created by po2csv), take
note of the assumptions of the column layout explained below.


Usage

csv2po [options] <csv> <po>
po2csv [options] <po> <csv>





Where:







	<csv>
	is a file or directory containing CSV files


	<po>
	is a file or directory containing PO files





Options (csv2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in csv format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in pot, po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--charset=CHARSET


		set charset to decode from csv files

	
--columnorder=COLUMNORDER


		specify the order and position of columns (location,source,target)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2csv):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in csv format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--columnorder=COLUMNORDER


		specify the order and position of columns (location,source,target)







CSV file layout

The resultant CSV file has the following layout








	Column
	Data
	Description




	A
	Location
	All the PO #: location comments.  These are
needed to reconstruct or merge the CSV back
into the PO file


	B
	Source Language
	The msgid or source string


	C
	Target Language
	The msgstr or target language








Examples

These examples demonstrate the use of csv2po:

po2csv -P pot csv





We use the -P option to recognise POT files found in pot and convert
them to CSV files placed in csv:

csv2po csv po





Convert CSV files in csv to PO files placed in po:

csv2po --charset=windows-1250 -t pot csv po





User working on Windows will often return files encoded in everything but
Unicode.  In this case we convert CSV files found in csv from windows-1250
to UTF-8 and place the correctly encoded files in po.  We use the templates
found in pot to ensure that we preserve formatting and other data.  Note that
UTF-8 is the only available destination encoding.

csv2po --columnorder=location,target,source fr.csv fr.po





In case the CSV file has the columns in a different order you may use
--columnorder.




Bugs


	Translation comments #[space] and KDE comments _: are not available in CSV
mode which effects the translators effectiveness

	Locations #: that are not conformant to PO (i.e. have spaces) will get messed
up by PO tools.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
csv2tbx

Convert between CSV (Comma Separated Value) files and the TBX
format for terminology exchange.


Usage

csv2tbx [--charset=CHARSET] [--columnorder=COLUMNORDER] <csv> <tbx>





Where:







	<csv>
	is a CSV file


	<tbx>
	is the target TBX file





Options (csv2tbx):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in csv format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in tbx format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--charset=CHARSET


		set charset to decode from csv files

	
--columnorder=COLUMNORDER


		specify the order and position of columns (comment,source,target)







CSV file layout

The CSV file is expected to have three columns (separated by commas, not other
characters like semicolons), of which the default layout is








	Column
	Data
	Description




	A
	Comment
	All the PO #: location comments.  These are not
used in the TBX files, and can be left empty,
but could be generated by po2csv


	B
	Source Language
	The msgid or source string


	C
	Target Language
	The msgstr or target language








Examples

These examples demonstrate the use of csv2tbx:

csv2tbx terms.csv terms.tbx





to simply convert terms.csv to terms.tbx.

To convert a directory recursively to another directory with the same structure
of files:

csv2tbx csv-dir tbx-target-dir





This will convert CSV files in csv-dir to TBX files placed in
tbx-target-dir.:

csv2tbx --charset=windows-1250 csv tbx





Users working on Windows will often return files in encoding other the Unicode
based encodings.  In this case we convert CSV files found in csv from
windows-1250 to UTF-8 and place the correctly encoded files in tbx. Note
that UTF-8 is the only available destination encoding.




Two column CSV

csv2tbx --columnorder=source,target foo.csv foo.tbx








Notes

For conformance to the standards and to see which features are implemented, see
CSV and TBX.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
html2po

Convert translatable items in HTML to the PO format.


Usage

html2po [options] <html> <po>
po2html [options] <po> <html>





Where:







	<html>
	is an HTML file or a directory of HTML files


	<po>
	is a PO file or directory of PO files





Options (html2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in htm, html, xhtml formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
-u, --untagged
	include untagged sections

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2html):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in htm, html formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in htm, html formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-wWRAP, --wrap=WRAP


		set number of columns to wrap html at

	
--notidy
	don’t use tidy to clean up HTML, even if installed (new in version 1.2.1)

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Examples

html2po -P site pot





This will find all HTML files (.htm, .html, .xhtml) in site convert them to
POT files and place them in pot:

po2html -t site xh site-xh





All the PO translations in xh will be converted to html using html files in
site as templates and outputting new translated HTML files in site-xh




Bugs

We don’t hide enough of some of the tags, e.g. <a> tags have too much exposed,
we should expose only what needs to be translated and allow the changing on
position of the tag within the translation block.  Similarly there is some
markup that could be excluded e.g. <b> tags that appear at the start and end of
a msgid, i.e. they don’t need placement from the translator.

If the HTML is indented you get very odd msgid’s

Some items end up in the msgid’s that should not be translated

It might be worth investigating
http://opensource.bureau-cornavin.com/html2pot-po2html/index.html which uses
XSLT to transform XHTML to Gettext PO







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
ical2po


New in version 1.2.



Converts iCalendar (*.ics) files to Gettext PO format.


Usage

ical2po [options] <ical> <po>
po2ical [options] -t <ical> <po> <ical>





Where:







	<ical>
	is a valid .ics file or directory of those files


	<po>
	is a directory of PO or POT files





Options (ical2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in php format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2ical):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in php format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Examples

This example looks at roundtrip of iCalendar translations. While you can do
recovery of translations, its unlikely that you will ever need to do that.

First we need to create a set of POT files.

ical2po -P ical.ics ical.pot





The ical.ics file is converted to Gettext POT files called ical.pot.
Directories of iCalendar files can also be processed.

Begin translating the ical.pot file by first copying it to make a PO file.

cp ical.pot ical-af.po





You are now in a position to translate the file ical-af.po in your favourite
translation tool.

Once translated you can convert back as follows:

po2ical -t ical.ics ical-af.po ical-af.ics





Your translations found in the Afrikaans PO file, ical-ad.po, will be
converted to .ics using the file ical.ics as a template and creating your
newly translated .ics file ical-af.ics.

To update your translations simply redo the POT creation step and make use of
pot2po to bring your translation up-to-date.




Notes

The converter will only process events in the calender file, the file itself
can contain many other things that could be localisable.  Please raise a bug if
you want to extract additional items.

The converter does not make use of the LANGUAGE attribute which is permitted in
the format.  The LANGUAGE attribute does not aid multilingualism in this
context so is ignored.

The converter could conceivably also process vCard [http://en.wikipedia.org/wiki/Vcard] files, but
this has not been implemented for lack of a clear need.  Please raise a bug
with an example if you have such a file that could benefit from localisation.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
ini2po

Converts .ini files to Gettext PO format.


Usage

ini2po [options] <ini> <po>
po2ini [options] -t <ini> <po> <ini>





Where:







	<ini>
	is a valid .ini file or directory of those files


	<po>
	is a directory of PO or POT files





Options (ini2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in php format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2ini):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in php format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Formats Supported

INI files need to be organized into separate languages per file and in the
following format:

[Section]
  ; a comment
  a = a string





Comment marked with the hash symbol (#) are also allowed, and the colon (:) is
also accepted as key-value delimiter:

[Section]
  # another comment
  b : a string





This variants in comment marks and key-value delimiters can be mixed in one
single INI file:

[Section]
; a comment
a = a string
# another comment
b : a string
c:'other example with apostrophes'
d:"example with double quotes"





The spacing between the key-value delimiter and the key, and the between the
value and the key-value delimiter is not important since the converter
automatically strips the blank spaces.


Note

A section must be present at the file beginning in order to get
ini2po working properly. You may add it by hand at the file beginning.




Note

Strings marked with double quotes and/or apostrophes will carry
these quotation marks to the generated .po file, so they will appear like:

#: [Section]c
msgid "'other example with apostrophes'"
msgstr ""

#: [Section]d
msgid "\"example with double quotes\""
msgstr ""










Examples

This example looks at roundtrip of .ini translations as well as recovery of
existing translations.

First we need to create a set of POT files.

ini2po -P ini/ pot/





All .ini files found in the ini/ directory are converted to Gettext POT
files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step.  If
you need to recover your existing translations then we do the following:

ini2po -t lang/ zu/ po-zu/





Using the English .ini files found in lang/ and your existing Zulu
translation in zu/ we create a set of PO files in po-zu/.  These will
now have your translations.  Please be aware that in order for the to work 100%
you need to have both English and Zulu at the same revision. If they are not,
you will have to review all translations.

You are now in a position to translate your recovered translations or your new
POT files.

Once translated you can convert back as follows:

po2ini -t lang/ po-zu/ zu/





Your translations found in the Zulu PO directory, po-zu/, will be converted to .ini using the files in lang/ as templates and placing your newly translated .ini files in zu/.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation up-to-date.




Issues

We do not extract comments from .ini files.  These are sometimes needed as developers provide guidance to translators in these comments.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
json2po

Converts .json files to Gettext PO format.


Usage

json2po [options] <json> <po>
po2json [options] -t <json> <po> <json>





Where:







	<json>
	is a valid .json file or directory of those files


	<po>
	is a directory of PO or POT files





Options (json2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in JSON format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in JSON format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--filter=FILTER


		leaves to extract e.g. ‘name,desc’: (default: extract everything)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2json):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in JSON format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in JSON format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Examples

This example looks at roundtrip of .json translations as well as recovery of
existing translations.

First we need to create a set of POT files.

json2po -P json/ pot/





All .json files found in the json/ directory are converted to Gettext POT
files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step.  If
you need to recover your existing translations then we do the following:

json2po -t lang/ zu/ po-zu/





Using the English .json files found in lang/ and your existing Zulu
translation in zu/ we create a set of PO files in po-zu/.  These will
now have your translations.  Please be aware that in order for the to work 100%
you need to have both English and Zulu at the same revision. If they are not,
you will have to review all translations.

You are now in a position to translate your recovered translations or your new
POT files.

Once translated you can convert back as follows:

po2json -t lang/ po-zu/ zu/





Your translations found in the Zulu PO directory, po-zu/, will be converted
to .json using the files in lang/ as templates and placing your newly
translated .json files in zu/.

To update your translations simply redo the POT creation step and make use of
pot2po to bring your translation up-to-date.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
web2py2po

Converts web2py translation files to PO files and vice versa.

Web2py [http://web2py.com/], formerly known as Gluon) is an open-source,
Python-based web application framework by Massimo Di Pierro (inspired by Django
and Rails).

Web2py uses an internal localization engine based on Python dictionaries, which
is applied with the T() lookup function. Web2py provides a built-in translation
interface for the T()-engine, which is excellent for rapid application
development.

On the other hand, for collaboration and workflow control in a wider community
you might probably rather want to use Pootle, Launchpad or similar facilities
for translation, thus need to transform the web2py dictionaries into PO files
and vice versa. And exactly that is what the web2py2po converters are good for.


Usage

web2py2po [options] <web2py> <po>
po2web2py [options] <po> <web2py>





Where:







	<web2py>
	is a valid web2py translation file


	<po>
	is a PO or POT file or a directory of PO or POT files





Options (web2py2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in php format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2web2py):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Notes

Handling of blanks/untranslated messages:

Untranslated messages in the web2py translation files are usually marked with a
leading %%"*** "%%, so:


	All target strings from the web2py sources with a leading %%"*** "%% are
inserted as blank msgstr’s into the PO result (web2py2po)

	Blank msgstr’s from the PO file will get the msgid string with a leading
%%"*** "%% as target string in the web2py result (po2web2py)









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
rc2po

Converts Windows Resource .rc files to Gettext PO format.


Usage

rc2po [options] <rc> <po>
po2rc [options] -t <rc> <po> <rc>





Where:







	<rc>
	is a valid Windows Resource file or directory of those files


	<po>
	is a directory of PO or POT files





Options (rc2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in rc format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in rc format

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--charset=CHARSET


		charset to use to decode the RC files (default:                        cp1252)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2rc):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in rc format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in rc format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--charset=CHARSET


		charset to use to decode the RC files (default: utf-8)

	
-l LANG, --lang=LANG


		LANG entry

	
--sublang=SUBLANG


		SUBLANG entry (default: SUBLANG_DEFAULT)

	
--threshold=PERCENT


		only convert files where the translation completion is above PERCENT

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Formats Supported


Note

This implementation is based mostly on observing WINE .rc files,
these should mimic other non-WINE .rc files.






Examples

This example looks at roundtrip of Windows Resource translations as well as
recovery of existing translations.

First we need to create a set of POT files.

rc2po -P lang/ pot/





All .rc files found in the lang/ directory are converted to Gettext POT
files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step.  If
you need to recovery your existing translations then we do the following:

rc2po -t lang zu po-zu/





Using the English .rc files found in lang and your existing Zulu
translation in zu we create a set of PO files in po-zu.  These will now
have your translations.  Please be aware that in order for the to work 100% you
need to have both English and Zulu at the same revision, if they are not you
will have to review all translations.  Also the .rc files may be in different
encoding, we cannot at the moment process files of different encodings and
assume both are in the same encoding supplied.

You are now in a position to translate your recovered translations or your new
POT files.

Once translated you can convert back as follows:

po2rc -t lang/ po-zu/ zu/





Your translations found in the Zulu PO directory, po-zu, will be converted
to .rc using the files in lang/ as templates and placing your new
translations in zu/.

To update your translations simply redo the POT creation step and make use of
pot2po to bring your translation up-to-date.




Issues

If you are recovering translation using rc2po -t en.rc xx.rc xx.po then
both en.rc and xx.rc need to be in the same encoding.

There might be problems with MENUs that are deaply nested.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
symb2po


New in version 1.3.



Converts Symbian-style translation files to PO files and vice versa. The
Symbian translation files currently have a strong Buddycloud flavour, but the
tools will be made more general as the need arises.


Usage

symb2po [options] [-t <target_lang_symb>] <source_lang_symb> <po>
po2symb [options] -t <target_lang_symb> <po> <target_lang_symb>





Where:







	<target_lang_symb>
	is a valid Symbian translation file or directory of
those files


	<source_lang_symb>
	is a valid Symbian translation file or directory of
those files


	<po>
	is a PO or POT file or a directory of PO or POT files





Options (symb2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in php format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in the Symbian translation format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2symb):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in php format

	
-t TEMPLATE, --template=TEMPLATE


		read from TEMPLATE in the Symbian translation format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp







Examples


symb2po

The most common use of symb2po, is to generate a POT (PO template) file from
the English translation (note that the tool currently expects the Symbian
translation file to end with the extension .r01, which is the code for English
translation files). This file then serves as the source document from which all
translations will be derived.

To create a POT file called my_project.pot from the source Symbian
translation file my_project.r01, the following is executed:

symb2po my_project.r01 my_project.pot





In order to re-use existing translations in the Symbian translation format,
symb2po can merge that translation into the source Symbian translation to
produce a translated PO file. The existing Symbian translation file is
specified with the -t flag.

To create a file called my_project-en-fr.po (this is not the recommended PO
naming convention) from the source Symbian translation file my_project.r01
and its French translation my_project.r02, execute:

symb2po -t my_project.r02 my_project.r01 my_project-en-fr.po






Note

Ensure that the English and French files are well aligned, in other
words, no changes to the source text should have happened since the
translation was done.






po2symb

The po2symb tool is used to extract the translations in a PO into a template
Symbian translation file. The template Symbian translation file supplies the
“shape” of the generated file (formatting and comments).

In order to produce a French Symbian translation file using the English Symbian
translation file my_project.r01 as a template and the PO file
my_project-en-fr.po (this is not the recommended PO naming convention) as
the source document, execute:

po2symb -t my_project.r01 my_project-en-fr.po my_project.r02










Notes

The tools won’t touch anything appearing between lines marked as:

// DO NOT TRANSLATE





The string r_string_languagegroup_name is used to set the Language-Team
PO header field.

The Symbian translation header field Author is used to set the
Last-Translator PO header field.




Issues

The file format is heavily tilted towards the Buddycould implementation

The tools do nothing with the Name and Description Symbian header
fields. This means that po2symb will just copy the values in the supplied
template. So you might see something such as:

Description : Localisation File : English





in a generated French translation file.




Bugs

Probably many, since this software hasn’t been tested much yet.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
tiki2po

Converts TikiWiki [http://tikiwiki.org] language.php files to Gettext PO
format.


Usage

tiki2po [options] <tiki> <po>
po2tiki [options] <po> <tiki>





Where:







	<tiki>
	is a valid language.php file for TikiWiki


	<po>
	is a PO file





Options (tiki2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in php format

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
--include-unused


		When converting, include strings in the “unused” section?




Options (po2tiki):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in php format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp







Examples

These examples demonstrate the use of tiki2po:

tiki2po language.php language.po





Convert the tiki language.php file to .po:

po2tiki language.po language.php





Convert a .po file to a tiki language.php file




Notes


	Templates are not currently supported.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
ts2po

Convert Qt .ts localization files to Gettext .po format files using ts2po and
convert the translated PO Files files back to Qt .ts
using po2ts.

The Qt toolkit comes with a localization application, Qt Linguist, however you
might wish to standardise on one localization tool.  ts2po allows you to
standardise on the PO format and PO related tools.


Note

Virtaal [http://virtaal.org] and Pootle [http://pootle.translatehouse.org] can edit .ts files directly without the
need for any conversion.




Warning

po2ts uses our older .ts support.  Thus many of the newer features
in .ts are not supported.  To support those features rather edit directly in
Virtaal [http://virtaal.org] or Pootle [http://pootle.translatehouse.org].




Usage

ts2po [options] <ts> <po>
po2ts [options] <po> <ts>





Where:







	<ts>
	is a Qt .ts file or directory that contains .ts files


	<po>
	is a PO file or a directory of PO files





Options (ts2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in ts format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2ts):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in ts format

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in ts format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp







Examples

ts2po -P psi.ts psi.pot





This will create a POT file called psi.pot from the Qt .ts file called
psi.ts.

po2ts af.po psi_af.ts





Now take your translated PO files af.po and convert it into a translated Qt
.ts file, psi_af.ts.


Note

You need to use the tools from the Qt toolkit to create the compiled
.qm language files for the application.






Bugs

There are probably still some bugs related to migrating the various attributes
across for the different formats. The converters don’t support all the newer
features of the TS format, whereas the native support of Virtaal and Pootle is
much better.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
xliff2po

Converts XLIFF localization files to Gettext PO files.  XLIFF is the XML
Localization Interchange File Format developed by OASIS [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff]
(Organization for the Advancement of Structured Information Standards) to allow
translation work to be standardised no matter what the source format and to
allow the work to be freely moved from tool to tool.


Usage

po2xliff [options] <po> <xliff>
xliff2po [options] <xliff> <po>





Where:







	<po>
	is a PO file or directory of PO files


	<xliff>
	is an XLIFF file or directory of XLIFF files





Options (xliff2po):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in xliff format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
--duplicates=DUPLICATESTYLE


		what to do with duplicate strings (identical source
text): merge, msgctxt
(default: ‘msgctxt’)




Options (po2xliff):





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in xliff format

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in xliff format

	
-S, --timestamp


		skip conversion if the output file has newer timestamp

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)







Examples

xliff2po -P xliff pot





Create POT files from the XLIFF files found in directory xliff and output
them to the directory pot

po2xliff xh xh-xlf





Convert the Xhosa PO files in xh to XLIFF and place them in xh-xlf




Bugs

This filter is not yet extensively used... expect bugs.  See XLIFF to see how well our implementation conforms to the standard.

The PO plural implementation is still very new and needs active testing.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–errorlevel=ERRORLEVEL

This is a parameter that can be passed to most of the programs in the translate
toolkit in order to choose the level of feedback that you need when errors
occur.  It is mostly useful for debugging. Please report your errors to the
developers with --errorlevel=traceback.


none

Display no error messages




message

Display on the error message

An error occurred processing PO file








exception

Give the error message and name and Python exception

ValueError: An error occurred processing PO file








traceback

Provide a full traceback for debugging purposes

csv2po: warning: Error processing: nso/readlicense_oo/docs/readme.csv: Traceback (most recent call last):

  File "/usr/lib/python2.4/site-packages/translate/misc/optrecurse.py", line 415, in recursiveprocess
    success = self.processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)

  File "/usr/lib/python2.4/site-packages/translate/misc/optrecurse.py", line 468, in processfile
    if fileprocessor(inputfile, outputfile, templatefile, **passthroughoptions):

  File "/usr/lib/python2.4/site-packages/translate/convert/csv2po.py", line 183, in convertcsv
    outputpo = convertor.convertfile(inputcsv)

  File "/usr/lib/python2.4/site-packages/translate/convert/csv2po.py", line 159, in convertfile
    raise ValueError("An error occured processing PO file")

ValueError: An error occurred processing PO file











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–duplicates=DUPLICATESTYLE

Gettext PO files only allow one message with a common msgid (source string).
Many other formats allow duplicate entries.  To create a valid PO file you need
to merge these duplicate entries into one PO message.  However, this often
negatively affects the roundtrip or is not what is expected by the user.  Thus
we have a number of methods of handling duplicates which we call duplicate
styles.

Also affected are conversions in which the source format is empty (allowing
possible translation). As the header in a PO file is identified by an empty
source string, your message will appear to be a duplicate of the header.  In
this case duplicate removal is critical.

Previously the tools used msgid_comment (KDE style comments) to disambiguate
text.  However, with the release of Gettext 0.15, the new msgctxt
disambiguation is now recommended, especially if you wish to use your files
with other Gettext the tools. Many other pieces of software now also support
this feature, and will probably become the best choice for almost all
circumstances.  It is the default in our converters.


merge

This is the traditional Gettext approach.  All messages with the same source
string or English string are merged into one PO message.

#: file1.dtd:instruction_manual
#: file1.dtd:manual_process
msgid "Manual"
msgstr ""





If however the source text is blank (these are often configuration options in
Mozilla) then the merge style will use KDE comments as used in the
msgid_comment style in order to create unambiguous entries that can still be
used for configuration.

#: file1.dtd:translators_name
msgid "_: file1.dtd:translators_name\n"
msgstr ""

#: file1.dtd:translators_email
msgid "_: file1.dtd:translators_email\n"
msgstr ""








msgctxt (default)

This uses the msgctxt feature of Gettext that was introduced with Gettext 0.15.
Some tools might not support it 100%. This option is the default in recent
releases of the Translate Toolkit.

#: file1.dtd:instruction_manual
msgctxt "instruction_manual"
msgid "Manual"
msgstr ""

#: file1.dtd:manual_process
msgctxt "manual_process"
msgid "Manual"
msgstr ""











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–progress=PROGRESS

All of the programs can give visual feedback.  This options allows you to
select the style of that feedback.

In the examples we are converting and OpenOffice.org 2.0 sdf/gsi file into POT
files using oo2po.


none

No visual feedback, this is useful if you want to use any of the scripts as
part of another script and don’t want feedback to interfere with the operation.

[dwayne@laptop OOo20]$ oo2po -P --progress=none en-US.sdf pot
[dwayne@laptop OOo20]$








dots

Use visual dots to represent progress.  Each dot represent a file that has been
processed.

[dwayne@laptop OOo20]$ oo2po -P --progress=dots en-US.sdf pot
.............................................................................................
.............................................................................................
.........................................
[dwayne@laptop OOo20]$








bar (default)

Use a progress bar consisting of hashes (#) to show progress.

[dwayne@laptop OOo20]$ oo2po -P --progress=bar en-US.sdf pot
processing 227 files...
[##############################             ]  69%





This is the default mode of operation, therefore this command would create the
same output.

[dwayne@laptop OOo20]$ oo2po -P en-US.sdf pot








verbose

Combine the hash (#) progress bar form the bar option with the actual names
of files that have been processed.

[dwayne@laptop OOo20]$ oo2po -P --progress=verbose en-US.sdf pot
processing 227 files...
so3/src.oo
dbaccess/source/ui/uno.oo
helpcontent2/source/text/shared.oo
wizards/source/formwizard.oo
sch/source/ui/dlg.oo
helpcontent2/source/text/sbasic/shared/01.oo
dbaccess/source/core/resource.oo
svtools/source/sbx.oo
dbaccess/source/ui/relationdesign.oo
scp2/source/writer.oo
filter/source/xsltdialog.oo
[##                                         ]   5%








names

Prints out only the filenames without any other progress indicator.  This is a
good option when outputting to a log file rather than a terminal.

[dwayne@laptop OOo20]$ oo2po -P --progress=names en-US.sdf pot
so3/src.oo
dbaccess/source/ui/uno.oo
helpcontent2/source/text/shared.oo
wizards/source/formwizard.oo
sch/source/ui/dlg.oo
helpcontent2/source/text/sbasic/shared/01.oo
dbaccess/source/core/resource.oo
svtools/source/sbx.oo
dbaccess/source/ui/relationdesign.oo
scp2/source/writer.oo
filter/source/xsltdialog.oo











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–filteraction=ACTION


none (default)

Take no action.  Messages from failing test will appear in the output file




warn

Print a warning but otherwise include the message in the output file.




exclude-serious

Only exclude errors that are listed as serious by the convertor.  All other are
included.




exclude-all

Exclude any message that fails a test.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–multifile=MULTIFILESTYLE

This options determines how the POT/PO files are spli from the source files.
In many cases you have source files that generate either too many small files
or one large files which you would rather see split up into smaller files.


single

Output individual files.




toplevel

Split the source files at the top level.  Ie you see a number of top level
files.




onefiles

One large file instead of many smaller files.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–personality=TYPE


java (default)

Create output strictly according to the specification for .properties files.
This will use escaped Unicode for any non-ASCII characters.  Thus the following
string found in a PO file:

ṽḁḽṻḝ





Will appear as follows in the output .properties file:

\u1E7D\u1E01\u1E3D\u1E7B\u1E1D








mozilla

Mozilla has made slight adjustments to the Java .properties spec.  Mozilla will
accept UTF-8 encoded strings in the property file and thus does not need
escaped Unicode.  Thus the above string – ṽḁḽṻḝ – will not be escaped.
Mozilla property files are thus more useful for non-Latin languages in that
they are actually readable.

Of course this style of file is only used by Mozilla and should not be used for
other projects that follow the Java spec more strictly.




skype

Skype .lang files are .properties files in UTF-16. The & is used as an
accelerator (marked in the PO header).




flex

Flex follows the Mozilla approach, a UTF-8 encoded file with no escaped
unicode. We include it as its own dialect for ease of use.




strings

Much Mac OS X and iPhone software is translated using .strings files.  These
are quite different from properties files and we treat them here as key value
files.

The files are in UTF-16 with a few minor escaping conventions.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–accelerator=ACCELERATOR







	Accelerator
Marker
	Used by




	&
	KDE Desktop [http://kde.org] and Mozilla [http://mozilla.org] (when using moz2po)


	_
	GNOME Desktop [http://www.gnome.org] and other GTK+ [http://www.gtk.org] based applications


	~
	LibreOffice [http://www.libreoffice.org] and Apache
OpenOffice [http://www.openoffice.org]









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
poconflicts

poconflicts takes a PO file and creates an set of output PO files that contain
messages that conflict.  During any translation project that involves a large
amount of work or a number of translators you will see message conflicts.  A
conflict is where the same English message has been translated differently (in
some languages this may have been intentional).  Conflicts occur due to
different translation style or a shift in translations as the translators or
project mature.

poconflicts allows you to quickly identify these problem messages, investigate
and correct them. To merge the files back, they have to be restructured into
the correct directory structure using porestructure in order to enable
merging using pomerge.


Usage

poconflicts [options] <po> <conflicts>





Where:







	<po>
	is a directory of existing PO files or an individual PO file


	<conflicts>
	is a directory containing one PO file for each conflict





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po format

	
-I, --ignore-case


		ignore case distinctions

	
-v, --invert
	invert the conflicts thus extracting conflicting destination words

	
--accelerator=ACCELERATORS


		ignores the given accelerator characters when matching







Examples

Here are some examples that demonstrate the usefulness of poconflict

poconflicts --accelerator=~ -I xhosa conflicts





This extracts messages from the PO files in the xhosa directory and places a
new PO file for each identified conflict in conflicts.  We are working with
OpenOffice files and we therefore use the tilde (~) as the accelerator marker
(with this set F~ile is considered the same as ~File).  We are also
ignoring the case of the message using -I (thus File is considered the
same as file or FILE)

Another useful option is to look at the inverted conflicts.  This will detect
target words that have been used to translate different source words.

poconflicts --accelerator=~ -I -v xhosa conflicts





Now in the conflicts directory we will find PO files based on the Xhosa word.
We can now check where a Xhosa word has been used for different source or
English words.  Often there is no problem but you might find cases where the
same Xhosa word was used for Delete and Cancel – clearly a usability issue.

The translator makes the needed corrections to the files and then we can
proceed to merge the results back into the PO files. Unchanged entries can be
removed.

Now restructure the files to resemble the original directory structure using
porestructure:

porestructure -i conflicts -o conflicts_tree





Now merge the changes back using pomerge:

pomerge -t xhosa -i conflicts_tree -o xhosa





This takes the corrected files from conflicts_tree and merge them into the
files in xhosa using the same files as templates.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pofilter

Pofilter allows you to run a number of checks against
your PO, XLIFF or TMX files.  These checks are designed to pick up problems
with capitalisation, accelerators, variables, etc.  Those messages that fail
any of the checks are output and marked so that you can correct them.

Use pofilter -l to get a list of available checks.

Once you have corrected the errors in your PO files you can merge the
corrections into your existing translated PO files using pomerge.


Usage

pofilter [options] <in> <out>





Where:







	<in>
	the input file or directory which contains PO or XLIFF files


	<out>
	the output file or directory that contains PO or XLIFF files that
fail the various tests





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in pot, po, xlf, tmx formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot, xlf, tmx formats

	
-l, --listfilters


		list filters available

	
--review
	include elements marked for review (default)

	
--noreview
	exclude elements marked for review

	
--fuzzy
	include elements marked fuzzy (default)

	
--nofuzzy
	exclude elements marked fuzzy

	
--header
	include a PO header in the output (always the case since version 1.6)

	
--nonotes
	don’t add notes about the errors (since version 1.3)

	
--autocorrect
	output automatic corrections where possible rather than describing issues

	
--language=LANG


		set target language code (e.g. af-ZA) [required for spell check]. This will help to make pofilter aware of the conventions of your language

	
--openoffice
	use the standard checks for OpenOffice translations

	
--libreoffice
	use the standard checks for LibreOffice translations

	
--mozilla
	use the standard checks for Mozilla translations

	
--drupal
	use the standard checks for Drupal translations

	
--gnome
	use the standard checks for Gnome translations

	
--kde
	use the standard checks for KDE translations

	
--wx
	use the standard checks for wxWidgets translations – identical to –kde

	
--excludefilter=FILTER


		don’t use FILTER when filtering

	
-tFILTER, --test=FILTER


		only use test FILTERs specified with this option when filtering

	
--notranslatefile=FILE


		read list of untranslatable words from FILE (must not be translated)

	
--musttranslatefile=FILE


		read list of translatable words from FILE (must be translated)

	
--validcharsfile=FILE


		read list of all valid characters from FILE (must be in UTF-8)







Example

Here are some examples to demonstrate how to use pofilter:

pofilter --openoffice af af-check





Use the default settings (accelerator and variables) for OpenOffice.org.  Check
all PO files in af and output any messages that fail the check in af-check
(create the directory if it does not already exist).

pofilter -t isfuzzy -t untranslated zu zu-check





Only run the isfuzzy and untranslated checks, this will extract all
messages that are either fuzzy or untranslated.

pofilter --excludefilter=simplecaps --nofuzzy nso nso-check





Run all filters except simplecaps.  You might want to do this if your
language does not make use of capitalisation or if the test is creating too
many false positives.  Also only run the checks against messages that are not
marked fuzzy.  This is useful if you have already marked problem strings as
fuzzy or you know that the fuzzy strings are bad, with this option you don’t
have to see the obviously wrong messages.

pofilter --language=fr dir dir-check





Tell pofilter that you are checking French translations so that it can take the
conventions of the language into account (for things like punctuation, spacing,
quoting, etc.) It will also disable some tests that are not meaningful for your
language, like capitalisation checks for languages that don’t have capital
letters.

pofilter --excludefilter=untranslated





Tell pofilter not to complain about your untranslated units.

pofilter -l





List all the available checks.




Bugs

There are minor bugs in the filters.  Most relate to false positives, corner
cases or minor changes for better fault description.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
Descriptions of all pofilter tests

The following are descriptions of the tests available in pofilter,
Pootle [http://docs.translatehouse.org/projects/pootle/en/latest/features/checks.html#checks] and Virtaal [http://docs.translatehouse.org/projects/virtaal/en/latest/checks.html#checks] with some
details about what type of errors they are useful to test for and the
limitations of each test.

Keep in mind that the software might point to errors which are not necessarily
wrong (false positives).

Currently there are 47 tests.  You can always get a list of the currently
available tests by running:

pofilter -l





To see test specific to a specific targetted application or group of
applications run:

pofilter --gnome -l






Adding new tests and new language adaptations

If you have an idea for a new test or want to add target language adaptations
for your language then please help us with information about your test idea and
the specifics of your language.




Test Classification

Some tests are more important than others so we have classified them to help
you determine which to run first.


	Critical – can break a program
	escapes,
newlines, nplurals,
printf, tabs,
variables, xmltags,
dialogsizes





	Functional – may confuse the user
	accelerators,
acronyms, blank,
emails, filepaths,
functions, gconf,
kdecomments, long,
musttranslatewords,
notranslatewords, numbers,
options, purepunc,
sentencecount, short,
spellcheck, urls,
unchanged





	Cosmetic – make it look better
	brackets, doublequoting,
doublespacing, doublewords,
endpunc, endwhitespace,
puncspacing, simplecaps,
simpleplurals, startcaps,
singlequoting, startpunc,
startwhitespace, validchars





	Extraction – useful mainly for extracting certain types of string
	compendiumconflicts, credits,
hassuggestion, isfuzzy,
isreview, untranslated










Test Description


accelerators

Checks whether accelerators [http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html#accelerators] are consistent between
the two strings.

Make sure you use the --mozilla, --kde, etc options so that
pofilter knows which type of accelerator it is looking for.  The test will pick
up accelerators that are missing and ones that shouldn’t be there.




acronyms

Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in
the translation.  Translating acronyms is a language decision but many
languages leave them unchanged. In that case this test is useful for tracking
down translations of the acronym and correcting them.




blank

Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as
blank i.e. as spaces.  This is different from untranslated which is completely
empty.  This test is useful in that if something is translated as ”   ” it will
appear to most tools as if it is translated.




brackets

Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same
number appear in the translation.




compendiumconflicts

Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into
entries that are not consistent.  If the compendium is used later in a message
merge then these conflicts will appear in your translations.  This test quickly
extracts those for correction.




credits

Checks for messages containing translation credits instead of normal.
translations.

Some projects have consistent ways of giving credit to translators by having a
unit or two where translators can fill in their name and possibly their contact
details. This test allows you to find these units easily to check that they are
completed correctly and also disables other tests that might incorrectly get
triggered for these units (such as urls, emails, etc.)




dialogsizes

Checks that dialog sizes are not translated.

This is a Mozilla specific test.  Mozilla uses a language called XUL to define
dialogues and screens.  This can make use of CSS to specify properties of the
dialogue.  These properties include things such as the width and height of the
box.  The size might need to be changed if the dialogue size changes due to
longer translations. Thus translators can change these settings.  But you are
only meant to change the number not translate the words ‘width’ or ‘height’.
This check capture instances where these are translated.  It will also catch
other types of errors in these units.




doublequoting

Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both
the original and the translated string. This tests takes into account that
several languages use different quoting characters, and will test for them
instead.




doublespacing

Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the
original or it appears in the original but not in your translation. Some of
these are spurious and how you correct them depends on the conventions of your
language.




doublewords

Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this
test e.g. “the the”, “a a”.  These are generally typos that need correcting.
Some languages may have valid repeated words in their structure, in that case
either ignore those instances or switch this test off using the
--excludefilters option.




emails

Checks to see that emails are not translated.

Generally you should not be translating email addresses.  This check will look
to see that email addresses e.g. info@example.com are not translated.  In some
cases of course you should translate the address but generally you shouldn’t.




endpunc

Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation
as the original.  E.g. if it ends in :[space] then so should yours.  It is
useful for ensuring that you have ellipses [...] in all your translations, not
simply three separate full-stops. You may pick up some errors in the original:
feel free to keep your translation and notify the programmers.  In some
languages, characters such as ? ! are always preceded by a space e.g. [space]?
— do what your language customs dictate. Other false positives you will notice
are, for example, if through changes in word-order you add ”), etc. at the end
of the sentence. Do not change these: your language word-order takes
precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or
add [full-stop] to a sentence, that often these have been done for a reason,
e.g. a list where fullstops make it look cluttered.  So, initially match them
with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters,
such as the custom question marks for Greek and Arabic, Devenagari Danda,
full-width punctuation for CJK languages, etc.  Support for your language can
be added easily if it is not there yet.




endwhitespace

Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter
is particularly useful for those strings which will evidently be followed by
another string in the program, e.g. [Password: ] or [Enter your username: ].
The whitespace is an inherent part of the string. This filter makes sure you
don’t miss those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing
in the character might be enough without an added extra space.




escapes

Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \uNNNN to ensure that if they exist in the.
original that you have them in the translation.




filepaths

Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated.  Generally
you do not translate a file-path, unless it is being used as an example, e.g.
[your_user_name/path/to/filename.conf].




functions

Checks to see that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not
translated.




gconf

Checks if we have any gconf config settings translated.

Gconf settings should not be translated so this check checks that gconf
settings such as “name” or “modification_date” are not translated in the
translation.  It allows you to change the surrounding quotes but will ensure
that the setting values remain untranslated.




hassuggestion

Checks if there is at least one suggested translation for this unit.

If a message has a suggestion (an alternate translation stored in alt-trans
units in XLIFF and .pending files in PO) then these will be extracted.  This is
used by Pootle and is probably only useful in pofilter when using XLIFF files.




isfuzzy

Checks if the po element has been marked fuzzy.

If a message is marked fuzzy in the PO file then it is extracted.  Note this is
different from --fuzzy and --nofuzzy options which specify
whether tests should be performed against messages marked fuzzy.




isreview

Checks if the po element has been marked for review.

If you have made use of the ‘review’ flags in your translations:

# (review) reason for review
# (pofilter) testname: explanation for translator





Then if a message is marked for review in the PO file it will be extracted.
Note this is different from --review and --noreview options which
specify whether tests should be performed against messages already marked as
under review.




kdecomments

Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New
translators often translate the comment.  This test tries to identify instances
where the comment has been translated.




long

Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple
characters long while the source text is only 1 character long.  Otherwise, we
use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.




musttranslatewords

Checks that words configured as definitely translatable don’t appear in the
translation.

If for instance in your language you decide that you must translate ‘OK’ then
this test will flag any occurances of ‘OK’ in the translation if it appeared in
the source string.  You must specify a file containing all of the must
translate words using --musttranslatefile.




newlines

Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and
reports and error if they differ.




nplurals

Checks for the correct number of noun forms for plural translations.

This uses the plural information in the language module of the toolkit.  This
is the same as the Gettext nplural value.  It will check that the number of
plurals required is the same as the number supplied in your translation.




notranslatewords

Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make
sure that words like: Word, Excel, Impress, Calc, etc. are not translated.  You
must specify a file containing all of the no translate words using
--notranslatefile.




numbers

Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or
converted it to the digit in your translation.  Also changes in order will
trigger this error.




options

Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test
will check that these remain untranslated.  These could be translated in the
future if programs can create a mechanism to allow this, but currently they are
not translated.  If the options has a parameter, e.g. --file=FILE, then
the test will check that the parameter has been translated.




printf

Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate
an error.  Printf statements are used by programs to format output in a human
readable form (they are place holders for variable data).  They allow you to
specify lengths of string variables, string padding, number padding, precision,
etc. Generally they will look like this: %d, %5.2f, %100s, etc. The
test can also manage variables-reordering using the %1$s syntax.  The
variables’ type and details following data are tested to ensure that they are
strictly identical, but they may be reordered.


See also

printf Format String [http://en.wikipedia.org/wiki/Printf_format_string]






puncspacing

Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your
translation does not remove the space.  It checks also for [comma], [colon],
etc.

Some languages don’t use spaces after common punctuation marks, especially
where full-width punctuation marks are used. This check will take that into
account.




purepunc

Checks that strings that are purely punctuation are not changed.

This extracts strings like “+” or “-” as these usually should not be changed.




sentencecount

Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between
the original and translated string. You may not always want to use this test,
if you find you often need to reformat your translation, because the original
is badly-expressed, or because the structure of your language works better that
way. Do what works best for your language: it’s the meaning of the original you
want to convey, not the exact way it was written in the English.




short

Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters
long while the source text is multiple characters long.  Otherwise, we use a
general ratio that will catch very big differences but is set conservatively to
limit the number of false positives.




simplecaps

Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it.  It is
useful for identifying translations that don’t start with a capital letter
(upper-case letter) when they should, or those that do when they shouldn’t.  It
will also highlight sentences that have extra capitals; depending on the
capitalisation convention of your language, you might want to change these to
Title Case, or change them all to normal sentence case.




simpleplurals

Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in
the source text.  You can then inspect the message, to check that the correct
plural form has been used for your language.  In some languages, plurals are
made by adding text at the beginning of words, making the English style messy.
In this case, they often revert to the plural form.  This test allows an editor
to check that the plurals used are correct.  Be aware that this test may create
a number of false positives.

For languages with no plural forms (only one noun form) this test will simply
test that nothing like “(s)” was used in the translation.




singlequoting

Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character.  Because this is
used in contractions like it’s and in possessive forms like user’s, this test
can output spurious errors if your language doesn’t use such forms.  If a quote
appears at the end of a sentence in the translation, i.e. '., this might
not be detected properly by the check.




spellcheck

Checks for words that don’t pass a spell-check.

This test will check for misspelled words in your translation.  The test first
checks for misspelled words in the original (usually English) text, and adds
those to an exclusion list. The advantage of this exclusion is that many words
that are specific to the application will not raise errors e.g. program names,
brand names, function names.

The checker works with PyEnchant [http://pythonhosted.org/pyenchant/]. You
need to have PyEnchant installed as well as a dictionary for your language (for
example, one of the Hunspell [https://wiki.openoffice.org/wiki/Dictionaries]
or aspell [http://ftp.gnu.org/gnu/aspell/dict/] dictionaries).  This test
will only work if you have specified the --language option.

The pofilter error that is created, lists the misspelled word, plus
suggestions returned from the spell checker.  That makes it easy for you to
identify the word and select a replacement.




startcaps

Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to
see that the first remaining character is correctly capitalised.  So, if the
sentence starts with an upper-case letter, and the translation does not, an
error is produced.

This check is entirely disabled for many languages that don’t make a
distinction between upper and lower case. Contact us if this is not yet
disabled for your language.




startpunc

Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.




startwhitespace

Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.




tabs

Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.




unchanged

Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English
original.  Sometimes, this is what you want, but other times you will detect
words that should have been translated.




untranslated

Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so
that they can be translated independently of the main work.




urls

Checks to see that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp,
smb, file).  Generally, you don’t want to translate URLs, unless they are
example URLs (http://your_server.com/filename.html).  If the URL is for
configuration information, then you need to query the developers about placing
configuration information in PO files.  It shouldn’t really be there, unless it
is very clearly marked: such information should go into a configuration file.




validchars

Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange
characters appearing in your translation.  This test presents a simple way to
try and identify such errors.

This test will only run of you specify the --validcharsfile command line
option.  This file contains all the characters that are valid in your language.
You must use UTF-8 encoding for the characters in the file.

If the test finds any characters not in your valid characters file then the
test will print the character together with its Unicode value (e.g. 002B).




variables

Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear
in the translation.  Make sure you use the --kde, --openoffice,
etc flags as these define what variables will be searched for.  It does not at
the moment cope with variables that use the reordering syntax of Gettext PO
files.




xmltags

Checks that XML/HTML [http://translate.sourceforge.net/wiki/guide/translation/html] tags have not been
translated.

This check finds the number of tags in the source string and checks that the
same number are in the translation.  If the counts don’t match then either the
tag is missing or it was mistakenly translated by the translator, both of which
are errors.

The check ignores tags or things that look like tags that cover the whole
string e.g. “<Error>” but will produce false positives for things like “An
<Error> occurred” as here “Error” should be translated.  It also will allow
translation of the alt attribute in e.g. <img src=bob.png alt=”Image
description”> or similar translatable attributes in OpenOffice.org help files.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pogrep

The pogrep tool extracts messages that match a regular expression into a new
set of PO files that can be examined, edited and corrected.  These corrections
can then be merged using pomerge.


Usage

pogrep [options] <in> <out>





Where:







	<in>/<out>
	In and out are either directories or files.  Out will
contain PO/XLIFF files with only those messages that match
the regular expression that was you searched for.





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot, xlf formats (XLIFF since version 1.0)

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot, xlf formats (XLIFF since version 1.0)

	
--search=SEARCHPARTS


		searches the given parts (source, target, notes, locations)

	
-I, --ignore-case


		ignore case distinctions

	
-e, --regexp
	use regular expression matching

	
-v, --invert-match


		select non-matching lines

	
--accelerator=ACCELERATORS


		ignores the given accelerator characters when matching

	
-k, --keep-translations


		always extract units with translations







Example

pogrep --accelerator="_" --search msgid -I -e "software|hardware" only-zu only-zu-check





Search for the words “software” or “hardware” in the msgid field.  Ignore case
(-I) and treat the underscore (_) character as an accelerator key.
Search through all PO files in the directory “only-zu” and place any matches in
PO files in the directory “only-zu-check”.  This would be useful to run if you
know that the word for software and hardware has been changed during the course
of translation and you want to check and correct all these instances.

pogrep --search=msgid -e '^\w+(\s+\w+){0,3}$' -i templates -o short-words





Find all messages in the templates directory that have between 1 and 4 words
and place them in short-words.  Use this if you want to see quick results by
translating messages that are most likely menu entries or dialogue labels.

pogrep --search=msgstr -I -e "Ifayile" zu zu-check





Search all translations for the occurrence of Ifayile.  You would use this to
check if words have been used correctly.  Useful if you find problematic use of
the same word for different concepts.  You can use pocompendium to find
these conflicts.




Notes


Unicode normalization

pogrep will normalize Unicode strings.  This allows you to search for strings
that contain the same character but that are using precomposed Unicode
characters or which are composed using another composition recipe.  While an
individual user will in all likelihood only compose characters in one way,
normalization ensures that data created in a team setting can be shared.






Further reading

Here is a blog post explaining how pogrep can be used to do more targeted
localisation of GNOME:
http://translate.org.za/blogs/friedel/en/content/better-lies-about-gnome-localisation







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pomerge

Pomerge will merge corrected PO, XLIFF, or TMX files (or snippets) into your
existing PO, XLIFF, TMX files.  Usually you would extract errors using
pofilter, make corrections to these PO (or XLIFF, TMX) snippets then
merge them back using pomerge.  You could also use pogrep to extract a
number of messages matching a certain string, make corrections then merge the
correction back using pomerge.

It is probably best to run pomerge against files stored in some kind of version
control system so that you can monitor what changes were made.

Pomerge will also attempt to make as small a change as possible to the text,
making it easier to see the changes using your version control system.


Usage

pomerge [options] [-t <template>] -i <input> -o <output>





Where:







	<template>
	is a set of reference PO, XLIFF, TMX files, either the
originals or a set of POT files


	<input>
	contains the corrected files that are to override content in
<output>


	<output>
	contains the files whose content will be overridden by
<input>.  This can be the same directory as <template>





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot, xlf, tmx formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot, xlf, tmx formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in po, pot, xlf, tmx formats

	
--mergeblanks=MERGEBLANKS


		whether to overwrite existing translations with blank translations (yes/no). Default is yes.

	
--mergefuzzy=MERGEFUZZY


		whether to overwrite existing translations with fuzzy translations (yes/no). Default is yes. (new in version 1.9)

	
--mergecomments=MERGECOMMENTS


		whether to merge comments as well as translations (yes/no). Default is yes.







Examples

These examples show pomerge in action.

pomerge -t af -i af-check -o af





Take corrections from af-check merge them with the templates in af and
output into af.  Thus merge af-check and override entries found in af.  Do
this only if you are using a version control system so that you can check
what changes pomerge made or if you have complete and utter confidence in this
tool.

pomerge --mergeblanks=yes -t af -i af-check -o af-new





Merge the corrections from af-check with templates in af and output to
af-new.  If an entry is blank in af-check then make it blank in the output
in af-new.




Issues


	Seems to have trouble merging KDE style comments back. (Probably not relevant
with newest versions any more.)

	Only files found in the input directory will be copied to the output. The
template directory is not searched for extra files to copy to the output.
Therefore it is always best to have your input directory in version control,
and use the same directory as output. This will allow you to use the diff
function of the version control system to double check changes made, with all
the files of the input still present.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
porestructure

porestructure takes the PO files output by poconflicts (a flat
structure), and recreates the directory structure according to the poonflict
location comments found in each PO message. After being restructured, the
messages in the resulting directory structure can be merged back using
pomerge.

Since poconflicts adds conflicting messages, from many different PO files, into
a single PO file, the original structure of the files and directories are lost
and the new PO files are output to a single directory. The original structure
information is left in “(pofilter)” comments for each PO element.


Usage

porestructure [options] <conflicts> <po>





Where:







	<conflicts>
	is a directory containing one the corrected output from
poconflict


	<po>
	is an output directory to write the restructured files to





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po format







Examples

The documentation for poconflicts has Examples for the
complete process using poconflict, porestructure, and pomerge.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
junitmsgfmt


New in version 1.7.



Run msgfmt and provide JUnit type output for use in continuous integration
systems like Hudson and Jenkins.


Usage

junitmsgfmt po/*.po > msgfmt_junit.xml











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
tmserver

tmserver is a Translation Memory service that can be queried via HTTP using a
simple REST like URL/http and data is exchanged between server and client
encoded in JSON.


Note

If you are searching for an enterprise Translation Memory server then
rather use amaGama [http://amagama.translatehouse.org/].




Usage

tmserver.py --bind=HOSTNAME --port=PORT [--tmdb=TMDBFILE] [--import-translation-file=TMFILE [--import-source-lang=SOURCE_LANG] [--import-target-lang=TARGET_LANG]]





Where:







	TMDBFILE
	is the SQLite database file containing translation memory
data, if not specified a new temporary database is created


	TMFILE
	is a translation file (po, xliff, etc.) that should be
imported into the database (mostly useful when no tmdb file
is specified).





Options:





	
-h, --help
	show this help message and exit

	
-d TMDBFILE, --tmdb=TMDBFILE


		translation memory database file

	
-f TMFILES, --import-translation-file=TMFILES


		translation file to import into the database

	
-t TARGET_LANG, --import-target-lang=TARGET_LANG


		target language of translation files

	
-s SOURCE_LANG, --import-source-lang=SOURCE_LANG


		source language of translation files

	
-b BIND, --bind=BIND


		adress to bind server to (default: localhost)

	
-p PORT, --port=PORT


		port to listen on (default: 8888)

	
--max-candidates=MAX_CANDIDATES


		Maximum number of candidates

	
--min-similarity=MIN_SIMILARITY


		minimum similarity

	
--max-length=MAX_LENGTH


		Maxmimum string length

	
--debug
	enable debugging features







Testing

easiest way to run the server for testing is to pass it a large translation
file (maybe generated by pocompendium) to create a tmdb database on the
fly.

tmserver -b localhost -p 8080 -f compendium.po -s en_US -t ar





The server can be queried using a webbrowser. the url would be:

http://HOST:PORT/tmserver/SOURCE_LANG/TARGET_LANG/unit/STRING





So to see suggestions for “open file” try the url
http://localhost:8080/tmserver/en_US/ar/unit/open+file







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
poterminology

poterminology takes Gettext PO/POT files and extracts potential terminology.

This is useful as a first step before translating a new project (or an existing
project into a new target language) as it allows you to define key terminology
for consistency in translations.  The resulting terminology PO files can be
used by Pootle to provide suggestions while translating.

Generally, all the input files should have the same source language, and either
be POT files (with no translations) or PO files with translations to the same
target language.

The more separate PO files you use to generate terminology, the better your
results will be, but poterminology can be used with just a single input file.

Read more about terminology extraction [http://en.wikipedia.org/wiki/Terminology_extraction]


Usage

poterminology [options] <input> <terminology>





Where:







	<input>
	translations to be examined for terminology


	<terminology>
	extracted potential terminology





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-i INPUT, --input=INPUT


		read from INPUT in pot, po formats

	
-x EXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-o OUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-u UPDATEFILE, --update=UPDATEFILE


		update terminology in UPDATEFILE

	
-S STOPFILE, --stopword-list=STOPFILE


		read stopword (term exclusion) list from STOPFILE (default site-packages/translate/share/stoplist-en)

	
-F, --fold-titlecase


		fold “Title Case” to lowercase (default)

	
-C, --preserve-case


		preserve all uppercase/lowercase

	
-I, --ignore-case


		make all terms lowercase

	
--accelerator=ACCELERATORS


		ignore the given accelerator characters when matching (accelerator characters probably require quoting)

	
-t LENGTH, --term-words=LENGTH


		generate terms of up to LENGTH words (default 3)

	
--inputs-needed=MIN


		omit terms appearing in less than MIN input files (default 2, or 1 if only one input file)

	
--fullmsg-needed=MIN


		omit full message terms appearing in less than MIN different messages (default 1)

	
--substr-needed=MIN


		omit substring-only terms appearing in less than MIN different messages (default 2)

	
--locs-needed=MIN


		omit terms appearing in less than MIN different original program locations (default 2)

	
--sort=ORDER
	output sort order(s): frequency, dictionary, length (default is all orders in the above priority)

	
--source-language=LANG


		the source language code (default ‘en’)

	
-v, --invert
	invert the source and target languages for terminology







Examples

You want to generate a terminology file for Pootle that will be used to provide
suggestions for translating Pootle itself:

poterminology Pootle/po/pootle/templates/*.pot .





This results in a ./pootle-terminology.pot output file with 23 terms (from
“file” to “does not exist”) – without any translations.

The default output file can be added to a Pootle project to provide
terminology matching [http://docs.translatehouse.org/projects/pootle/en/latest/features/terminology.html#terminology] suggestions for that project;
alternately a special Terminology project can be used and it will provide
terminology suggestions for all projects that do not have a
pootle-terminology.po file.

Generating a terminology file containing automatically extracted translations
is possible as well, by using PO files with translations for the input files:

poterminology Pootle/po/pootle/fi/*.po --output fi/pootle-terminology.po --sort dictionary





Using PO files with Finnish translations, you get an output file that contains
the same 23 terms, with translations of eight terms – one (“login”) is fuzzy
due to slightly different translations in jToolkit and Pootle.  The file is
sorted in alphabetical order (by source term, not translated term), which can
be useful when comparing different terminology files.

Even though there is no translation of Pootle into Kinyarwanda, you can use the
Gnome UI terminology PO file as a source for translations; in order to extract
only the terms common to jToolkit and Pootle this command includes the POT
output from the first step above (which is redundant) and require terms to
appear in three different input sources:

poterminology Pootle/po/pootle/templates/*.pot pootle-terminology.pot \
  Pootle/po/terminology/rw/gnome/rw.po --inputs-needed=3 -o terminology/rw.po





Of the 23 terms, 16 have Kinyarwanda translations extracted from the Gnome UI
terminology.

For a language like Spanish, with both Pootle translations and Gnome
terminology available, 18 translations (2 fuzzy) are generated by the following
command, which initializes the terminology file from the POT output from the
first step, and then uses --update to specify that the pootle-es.po file
is to be used both for input and output:

cp pootle-terminology.pot glossary-es.po
poterminology --inputs=3 --update glossary-es.po \
  Pootle/po/pootle/es/*.po Pootle/po/terminology/es/gnome/es.po






Reduced terminology glossaries

If you want to generate a terminology file containing only single words,  not
phrases, you can use -t/--term-words to control this.  If your
input files are very large and/or you have a lot of input files, and you are
finding that poterminology is taking too much time and memory to run, reducing
the phrase size from the default value of 3 can be helpful.

For example, running poterminology on the subversion trunk with the default
phrase size can take quite some time and may not even complete on a
small-memory system, but with --term-words=1 the initial number of terms
is reduced by half, and the thresholding process can complete:

poterminology --progress=none -t 1 translate

1297 terms from 64039 units in 216 files
254 terms after thresholding
254 terms after subphrase reduction





The first line of output indicates the number of input files and translation
units (messages), with the number of unique terms present after removing C and
Python format specifiers (e.g. %d), XML/HTML <elements> and &entities; and
performing stoplist elimination.

The second line gives the number of terms remaining after applying threshold
filtering (discussed in more detail below) to eliminate terms that are not
sufficiently “common” in the input files.

The third line gives the number of terms remaining after eliminating subphrases
that did not occur independently.  In this case, since the term-words limit is
1, there are no subphrases and so the number is the same as on the second line.

However, in the first example above (generating terminology for Pootle itself),
the term “not exist” passes the stoplist and threshold filters, but all
occurrences of this term also contained the term “does not exist” which also
passes the stoplist and threshold filters.  Given this duplication, the shorter
phrase is eliminated in favor of the longer one, resulting in 23 terms (out of
25 that pass the threshold filters).






Reducing output terminology with thresholding options

Depending on the size and number of the source files, and the desired scope of
the output terminology file, there are several thresholding filters that can be
adjusted to allow fewer or more terms in the output file.  We have seen above
how one (--inputs-needed) can be used to require that terms be present
in multiple input files, but there are also other thresholds that can be
adjusted to control the size of the output terminology file.


–inputs-needed

This is the most flexible and powerful thresholding control.  The default value
is 2, unless only one input file (not counting an --update argument) is
provided, in which case the threshold is 1 to avoid filtering out all terms and
generating an empty output terminology file.

By copying input files and providing them multiple times as inputs, you can
even achieve “weighted” thresholding, so that for example, all terms in one
original input file will pass thresholding, while other files may be filtered.
A simple version of this technique was used above to incorporate translations
from the Gnome terminology PO files without having it affect the terms that
passed the threshold filters.




–locs-needed

Rather than requiring that a term appear in multiple input PO or POT files,
this requires that it have been present in multiple source code files, as
evidenced by location comments in the PO/POT sources.

This threshold can be helpful in eliminating over-specialized terminology that
you don’t want when multiple PO/POT files are generated from the same sources
(via included header or library files).

Note that some PO/POT files have function names rather than source file names
in the location comments; in this case the threshold will be on multiple
functions, which may need to be set higher to be effective.

Not all PO/POT files contain proper location comments.  If your input files
don’t have (good) location comments and the output terminology file is reduced
to zero or very few entries by thresholding, you may need to override the
default value for this threshold and set it to 0, which disables this check.

The setting of the --locs-needed comment has another effect, which is
that location comments in the output terminology file will be limited to twice
that number; a location comment indicating the number of additional locations
not specified will be added instead of the omitted locations.




–fullmsg-needed & –substr-needed

These two thresholds specify the number of different translation units
(messages) in which a term must appear; they both work in the same way, but the
first one applies to terms which appear as complete translation units in one or
more of the source files (full message terms), and the second one to all other
terms (substring terms).  Note that translations are extracted only for full
message terms; poterminology cannot identify the corresponding substring in a
translation.

If you are working with a single input file without useful location comments,
increasing these thresholds may be the only way to effectively reduce the
output terminology.  Generally, you should increase the --substr-needed
threshold first, as the full message terms are more likely to be useful
terminology.






Stop word files

Much of the power of poterminology in generating useful terminology files is
due to the default stop word file that it uses.  This file contains words and
regular expressions that poterminology will ignore when generating terms, so
that the output terminology doesn’t have tons of useless entries like “the 16”
or “Z”.

In most cases, the default stop word list will work well, but you may want to
replace it with your own version, or possibly just supplement or override
certain entries.  The default poterminology stopword file contains comments that describe the syntax and
operation of these files.

If you want to completely replace the stopword list (for example, if your
source language is French rather than English) you could do it with a command
like this:

poterminology --stopword-list=stoplist-fr logiciel/ -o glossaire.po





If you merely want to modify the standard stopword list with your own additions
and overrides, you must explicitly specify the default list first:

poterminology -S /usr/lib/python2.5/site-packages/translate/share/stoplist-en \
  -S my-stoplist po/ -o terminology.po





You can use poterminology --help to see the default stopword list
pathname, which may differ from the one shown above.

Note that if you are using multiple stopword list files, as in the above, they
will all be subject to the same case mapping (fold “Title Case” to lower case
by default) – if you specify a different case mapping in the second file it
will override the mapping for all the stopword list files.




Issues

When using poterminology on Windows systems, file globbing for input is not
supported (unless you have a version of Python built with cygwin, which is not
common).  On Windows, a command like poterminology -o test.po podir/\*.po
will fail with an error “No such file or directory: ‘podir\*.po’” instead of
expanding the podir/*.po glob expression.  (This problem affects all Translate
Toolkit command-line tools, not just poterminology.)  You can work around this
problem by making sure that the directory does not contain any files (or
subdirectories) that you do not want to use for input, and just giving the
directory name as the argument, e.g. poterminology -o test.po podir for the
case above.

When using terminology files generated by poterminology as input, a plethora of
translator comments marked with (poterminology) may be generated, with the
number of these increasing on each iteration.  You may wish to run
pocommentclean (or a slightly modified version of it which only removes
(poterminology) comments) on the input and/or output files, especially since
translator comments are displayed as tooltips by Pootle (thankfully, they are
truncated at a few dozen characters).

Default threshold settings may eliminate all output terms; in this case,
poterminology should suggest threshold option settings that would allow output
to be generated (this enhancement is tracked as issue 582 [https://github.com/translate/translate/issues/582]).

While poterminology ignores XML/HTML entities and elements and %-style format
strings (for C and Python), it does not ignore all types of “variables” that
may occur, particularly in OpenOffice.org, Mozilla, or Gnome localization
files.  These other types should be ignored as well (this enhancement is
tracked as issue 598 [https://github.com/translate/translate/issues/598]).

Terms containing only words that are ignored individually, but not excluded
from phrases (e.g. “you are you”) may be generated by poterminology, but aren’t
generally useful.  Adding a new threshold option --nonstop-needed could
allow these to be suppressed (this enhancement is tracked as issue 1102 [https://github.com/translate/translate/issues/1102]).

Pootle ignores parenthetical comments in source text when performing
terminology matching; this allows for terms like “scan (verb)” and “scan
(noun)” to both be provided as suggestions for a message containing “scan.”
poterminology does not provide any special handling for these, but it could use
them to provide better handling of different translations for a single term.
This would be an improvement over the current approach, which marks the term
fuzzy and includes all variants, with location information in {} braces in the
automatically extracted translation.

Currently, message context information (PO msgctxt) is not used in any way;
this could provide an additional source of information for distinguishing
variants of the same term.

A single execution of poterminology can only perform automatic translation
extraction for a single target language – having the ability to handle all
target languages in one run would allow a single command to generate all
terminology for an entire project.  Additionally, this could provide even more
information for identifying variant terms by comparing the number of target
languages that have variant translations.




On single files

If poterminology yields 0 terms from single files, try the following:

poterminology --locs-needed=0 --inputs-needed=0 --substr-needed=5 -i yourfile.po -o yourfile_term.po





...where “substr-needed” is the number of times a term should occur to be
considered.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
Stopword file format


New in version 1.2.



The default stopword file for poterminology describes the syntax of
these files and provides a good default for most applications using English
source text.  You can find the location of the default stopword file by looking
at the output of poterminology --help, or using the following command:

poterminology --manpage | sed -n '/STOPFILE/s/.*(\(.*\)).*/\1/p'






Overview

The basic syntax of this file is line-oriented, with the first character of
each line determining its function.  The order of the lines is generally not
significant (with one exception noted below), and the selection of function
characters was made so that an ASCII sort of the file would leave it in a
generally logical order (except for comment lines).

Apart from comment lines (which begin with ‘#’) and empty lines (which are also
ignored), there are three general types of lines, which may appear in any
order:


	case mapping specifiers

	stoplist regular expressions

	stoplist words




Case mapping specifiers

A line beginning with a ‘!‘ specifies upper-/lower-case mapping for words
or phrases before comparison with this stoplist (no mapping is applied to the
words or regular expressions in this file, only to the source messages).  The
second character on this line must be one of the following:


	C no uppercase / lowercase mapping is performed

	F ‘Title Case” words / terms are folded to lower case (default)

	I all words are mapped to lowercase



These correspond to the equivalent --preserve-case /
--fold-titlecase / --ignore-case options to poterminology, but
are completely independent and only apply to stoplist matching.  You can run
poterminology with -I to map all terms to lowercase, and if the case
mapping specifier in the stopword file is ‘!C‘ a stoplist with “pootle” in
it will not prevent a term containing “Pootle” from passing the stoplist (and
then being mapped to “pootle”).

There should only be one case mapping specifier in a stoplist file; if more
than one are present, the last one will take precedence over the others, and
its mapping will apply to all entries.  If multiple stoplist files are used,
the last case mapping specifier processed will apply to all entries in all
files.




Stoplist regular expressions

Lines beginning with a ‘/‘ are regular expression patterns – any word that
matches will be ignored by itself, and any phrase containing it will be
excluded as well.  The regular expression consists of all characters on the
line following the initial ‘/’ – these are extended regular expressions, so
grouping, alternation, and such are available.

Regular expression patterns are only checked if the word itself does not appear
in the stoplist file as a word entry.  The regular expression patterns are
always applied to individual words, not phrases, and must match the entire word
(i.e. they are anchored both at the start and end).

Use regular expressions sparingly, as evaluating them for every word in the
source files can be expensive.  In addition to stoplist regular expressions,
poterminology has precompiled patterns for C and Python format specifiers (e.g.
%d) and XML/HTML <elements> and &entities; – these are removed before stoplist
processing and it is not possible to override this.




Stoplist words

All other lines should begin with one of the following characters, which
indicate whether the word should be ignored (as a word alone),
disregarded in a phrase (i.e. a phrase containing it is allowed, and the
word does not count against the --term-words length limit), or any
phrase containing it should be excluded.


	+ allow word alone, allow phrases containing it

	: allow word alone, disregarded (for --term-word-length) inside
phrase

	< allow word alone, but exclude any phrase containing it

	= ignore word alone, but allow phrases containing it

	> ignore word alone, disregarded (for --term-word-length) inside
phrase

	@ ignore word alone, and exclude any phrase containing it



Generally ‘+’ is only needed for exceptions to regular expression patterns, but
it may also be used to override an entry in a previous stoplist if you are
using multiple stoplists.

Note that if a word appears multiple times in a stoplist file with different
function characters preceding it, the last entry will take precedence over
the others.  This is the only exception to the general rule that order is not
important in stopword files.






Default file example

# apply title-case folding to words before comparing with this stoplist
!F





The fold-titlecase setting is the default, even if it were not explicitly
specified.  This allows capitalized words at the start of a sentence (e.g.
“Who”) to match a stopword “who” but allows acronyms like WHO (World Health
Organization) to be included in the terminology.  If you are using
poterminology with source files that contain large amounts of ALL UPPERCASE
TEXT you may find the ignore-case setting to be preferable.

# override regex match below for phrases with 'no'
+no





The regular expression /..? below would normally match the word ‘no’ and both
ignore it as a term and exclude any phrases containing it.  The above will
allow it to appear as a term and in phrases.

# ignore all one or two-character words (unless =word appears below)
/..?
# ignore words with parenthesis, typically function() calls and the like
/.*\(.*
# ignore numbers, both cardinal (e.g. 1,234.0) and ordinal (e.g. 1st, 22nd)
/[0-9,.]+(st|nd|rd|th)?





These regular expressions ignore a lot of uninteresting terms that are
typically code or other things that shouldn’t be translated anyhow.  There are
many exceptions to the one or two-character word pattern in the default
stoplist file, not only with = like ‘=in’ but also ‘+no’ and ‘:on’ and ‘<ok’
and ‘>of’.

# allow these words by themselves and don't count against length for phrases
:off
:on





These prepositions are common as button text and thus useful to have as terms;
they also form an important part of phrases so are disregarded for term word
count to allow for slightly longer phrases including them.

# allow these words by themselves, but ignore any phrases containing them
<first
<hello
<last





These are words that are worth including in a terminology, as they are common
in applications, but which aren’t generally part of idiomatic phrases.

# ignore these words by themselves, but allow phrases containing them
=able
=about
=actually
=ad
=as
=at





This is the largest category of stoplist words, and these are all just rather
common words.  The purpose of a terminology list is to provide specific
translation suggestions for the harder words or phrases, not provide a general
dictionary, so these words are not of interest by themselves, but may well be
part of an interesting phrase.

# ignore these words by themselves, but allow phrases containing them,   and
# don't count against length for phrases
#
# (possible additions to this list for multi-lingual text: >di >el >le)
#
>a
>an
>and





These very common words aren’t of interest by themselves, but often form an
important part of phrases so are disregarded for term word count to allow for
slightly longer phrases including them.

# ignore these words and any phrases containing them
@ain't
@aint
@al
@are





These are “junk” words that are not only uninteresting by themselves, they
generally do not contribute anything to the phrases containing them.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pocount

pocount will count the number of strings and words in translatable files.

Supported formates include: PO and XLIFF.   Almost all bilingual file formats
supported by the Translate Toolkit will work with pocount, including: TMX, TBX, Gettext .mo,
Qt .qm, Wordfast .txt TM.

A number of other formats should be countable as the
toolkit develops.  Note that only multilingual formats based the storage
base class are supported, but that includes
almost all storage formats.


Usage

pocount [options] <directory|file(s)>





Where:







	directory
	will recurse and count all files in the specified directory


	file(s)
	will count all files specified





Options:





	
-h, --help
	show this help message and exit

	
--incomplete
	skip 100% translated files




Output format:





	
--full
	(default) statistics in full, verbose format

	
--csv
	statistics in CSV format

	
--short
	same as –short-strings

	
--short-strings


		statistics of strings in short format – one line per file

	
--short-words
	statistics of words in short format – one line per file







Examples

pocount makes it easy to count the current state of a body of translations. The
most interesting options are those that adjust the output style and decide what
to count.


Easy counting

To count how much work is to be done in you project:

pocount project/





This will count all translatable files found in the directory project/ and
output the results in --full format.

You might want to be more specific and only count certain files:

pocount *.po





This will count all PO files in the current directory but will ignore any other
files that ‘pocount’ can count.

You can have full control of the files to count by using some of the abilities
of the Unix commandline, these may work on Mac OS X but are unlikely to work on
Windows.:

pocount $(find . -name "*.properties.po")





This will first find all files that match *.properties.po and then count
them.  That would make it easy to count the state of your Mozilla translations
of .properties files.




Incomplete work

To count what still needs to be done, ignoring what is 100% complete you can
use the --incomplete option.:

pocount --incomplete --short *.xlf





We are now counting all XLIFF files by using the *.xlf expansion.  We are
only counting files that are not 100% complete and we’re outputing string
counts using the --short option.






Output formats

The output options provide the following types of output


–full

This is the normal, or default, mode.  It produces the most comprehensive and
easy to read data, although the amount of data may overwhelm the user. It
produces the following output:

avmedia/source/viewer.po
type              strings      words (source)    words (translation)
translated:   73465 ( 99%)     538598 ( 99%)          513296
fuzzy:           13 (  0%)        141 (  0%)             n/a
untranslated:    53 (  0%)        602 (  0%)             n/a
Total:        73531            539341                 513296





A grand total and file count is provided if the number of files is greater than
one.




–csv

This format is useful if you want to reuse the data in a spreadsheet.  In CSV
mode the following output is shown:

Filename, Translated Messages, Translated Source Words, Translated Target Words, Fuzzy Messages, Fuzzy Source Words, Untranslated Messages, Untranslated Source Words, Review Messages, Review Source Words
avmedia/source/viewer.po,  1, 3, 3, 0, 0, 4, 22, 1, 3





Totals are not provided in CSV mode.




–short-strings (alias –short)

The focus is on easily accessible data in a compact form.  This will only count
strings and uses a short syntax to make it easy for an experienced localiser to
read.:

test-po/fuzzy.po strings: total: 1    | 0t    1f      0u      | 0%t   100%f   0%u





The filename is followed by a word indicating the type of count, here we are
counting strings.  The total give the total string count.  While the letters t,
f and u represent ‘translated’, ‘fuzzy’ and ‘untranslated’ and here indicate
the string counts for each of those categories.  The counts are followed by a
percentage representation of the same categories.




–short-words

The output is very similar to --short-strings above:

test-po/fuzzy.po source words: total: 3       | 0t    3f      0u      | 0%t   100%f   0%u





But instead of counting string we are now counting words as indicated by the
term ‘source words’






Bugs


	There are some miscounts related to word breaks.

	When using the short output formats the columns may not be exactly aligned.
This is because the number of digits in different columns is unknown before
all input files are processed. The chosen tradeoff here was instanteous
output (after each processed file) instead of waiting for the last file to be
processed.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
podebug

Insert pseudo translations [http://en.wikipedia.org/wiki/Pseudolocalization] or debug markers into
target text in XLIFF, Gettex PO and other localization files.

The pseudo translation or debug markers make it easy to reference and locate
strings when your translated application is running.

Use it to:


	Target your translations: see what files are being referenced for string
appearing in your programs.

	Debug translations: if you know in what file the message occurs then you
can quickly find it and fix it.

	Check that everything is translatable: any English only text needs to be
analysed so that it can be localised.

	Check for Unicode compliance: by inserting Unicode text outside of the
Latin range it allows you to check that your program can handle non-Latin
correctly.




Usage

podebug [options] <in> <out>





Where:







	<in>
	is an input directory or localisation file file


	<out>
	is an output directory or localisation file, if missing output
will be to standard out.





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names,
verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
-fFORMAT, --format=FORMAT


		specify format string

	
--rewrite=STYLE


		the translation rewrite style: xxx, en, blank,
chef  (v1.2), unicode (v1.2)

	
--ignore=APPLICATION


		apply tagging ignore rules for the given application:
kde, gtk, openoffice, libreoffice, mozilla

	
--hash=LENGTH
	add an md5 hash to translations (only until version
1.3.0 – see %h below)







Formats

A format string can have these various options:







	f
	full filename including directory


	F
	as %f but with .po file extension


	b
	base of filename


	B
	base of filename with .po file extension


	d
	directory name


	s
	preset OpenOffice.org modifier


	c
	use only consonants


	h
	hash value (since version 1.4 – see notes below)


	N
	a set number of characters





A format string may look like this:


	%cf – the full filename without vowels

	[%10cb] – the first ten character after compressing the base of the
filename and place it in square brackets with a space before the real message

	[%5cd - %cB] – the first 5 consonants of the directory, followed by a
dash then the consonants of the filename with a .po extension.  All
surrounded by square brackets with a space before the translations.

	%4h. – insert a hash value of length 4



Complex format strings may make it too difficult to actually read the
translation, so you are probably best served using as short a string as
possible.




Rewriting (style)

The rewriting options are designed to change the target text in various ways
(c.f. the various rewriting styles available).  This is
mostly valuable for debugging English text.  The ‘xxx’ rewriter is useful in
that it allows you to identify text that has not localisable as that text will
lack the xxx characters.

The ‘en’ rewriter can be used to prepare English hashed (see below) files for
quickly finding strings that have spelling or other errors.  It can also be
used to create a translated English file which can then be used for other
purposes such as British English translation.




Ignoring messages

In some applications their are translations that should not be translated
(usually these are configuration options).  If you do translate them then the
application will fail to compile or run.

The --ignore option allows you to specify the application for which you
are producing PO debug files.  In this case it will then not mark certain of
the PO entries with debug messages.

In Mozilla we do not mark lone .accesskey, .width, .height, etc
since these can really be thought of as configuration options.




Hashing

Sometimes you find an error in a string.  But it is difficult to search for the
occurance of the error.  In order to make it easy to find a string in your
files we can produce a hash on the strings location and other data.  This
produces unique alphanumeric sequences which are prepended to the target text.
Thus now in your application you have your translated text and a alphanumeric
value.  Its is then easy to search for that value and find your problem string.




Usings podebug

Here are some more examples in a series [http://translate.org.za/blogs/friedel/en/content/pseudolocalisation-podebug-1]
of [http://translate.org.za/blogs/friedel/en/content/pseudolocalisation-podebug-2]
blog posts [http://translate.org.za/blogs/friedel/en/content/pseudolocalisation-podebug-3-interview-rail-aliev].







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
–rewrite=STYLE

podebug allows you to rewrite the output text in a number of ways.


xxx

The target text is surrounded by xxx as follows

msgid "English"
msgstr "xxxEnglishxxx"





This is useful when you want to identify which text is localisable.  There
might be text in your application which you cannot localise this will allow you
to quickly identify that text.




en

The source text is copied to the target

msgid "English"
msgstr "English"





In this way you can create translations that contain only the source text.
Useful if you are preparing a roundtrip test or want to start an English
derived translation such as British English.  It produces the same results as
msgen [http://linux.die.net/man/1/msgen] but with the advantage that you can add debug markers.




blank

This simply empties your current translations

msgid "English"
msgstr ""





When you have a set of translation files but no template this allows you to
essentially convert a PO into a POT file.  This mimics the --empty
functionality of msghack [http://linux.die.net/man/1/msghack].




bracket


New in version 1.4.



Places brackets around the translated text.

msgid "English"
msgstr "[English]"





This can be used in the same way as xxx to check for translatability.  It
is also useful with very long strings as it allows you to check that the full
string in rendered and has not been cutoff by the application.




chef


New in version 1.2.



Rewrites the source text using mock Swedish as popularised by the Swedish
Chef [http://en.wikipedia.org/wiki/Swedish_Chef].

msgid "English"
msgstr "Ingleesh"





This is probably only useful for some fun.  It’s not guaranteed that every
string will be rewritten as the mock Swedish rules might not apply thus its not
ideal for identifying untranslatable strings.




flipped


New in version 1.4.



Change the text into a version that uses equivalent Latin characters that are
upside down.

msgid "English"
msgstr "‮Ǝuƃʅısɥ"





flipped can give an output that simulates RTL languages.  It inserts RTL
characters to try to achieve RTL-like results.  Its not perfect but will give
you some sense of whether your application can do RTL.  Or just use it for fun!

For really testing right-to-left GUIs, you want to make sure that the whole
application is shown in RTL, not just the strings. Test your pseudo-translated
file as a translation of an RTL language like Arabic or Hebrew. In case the
application relies on other files coming from libraries (like GTK+), you might
need to repeat the process for them, or at least ensure that you have the
Arabic/Hebrew .mo files for them installed.




unicode


New in version 1.2.



Rewrites the source text with Unicode characters that looks like the Latin
characters that they are replacing.

msgid "English"
msgstr "Ḗƞɠŀīşħ"





This allows a translator or programmer to test a programs ability to use
Unicode message strings. By using characters in the Unicode range but that are
related to the plain Latin characters that they replace we ensure that the
messages are still readable.


Note

Before version 1.4, the rewrite rule will also rewrite variables
and XML tags, which would cause problems in some situations.
Run pofilter as a quick method to fix up incorrect changes, or
upgrade to version 1.4.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
posegment

posegment takes a Gettext PO or XLIFF file and segments the entries, generating
a new file with revised and smaller translation units.

This is useful for the creation of a file that can be used as a Translation
Memory as you should get better matching after you have exposed translated
sentences that might occur elsewhere in your work.

Posegment won’t do very advanced sentence boundary detection and alignment, but
has customisations for the punctuation rules of several languages (Amharic,
Afrikaans, Arabic, Armenian, Chinese, Greek, Japanese, Khmer, Oriya, Persian).
For the purpose of increasing your TM (as described below), it is already very
useful. Give it a try and help us to improve it even more for your language.


Usage

posegment [options] <input> <segmented>





Where:







	<input>
	translations to be segmented


	<segmented>
	translations segmented at the sentence level





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in pot format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-P, --pot
	output PO Templates (.pot) rather than PO files (.po)

	
-l LANG, --language=LANG


		the target language code

	
--source-language=LANG


		the source language code (default ‘en’)

	
--keepspaces
	Disable automatic stripping of whitespace

	
--only-aligned
	Removes units where sentence number does not
correspond







Examples

You want to reuse all of your Pidgin translations in another Instant
Messenger:

posegment pidgin-af.po pidgin-af-segmented.po





Now all of our Pidgin translation are available, segmented at a sentence level,
to be used as a Translation Memory for our other translation work.

You can do the same at a project level.  Here we want to segment all of our
OpenOffice.org translation work, a few hundred files:

posegment af/ af-segmented/





We start with all our files in af which are now duplicated in
af-segmented except files are now fully segmented.




Issues


	If the toolkit doesn’t have segmentation rules for your language then it will
default to English which might be incorrect.

	Segmentation does not guarantee reuse as your TM software needs to know how
to segment when matching. If you use software that doesn’t do segmentation,
you can consider joining the original and the segmented files together with
msgcat, to get the best of both worlds.

	You cannot (yet) use the tool to break a file into segments, translate, and
then recreate as the segmented file does not know which parts should be
joined together to recreate a file.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pocompile

Compile PO or XLIFF files into MO (Machine Object) files.  MO files are
installed on your computer and allow a Gettext enabled computer to provide the
translations for the application.


Usage

pocompile <po> <mo>





Where:







	<po/xliff>
	is a standard PO file, XLIFF file or directory


	<mo>
	is the output MO file or directory of MO files





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in xlf, po, pot formats

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in mo format

	
--fuzzy
	use translations marked fuzzy

	
--nofuzzy
	don’t use translations marked fuzzy (default)







Examples

pocompile --fuzzy file.po file.mo





Creates a new MO file called file.mo based on the translation in the PO file
file.po.  By using the --fuzzy option we use all translations
including those marked fuzzy.

pocompile file.xlf file.mo





Create an MO file from an XLIFF file called file.xlf (available from version
1.1 of the toolkit).







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
poswap

This tool builds a new translation file with the target text (translation) of
the input file(s) as source language of the output file it creates.

This makes it possible to have French as the source file for translation,
rather than English.  Note that this requires no change in the software project
and is only a manipulation of the strings in the existing files. The only
requirement for this tool is a French translation.

It can also be used to convert translatable files that use logical IDs instead
of source text into a format usable by human localisers.


Usage

poswap [options] <newsource> [-t current] <new>





Where:







	<newsource>
	is the translations (preferably 100% translated) of the
preferred source language (like French)


	<current>
	is the (optional) current English based translation in
your intended target language


	<new>
	is the intended output file / directory





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in pot format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in po, pot formats

	
--reverse
	Do the inverse operation (converting back to a normal English based file). See the examples.







Examples

Ensure that the two po files / directories correspond 100% to the same pot file
before using this.

To start a fresh Afrikaans (af) translation from Dutch (nl):

poswap nl.po nl-af.po





This initialises a new, empty file nl-af.po with Dutch as the source language.

To change the nl-af.po file back to the expected English based af.po:

poswap --reverse nl.po -t nl-af.po af.po





To translate Kurdish (ku) through French (fr):

poswap -i fr/ -t ku/ -o fr-ku/





This will take the existing (English based) Kurdish translation in ku/ and
produce files in fr-ku with French as the source language and Kurdish as the
target language.

To convert the fr-ku files back to en-ku:

poswap --reverse -i fr/ -t fr-ku/ -o en-ku/





This recreates the English based Kurdish translation from the French based
files previously created in fr-ku/.




Issues


	Behaviour is undetermined if the two files don’t match 100%. If PO files are
based in the same template, there should be no problem.

	We should probably be doing fuzzy matching in future to ease the migration
over the lifetime of a changing French translation.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
poclean

This is a rudimentary tool to produce a clean file from an unclean file
(Trados/Wordfast) by stripping out the tw4win indicators.


Usage

poclean <input> <output>





Where:







	<input>
	is the text versions of the unclean RTF files


	<output>
	is the intended output file / directory





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in pot format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read from TEMPLATE in po, pot formats







Examples

To create a text version of the unclean RTF file, you need UnRTF, available
here: project site [http://www.gnu.org/software/unrtf/unrtf.html] or here
(windows) [http://gnuwin32.sourceforge.net/packages/unrtf.htm].

unrtf translation.rtf  --text > translation.po





You might need to convert the encoding of the file, with iconv, for example:

iconv -f latin1 -t utf-8 translation.po > new_translation.po





Now you can clean the file with poclean

poclean new_translation.po clean_translation.po











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pretranslate

Merge existing translations from an old translation file to a new one as well
as fill any missing translations from translation memory via fuzzy matching.

This functionality used to be part of pot2po and corresponds to “msgmerge” from
the gettext package.

pretranslate works on PO and XLIFF files.


Usage

pretranslate [options] <input> <output>





Where:







	<input>
	is the translation file or directory to be pretranslated


	<output>
	is the translation file or a directory where the
pretranslated version will be stored





Options:





	
--version
	show program’s version number and exit

	
-h, --help
	show this help message and exit

	
--manpage
	output a manpage based on the help

	
--progress=PROGRESS


		show progress as: dots, none, bar, names, verbose

	
--errorlevel=ERRORLEVEL


		show errorlevel as: none, message, exception,
traceback

	
-iINPUT, --input=INPUT


		read from INPUT in pot format

	
-xEXCLUDE, --exclude=EXCLUDE


		exclude names matching EXCLUDE from input paths

	
-oOUTPUT, --output=OUTPUT


		write to OUTPUT in po, pot formats

	
-tTEMPLATE, --template=TEMPLATE


		read old translations from TEMPLATE

	
--tm=TM
	The file to use as translation memory when fuzzy matching

	
-sMIN_SIMILARITY, --similarity=MIN_SIMILARITY


		The minimum similarity for inclusion (default: 75%)

	
--nofuzzymatching


		Disable all fuzzy matching







Examples

pretranslate -t zu-1.0.1 -tm zu_tm.po zu-2.0.2 zu-2.0.2-translated





Here we are pretranslating the PO or XLIFF files in zu-2.0.2 using the old
translations in zu-1.0.1 and fuzzy matches from the zu_tm.po compendium. the
result is stored in zu-2.0.2-translate

Unlike pot2po pretranslate will not change anything in the input file except
merge translations, no reordering or changes to headers.




Merging

It helps to understand when and how pretranslate will merge. The default is to
follow msgmerge’s behaviour but we add some extra features with fuzzy matching:


	If everything matches we carry that across

	We can resurrect obsolete messages for reuse

	If we cannot find a match we will first look through the current and obsolete
messages and then through any global translation memory

	Fuzzy matching makes use of the Levenshtein distance algorithm to detect the best matches






Performance

Fuzzy matches are usually of good quality. Installation of the
python-Levenshtein [https://pypi.python.org/pypi/python-Levenshtein]
package will speed up fuzzy matching. Without this a Python based matcher is
used which is considerably slower.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
Levenshtein distance

The levenshtein distance [http://en.wikipedia.org/wiki/Levenshtein_distance] is used for measuring the
“distance” or similarity of two character strings. Other similarity algorithms
can be supplied to the code that does the matching.

This code is used in pot2po, tmserver and Virtaal [http://virtaal.org]. It is implemented in the toolkit, but can optionally use
the fast C implementation provided by python-Levenshtein [https://pypi.python.org/pypi/python-Levenshtein] if it is installed. It is
strongly recommended to have python-levenshtein installed.

To exercise the code the classfile “Levenshtein.py” can be executed directly
with:

$ python Levenshtein.py "The first string." "The second string"






Note

Remember to quote the two parameters.



The following things should be noted:


	Only the first MAX_LEN characters are considered. Long strings differing
at the end will therefore seem to match better than they should. A penalty is
awarded if strings are shortened.

	The calculation can stop prematurely as soon as it realise that the supplied
minimum required similarity can not be reached. Strings with widely different
lengths give the opportunity for this shortcut. This is by definition of the
Levenshtein distance: the distance will be at least as much as the difference
in string length. Similarities lower than your supplied minimum (or the
default) should therefore not be considered authoritative.




Shortcommings

The following shortcommings have been identified:


	Cases sensitivity: ‘E’ and ‘e’ are considered different characters and
according differ as much as ‘z’ and ‘e’. This is not ideal, as case
differences should be considered less of a difference.

	Diacritics: ‘ê’ and ‘e’ are considered different characters and
according differ as much as ‘z’ and ‘e’. This is not ideal, as missing
diacritics could be due to small input errors, or even input data that simply
do not have the correct diacritics.

	Similar but different words: Words that have similar characters, but are
different, could increase the similarity beyond what is wanted. The sentences
“It is though.” and “It is dough.” differ markedly semantically, but score
similarity of almost 85%. A possible solution is to do an additional
calculation based on words, instead of characters.

	Whitespace: Differences in tabs, newlines, and space usage should perhaps
be considered as a special case.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
Mozilla L10n Scripts


Introduction

This page describes the purpose and usage of scripts available in the Translate
Toolkit specifically for making the translation of Mozilla products easier.

Mozilla’s move from CVS to Mercurial made a lot of these scripts necessary. For
more information about Mozilla l10n from CVS, see the moz-l10n-builder
page.

All of these scripts are available on Subversion from here [https://github.com/translate/translate/tree/master/tools/mozilla].

We are currently generating POT files for most major betas, RCs and releases of
Firefox and Thunderbird. They are available here:
http://l10n.mozilla.org/pootle/pot/

As a start you might want to just use these POT files and gradually learn more
about the processes described below. Contact us for more help on using these.




Requirements


	The Translate Toolkit (>=1.3)

	All scripts in the tools/mozilla directory (from the project sources)
should be executable and in your PATH.






build_ff3.1_langs.sh


Description

This is a simple bash script that embodies most of the Mozilla l10n process and
does the following:


	Update Mozilla sources

	Update language files from Mozilla’s L10n [http://hg.mozilla.org/l10n-central] Mercurial repository.

	Replace old l10n en-US files with a fresh copy from the updated source tree.

	Create new POT files from the
en-US l10n files.

	Create archives of the POT files.

	For each language:
	Update existing PO files if the checked out from a CVS, Subversion or
Mercurial repository.

	Migrate PO files to new POT
files.

	Create Mozilla l10n files for the language based on the
migrated PO files.

	Create archives of the PO files.

	Build langpack for the
language.







This script is used on the l10n.mozilla.org server to create most (if not all)
of the files available from http://l10n.mozilla.org/pootle/. It was originally
written as a stable way to provide these files and as such making it as general
as possible was not the biggest requirement. This is evident in the script’s
very narrow focus.




Usage

This script takes no command-line parameters and is only configurable via the
variables at the top and, failing that, custom hacking of the script.

The variables are used in the following ways:







	BUILD_DIR
	The base build directory from where building is done.


	MOZCENTRAL_DIR
	The directory containing a checkout of the Mozilla
source tree http://hg.mozilla.org/mozilla-central/


	HG_LANGS
	A space-separated list of language codes to build
for.


	L10N_DIR
	The directory where Mozilla l10n files
(from l10n-central) should be collected.


	PO_DIR
	The directory containing the externally-hosted or
previously available source PO files (e.g. PO files
managed in another VCS repository). It contains a
sub-directory for each language.


	POPACK_DIR
	The output directory for PO archives.


	PORECOVER_DIR
	The directory to put recovered PO files in. It
contains a sub-directory for each language.


	POT_INCLUDES
	A space-separated list of files to be included in POT
archives.


	POTPACK_DIR
	The output directory for POT archives.


	POUPDATED_DIR
	The directory to use for updated PO files. It
contains a sub-directory for each language.


	LANGPACK_DIR
	The directory to put langpacks (XPIs) in.


	FF_VERSION
	The version of Firefox that is being built for. This
is used in the file names of archives.






Note

It is strongly recommended that you mirror the directory
structure specified by the default values of the *_DIR variables. For
example the default value for L10N_DIR is ${BUILD_DIR}/l10n, then
you should put your l10n-central check-outs in the l10n directory under
your main build directory (BUILD_DIR).

Basically, you should have an ideally separate build directory containing
the following sub-directories: l10n, mozilla-central, po,
popacks, potpacks, po-updated and xpi (if used). This way
the only variable that need to be changed is BUILD_DIR.








build_tb3_langs.sh

This is the script that the build_ff3.1_langs.sh script above was actually
adapted from. It is 90% similar with the obvious exception that it is aimed at
building Thunderbird 3.0 packages in stead of Firefox 3.1. Also note that this
script uses the comm-central repository in stead of mozilla-central.




buildxpi.py


Description

Creates XPI language packs from Mozilla sources and translated l10n files. This
script has only been tested with Firefox 3.1 beta sources.

It is basically the scripted version of the process described on Mozilla’s
“Creating a language pack” [https://developer.mozilla.org/en-US/docs/Creating_a_Language_Pack] page.

This script is used by build_ff3.1_langs.sh to build language packs in its
final step.


Note

This script uses the .mozconfig file in your home directory. Any
existing .mozconfig is renamed to .mozconfig.bak during operation
and copied back afterwards.






Usage

buildxpi.py [<options>] <lang> [<lang2> ...]





Example:

buildxpi.py -L /path/to/l10n -s /path/to/mozilla-central -o /path/to/xpi_output af ar





Options:





	
-h, --help
	show this help message and exit

	
-L L10NBASE, --l10n-base=L10NBASE


		The directory containing the <lang> subdirectory.

	
-o OUTPUTDIR, --output-dir=OUTPUTDIR


		The directory to copy the built XPI to (default:
current directory).

	
-p MOZPRODUCT, --mozproduct=MOZPRODUCT


		The Mozilla product name (default: “browser”).

	
-s SRCDIR, --src=SRCDIR


		The directory containing the Mozilla l10n sources.

	
-d, --delete-dest


		Delete output XPI if it already exists.

	
-v, --verbose
	Be more noisy









get_moz_enUS.py


Description

A simple script to collect the en-US l10n files from a Mozilla source tree
('comm-central‘ or 'mozilla-central‘) by traversing the product’s
l10n.ini file.




Usage

get_moz_enUS.py [options]





Options:





	
-h, --help
	show this help message and exit

	
-s SRCDIR, --src=SRCDIR


		The directory containing the Mozilla l10n sources.

	
-d DESTDIR, --dest=DESTDIR


		The destination directory to copy the en-US locale
files to.

	
-p MOZPRODUCT, --mozproduct=MOZPRODUCT


		The Mozilla product name.

	
--delete-dest
	Delete the destination directory (if it exists).

	
-v, --verbose
	Be more noisy









moz-l10n-builder

This is the pre-Mercurial build script originally written by Dwayne Bailey.
This is the script that all the others on this page replaces for post-CVS
Mozilla l10n.


Note

This script is not applicable to the l10n process of any Mozilla products after the move to Mercurial.



For more information about this script see its dedicated page.




moz_l10n_builder.py

This script was intended to be a simple and direct port of the
moz-l10n-builder script from above. It has pro’s and cons in comparison to
the original, but is very similar for the most part. So for more information
about this script, see the original script’s page.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
moz-l10n-builder

Take a set of Mozilla (Firefox, Thunderbird, SeaMonkey, etc.) localisation and
migrate them to the latest Mozilla source, building XPIs and repackaging hte
Windows .exe file as needed.

Please also check the page on creating a language pack [https://developer.mozilla.org/en/docs/Creating_a_Language_Pack] on the
Mozilla wiki, to stay abreast of the latest Mozilla way of doing things.


Note

This page is only applicable to Mozilla products with its source
hosted in CVS. This includes Firefox versions before 3.1 and Thunderbird
versions before 3.0.

For information about working with the new source trees in Mercurial, see the Mozilla L10n Scripts page.




Prerequisites


	Translation update component and building XPIs
	Translate Toolkit

	Existing Mozilla translations in PO format

	A checkout of Mozilla sources [https://developer.mozilla.org/en-US/docs/Developer_Guide/Source_Code/CVS]
updated to the correct BRANCH or RELEASE [https://developer.mozilla.org/en/docs/CVS_Tags]





	Building Windows executables
	Firefox or Thunderbird en-US .exe [http://releases.mozilla.org/pub/mozilla.org/firefox/releases/] file e.g.
Firefox 2.0 en-US [http://releases.mozilla.org/pub/mozilla.org/firefox/releases/2.0/win32/en-US/Firefox%20Setup%202.0.exe]

	upx [http://upx.sourceforge.net/] for executable compression

	Nullsoft installer [http://nsis.sourceforge.net/Main_Page] to package
the installer.

	7zip [http://www.7-zip.org/] for various compression

	Linux: WINE [http://www.winehq.org/] to run the Nullsoft installer





	Directory structure under the directory you want to run moz-l10n-builder in:









	l10n/
	Contains Mozilla l10n files for available/needed language(s)


	mozilla/
	The Mozilla source tree


	po/
	Contains your PO files (output from moz2po)


	potpacks/
	Where POT-archives go





Note these instructions are for building on Linux, they may work on Windows.
All software should be available through your distribution.  You will need to
use Wine to install the Nullsoft installer and may need to sort out some path
issues to get it to run correctly.




Latest Version

moz-l10n-builer is not currently distributed as part of the toolkit.  You can
get the latest version from Git [https://raw.github.com/translate/translate/master/tools/mozilla/moz-l10n-builder]
and you will also need this minor patch [https://raw.github.com/translate/translate/master/tools/mozilla/mozilla-l10n.patch]
to the mozilla source code.




Usage

moz-l10n-builder [language-code|ALL]





Where:







	language-code
	build only the supplied languages, or build ALL if
specified or if no option is supplied





Your translations will not be modified.




Operation

moz-l10n-builder does the following:


	Updates the mozilla/ directory

	Creates POT files

	Migrates your translations to this new POT file

	Converts the migrated POT files to .dtd and .properties files

	Builds XPI and .exe files

	Performs various hacks to cater for the anomalies of file formats

	Outputs a diff of you migrated PO files and your newly generated Mozilla
l10n/ files






Bugs

Currently it is too Translate.org.za specific and not easily configurable
without editing.  It is also not intelligent enough to work our that you want
Firefox vs Thunderbird generation.  A lot of this functionality should be in
the Mozilla source code itself.  We hope over time that this might happen.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
phase

phase is a script that allows you to perform a number of tasks on a set of PO
files that have been broken into phases.  You can create a ZIP file for a
phase, run checks against a phase, review a phase, edit files in a phase, etc.
All the tasks that would be involved in sending work to various translators,
receiving work, checking it and committing to CVS.


Prerequisites


	An environment that will run bash [http://linux.die.net/man/1/bash]

	diff [http://linux.die.net/man/1/diff]

	cvs [http://linux.die.net/man/1/cvs]






Latest Version

phase is not currently distributed as part of the toolkit.  You can get the
latest version from Git [https://raw.github.com/translate/translate/master/tools/phase]




Usage

phase <command> [options]





Mostly the usage follows the format of:

phase <command> <language-dir> <phaselist> <phase-name>
phase <command> <language-dir> <phase-name>





A full list of commands and options can be seen by running:

phase --help








Commands

These are the commands that you can use:


	makephaselist <new-phase-list-name> – creates a phase list

	listphases <phase-list> – lists the different phases that appear in the
phase-list file

	listfiles <phase-list> <phase-name> – list all files for the given phase in
the phase-list file

	checkphaselist <language-dir> <phase-list> – checks to see which files are
not included in the phaselist

	countpo <language-dir> <phase-list> <phase-name> – counts PO file in the
given phase

	countpot <template-dir> <phase-list> <phase-name> – counts POT file in the
given phase

	missingpo <language-dir> <phase-list> <phase-name> – lists files that have
not been returned for a phase

	packpot <template-dir> <phase-list> <phase-name> – packs all POT files for a
given phase into a ZIP file

	packpo <language-dir> <phase-list> <phase-name> – packs all PO files for a
given phase into a ZIP file

	packall <template-dir> <phase-list> – packs all phases found in the phase
list

	packallpo <language-dir> <phase-list> – packs all phases found in the phase
list for the given language

	countmismatch <language-dir> <template-dir> <phase-list> <phase-name> –
compares the source word count between PO and POT to determine if there are
any file errors.

	editpo <language-dir> <phase-list> <phase-name> – edit the PO files in a
phase

	editpochecks <language> <phase-name> – edit the PO checks output by checkpo

	editconflicts <language-dir> <phase-list> <phase-name> – edit the extracted
conflict items

	checkpo <language-dir> <phase-list> <phase-name> [pofilter options] – run
pofilter checks against the given phase

	mergepo <language> <phase-name> – merge the checks back into the main
language directory

	conflictpo <language-dir> <phase-list> <phase-name> [poconflict options] –
run poconflict checks against the given phase

	diffpo <language-dir> <phase-list> <phase-name> – perform a cvs diff for the
phase

	cvslog <language-dir> <phase-list> <phase-name> – perform a cvs log against
files in the phase

	lastlog <language-dir> <phase-list> <phase-name> – retrieves the last cvs
log entry for each file in a phase

	cvsadd <languages-dir> <phase-list> <phase-name> – CVS adds files and
directories that are not already in CVS

	diffpo <language-dir> <phase-list> <phase-name> – perform a cvs diff for the
phase

	reviewpo <language-dir> <phase-list> <phase-name> [pofilter options] –
extract items marked for review for the given phase

	editreviews <language-dir> <phase-list> <phase-name> – edit the extracted
review items

	countreviews <language-dir> <phase-list> <phase-name> – count the number of
strings and words under review

	checkinpo <language-dir> <phase-list> <phase-name> – cvs checkin the files
in the given phase

	creategsi <language-dir> <en-US.gsi> <traget-language> – creates a BZ2
GSI/SDF file for the language against the en-US GSI file

	reviewsinout <language> <phase-name> – counts the number of review files
returned vs sent and shows which are missing

	reviewsdiff <language> <phase-name> – create a diff between what was sent
for review and what was returned






Bugs

There are probably lots mostly the bug is that the command line options are
pretty inconsistent







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pocompendium

Takes a directory of translated PO files and creates a single PO files called a
PO compendium.  This compendium can be used to review word choice conflicts or
as input during a merge using pomigrate2.


Prerequisites

GNU Gettext:


	msgattrib [http://linux.die.net/man/1/msgattrib]

	msgcat [http://linux.die.net/man/1/msgcat]

	msghack [http://linux.die.net/man/1/msghack] (may not be present on your installation of Gettext, but is
only required for the invert command)

	msgfilter [http://linux.die.net/man/1/msgfilter]






Usage

pocompendium [options] output.po <-d po-directory(ies)|po-file(s)>





Where:







	output.po
	the name of the output PO compendium


	po-directory(ies)
	one or more directories to use as input for the compendium


	po-file(s)
	one or more PO files to use as input for the compendium





Options:





	
-v, --invert
	swap the msgid and msgstr in the input PO files

	
-e, --errors
	only return those msg blocks that have conflicts

	
-i, --ignore-case


		drops all msgstr’s to lowercase

	
-st, -tilde, --strip-accel-amp


		remove all & style accelerator markers

	
-sa, -amp, --strip-accel-tilde


		remove all ~ style accelerator markers

	
-su, --strip-accel-under


		remove all _ style accelerator markers







Examples


	Compendium creation — create a compendium with all your translations to
use as input during a message merge either when migrating an existing project
or starting a new one.

	Conflicting translations — use --errors to find where you have
translated an English string differently.  Many times this is OK but often it
will pick up subtle spelling mistakes or help you to migrate older
translations to a newer choice of words

	Conflicting word choice — use --invert and --errors to get
a compendium file that show how you have used a translated word for different
English words. You might have chosen a word that is valid for both of the
English expressions but that in the context of computers would cause
confusion for the user.  You can now easily identify these words and make
changes in the underlying translations.






Narrowing Results

PO files treat slight changes in capitalisation, accelerator, punctuation and
whitespace as different translations.  In cases 2) and 3) above it is sometimes
useful to remove the inconsistencies so that you can focus on the errors in
translation not on shifts in capitals.  To this end you can use the following:

--ignore-case, --strip-accel-amp, --strip-accel-tilde,
--strip-accel-under




Operation

pocompendium makes use of the Gettext tool msgcat to perform its task.  It
traverses the PO directories and cat’s all found PO files into the single
compendium output file.  It then uses msgattrib to extract only certain
messages, msghack to invert messages and msgfilter to convert messages to
lowercase.




Bugs

There are some absolute/relative path name issues







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pocommentclean

pocommentclean will remove all translator comments from a directory of PO
files.


Prerequisites


	sed [http://linux.die.net/man/1/sed]






Usage

pocommentclean [--backup] <po>





Where:







	po
	is a directory of existing PO files that you want to clean





Options:





	
--backup
	Create a backup file for each PO file converted, .po.bak







Operation

Using sed pocommentclean will delete all lines starting with # but which are
not standard Gettext PO format lines.  So it won’t delete developer comments
(#.), obsolete messages (#~), flags (#,) or locations (#:).




Bugs

pocommentclean cannot clean individual PO files, it only cleans directories







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
pomigrate2

pomigrate2 aims to move an existing translation to a new version based on
updated PO Template files automatically without user intervention.  Therefore
it is ideal for when you are migrating many languages or migrating from related
but divergent products e.g.  Mozilla to Firefox.


Prerequisites

GNU Gettext:


	msginit [http://linux.die.net/man/1/msginit]

	msgcat [http://linux.die.net/man/1/msgcat]

	msgmerge [http://linux.die.net/man/1/msgmerge]






Usage

pomigrate [options] <from> <to> <new templates>





Where:







	from
	is a directory of existing PO files


	to
	is the directory where the migrated PO files will be stored


	new templates
	this is the directory that contains the PO Template files





Options:





	
-F, --use-fuzzy-matching


		use fuzzy algorithms when merging to attempt to match strings

	
-C, --use-compendium


		create and use a compendium built from the migrating files

	
-C, --use-compendium=COMPENDIUM


		use an external compendium during the migration

	
--no-wrap
	do not wrap long lines

	
--locale
	set locale for newly born files

	
-q, --quiet
	suppress most output

	
-p, --pot2po
	use pot2po instead of msgmerge to migrate







Operation

pomigrate2 makes use of the Gettext tools msgmerge or Translate Toolkit’s
pot2po to perform its merging tasks.

It firstly finds all files with the same name and location in the <from>
directory as in the <template> directory and copies these to the <to>
directory.  If there is no file in the <from> directory to match one needed by
the <template> directory then it will msgcat all files in the <from> directory
with the same name and copy them to the correct destination in the <to>
directory.  If all of that fails then msginit is used to initialise any missing
PO files.

Lastly all the files in <to> are merged using msgmerge or pot2po.  This process
updates the files to match the layout and messages in <templates>.  Optionally,
by using --use-compendium, a compendium of all the translations in
<from> can be created to be used in the final merge process.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
popuretext

Extracts all the source text from a directory of POT files or the target text
from a directory of PO files, removing PO headers and optionally the
accelerator keys.

If you want to use other tools to analyse the text within a translation
project, then this is the tool for you.  For example, you can use it to
calculate word frequencies to create an initial glossary based on the pure
source text.


Prerequisites


	GNU Gettext

	sed






Usage

popuretext <-P pot-dir|po-dir> <file.txt> [accelerator]





Where:







	pot-dir
	a directory containing POT files


	po-dir
	a directory containing PO files


	file.txt
	file that contains the output text


	accelerator
	optional: accelerator marker to be removed from the text








Examples

popuretext -P pot pot.txt '&'





Extract all the source text from the pot directory and place it in the
pot.txt file removing all occurrences of the & accelerator.

popuretext af af.txt





Extract all target text from the Afrikaans files in the af directory, placing
the extracted text in af.txt.  In this case we are not filtering any
accelerator characters.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
poreencode

Takes a directory of existing PO files and converts them to a given encoding.


Prerequisites

GNU Gettext




Usage

poreencode <encoding> <PO directory>





Where:







	encoding
	is the encoding you would like to convert to e.g. UTF-8


	PO directory
	is a directory of existing PO files





It is best to backup files before the conversion or to perform it against CVS
which prevents a potential loss of data.




Operation

poreencode makes use of the Gettext tool msgconv [http://linux.die.net/man/1/msgconv] to perform its task.
It traverses the PO directory and finds all PO file.  It uses msgconv to
convert the PO file from its existing encoding to the new encoding.




Bugs

Like most Gettext tools they do a little bit more than documented, msgconv will
decide which strings are in fact fuzzy and delete fuzzy marking – not a lot
but you do need to diff (this probably related to #, fuzzy entries that are not
placed in the place Gettext expects them).







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Converters 
 
      

    


    
      
          
            
  
posplit

Takes an existing PO file and splits it into three components: translated,
untranslated and fuzzy.  This is useful for reviewing translations or for
extracting good translations from a compendium file.

Note that the input file is removed by the script (until version 1.9.1). The
generated output files can be combined again with msgcat.


Prerequisites

GNU Gettext




Usage

posplit ./file.po





Where:







	file.po
	is an existing PO file or PO compendium








Bugs


	Some relative path bugs thus the need for ./ before file.po.

	Until version 1.9.1, the original input file was removed, issue 2006 [https://github.com/translate/translate/issues/2006].









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Use Cases





	Migrating an older version of your translations to the latest templates

	Checking for technical errors in your translations

	Translating using only a spreadsheet (a look at the
whole roundtrip from PO to CSV and back)

	Creating OpenOffice.org POT files

	Checking for inconsistencies in your translations

	Creating a terminology list from your existing translations

	Running the tools on Microsoft Windows

	Using phase for the complete translation roundtrip

	Cleanup translator comments

	Creating Mozilla POT files

	Document translation







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Migrating your translations

You very often need to migrate older translations to newer template or POT
files.  There are a number of Gettext tools that can manage this but they do
not handle the situation where files have been renamed and moved.  The
pomigrate2 script allows us to migrate between versions where
there has been considerable change.

This migration HOWTO takes you through the steps in a generic fashion so that
you can apply it to any of your projects.  We use OpenOffice.org as an example
for clarity.  Our task in the examples is to migrate old translation for
OpenOffice.org 1.1.3 to OpenOffice.org 2.0.


Requirements

You will need:


	pomigrate2

	pocompendium

	A text editor

	A PO editing tool






Preparing the new POT files

We need the new POT files.  Either download these from the project or generate
them using moz2po, oo2po or the other tools
of the Translate Toolkit.  The POT files are templates for the destination
files that we will be creating.

oo2po -P en-US.sdf ooo-20-pot





This will create new POT files in ooo-20-pot.




Checking your old PO files for errors

We will be migrating your old PO files into the new POT files.  This is a good
opportunity to check for encoding errors and inconsistencies.

We use pocompendium to check for encoding errors:

pocompendium check.po -d ooo-113-old





This will create a compendium PO files, check.po, from all the PO files in
the directory ooo-113-old, where ooo-113-old contains all your old
translations.  pocompendium is a wrapper around various Gettext tools, encoding
errors will appear as errors from those tools.

Use your text editor to find and correct these errors.  If you do not correct
these now they will migrate to your new version.  Once encoding errors are
fixed they’re usually gone for good, so it is time well spent.




Optional: Checking your old PO files for consistency


Note

Note this step is optional, a more detailed explanation is given in
Checking for inconsistencies in your translations.



We now look at consistency within the translations.  The first check extracts
situations were the same English string was translated in two different ways:

pocompendium --ignore-case --accel-amp --errors check.po -d ooo-113-old





In check.po you will find all situations where the same English text was
translated differently.  We use --accel-amp to remove accelerator
markers (you’ll change this depending on the one used by the project – we can
do & _ or ~).   Now view check.po in a PO editor or text editor.  You will
need to correct each inconsistency in the source PO files, using check.po as
the guide.  Many of the errors are usually spelling mistakes.  You can
regenerate check.po from time to time until all inconsistencies are justified
or removed.

Then we check for words in your language that are used for more than one
English concept.  You don’t for instance want the same word for Cancel and
Delete.  For this we invert the compendium:

pocompendium --invert --ignore-case --accel-amp --errors check.po -d ooo-113-old





We now have a file similar to the previous one except your language appears in
the msgid and the English appears in the msgstr.  Look for inconsistencies that
would cause problems for the user and correct them in the source files.




Migrate

You are now ready to migrate using pomigrate2.  You have
created your destination POT files and all your PO files are clean and ready to
migrate.

pomigrate2 ooo-113-old ooo-20-new ooo-20-pot





This will take all translations from ooo-113-old and migrate them to
ooo-20-new using ooo-20-pot as templates.  By default pomigrate2 migrates
without any fancy text matching, there are options to allow for fuzzy matching
and the use of a compendium.  Read the pomigrate2 help page to
find out more about these options.


Techie: what does pomigrate2 do to your file?

This section is for those insanely curious about what pomigrate will do to
their files. You don’t need to understand this section :-)


	Init stage
	If a file has not changed location between old and new then it is simply
copied across

	If it has moved then we try to find a file by the same name and move ours
there.  If there are multiple files by the same name, then we join them
together and copy them

	If a file does not exist then we initialise it





	Update stage
	We now update our translations using msgmerge or pot2po

	If you asked for a compendium, we will build one from the existing files
and update using it and optionally other external compendiums







That’s it. At the end you should have every file that needs translation updated
to the latest template files.  Files that moved should still be preserved and
not lost.  Files that where renamed will still be translated if you used a
compendium otherwise they will be untranslated.






How well did you do

Congratulations! Your files are now migrated.

You might want to see how much of your old work was reusable in the new
version:

pocount ooo-20-new





This will use pocount to count the words in your new files and
you can compare the number of translate and untranslated messages from your old
version.




Conclusion

Your files have now been migrated and are ready for updating.  If files have
been moved or renamed, and you used a compendium, then most likely you have
most of that work translated.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Checking your files with PO filter

pofilter allows you to check your PO or XLIFF files for
certain common errors.  This quick-start guide takes you through the process of
using this tool, making corrections and merging your correction back into your
translations.

The toolkit also other tools that can assist with quality assurance.


Quickstart

Use any preferred text editor wherever vim is used.


	Select filter(s): pofilter -l

	Run filter(s): pofilter -i existing_files/ -o errors/ [-t specific tests]
[--excludefilter don't perform specific tests]

	Delete items you don’t want changed, set fuzzy if needed, delete if not
needed: vim errors/*.po

	Merge changes back: pomerge -i errors/ -o existing_files/ -t
existing_files/ (will overwrite existing files)

	Create a patch for the changes: cvs diff -u existing_files/ > x.diff

	Check to see that the updates are what you want: vim x.diff

	Commit changes: cvs ci existing_files/






Detailed Description

pofilter runs a number of checks against your translation
files.  Any messages that fail are output to a set of new files (in the same
structure as the source/input files).  You then edit these new/output files to
correct any errors.  Once you are satisfied with your corrections these
corrected files are then merged back into the original files using
pomerge.


Extracting Errors

pofilter will run all tests unless you use the -t or
--excludefilter options.  There are over 38 tests and pofilter can itself provide you with a current
list of all the available checks:

pofilter -l





We want to run the: accelerators, escapes, variables and xmltags tests as these
are the ones most likely to break programs at runtime.  We are also working
with OpenOffice.org PO files created using oo2po so we want to
ensure that we set the accelerator key marker and variables definitions
correctly:

pofilter -t accelerators -t escapes -t variables -t xmltags --openoffice existing_files errors





Any messages that fail one of the 4 checks will be placed in files in errors.
We also used the --openoffice option to ensure that the tool is aware of
the OpenOffice.org accelerator marker (~) and the OpenOffice.org variable
styles (OpenOffice.org has over 10 variable styles).  You can also specify
other styles of project including GNOME, KDE or Mozilla.

You can also specify whether you want fuzzy entries included and checked, by
specifying the --fuzzy parameter. By default this is off because fuzzy
strings are usually known to be broken and will be reviewed by translators
anyway.

Similarly you can include items marked for review by specifying --review
or --ingnorereview.  By default review items are included.  This is not
part of the standard Gettext format. We have allowed entries like this when we
want to communicate to someone what error we have picked up:

# (review) - wrong word for gallery chosen





You can run pofilter without the -t option.  This runs all the checks.
This can be confusing if you have a lot of errors as you easily lose focus.
One strategy is to run each test individually.  This allows you to focus on one
problem at a time across a number of files.  It is much easier to correct end
punctuation on its own then to correct many different types of errors.  For a
small file it is probably best to run all of the test together.

By using the --autocorrect option you can automatically correct some
very common errors.  Use with caution though. This option assumes you use the
same punctuation style as the source text.




Edit the files

Once the errors have been marked you can edit them with any text editor or PO
editor e.g. Virtaal [http://virtaal.org].  You will be editing the files in
the errors directory.  Only messages that failed one of the tests will be
present.  If no messages failed then there will be no error PO file for the
source PO file.  Only critical errors are marked fuzzy – all others are simply
marked with the pofilter marker.  Critical errors are marked fuzzy as this
allows you to simply merge them back into you PO files and then rely on the
fact that all po2* tools will ignore a message marked fuzzy.  This allows you
to quickly eliminate messages that can break builds.

To edit run:

vi `find errors -name "*.po"`
virtaal `find errors -name "*.po"`





or similar command.

The pofilter marker helps you determine what error was discovered:

# (pofilter) <test> - <explanation of test error>





Use the test description to help you determine what is wrong with the message.
Remember that all your changes will be ported back into the PO files.  So if
you leave a string fuzzy in the error files, it will become fuzzy in the main
files when you merge the corrected file back into the main file.  Therefore
delete anything you do not want to migrate back when you merge the files.
Delete the test comments and fuzzy markings as needed.  Leave them in if you
want another translator to see them.

The computer can get it wrong, so an error that pofilter finds may in fact not
be an error.  We’d like to hear about these false positives so that we can
improve the checks.  Also if you have some checks that you have added or ideas
for better checks, then let us know.




Merging your corrections back into the originals

After correcting the errors in the PO files its time to merge these corrections
back into the originals using pomerge.

pomerge -t existing_files -i errors -o files_without_errors





If -t and -o are the same directory, the corrections will be
merged into the existing files.  Do this only if you are using some kind of
version control system so that you can check the changes made by
pomerge.




Checking the corrections

We have done this against CVS but you could run a normal diff between a good
copy and your modifications.  Thus we assume in the last step that we merged
the corrections into the existing translations:

pomerge -t existing_files -i errors -o existing_files





Now we check the changes using cvs diff:

cvs diff -u existing_files > x.diff





This creates a unified diff (one with + and - lines so you can see what was
added and what was removed) in the file x.diff:

vim x.diff





Check the diff file in any editor, here we use vim.  You should check to see
that the changes you requested are going in and that something major did not go
wrong.  Also look to see if you haven’t left any lines with “# (pofilter): test
description” which should have been deleted from the error checking PO files.
Also check for stray fuzzy markers that shouldn’t have been added.  You will
have to make corrections in the files in existing_files not in errors.

When you are happy that the changes are correct run:

cvs ci existing_files





Congratulations you have helped eliminate a number of errors that could give
problems when running the application.  Now you might want to look at running
some of the other tests that check for style and uniformity in translation.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Using csv2po

csv2po allows you to create CSV files from PO files.
This allows you to send translation work to translators who do not or cannot
use PO Editors but who can use a Spreadsheet.


Quickstart


	pofilter --fuzzy --review -t untranslated <po-dir> <po-filtered-dir>
(this step is optional)

	divide into sections

	po2csv <po-dir|po-filtered-dir> <csv-out>

	edit in Excel or OpenOffice.org Calc

	csv2po --charset=windows-1250 -t templates <csv-in> <po-in> (you must
work against a template directory, the charset option corrects problems with
characters sets)

	/commands/phase – to do basic checks sort out encoding issues

	pomerge --mergeblank=no -t <po-dir> <po-in> <po-dir>

	git diff — check the changes

	git add & git commit — commit changes






Detailed Description

po2csv allows you to send CSV files, which can be edited in any spreadsheet, to
a translator.  This document outlines the process to follow from the raw po
files -> CSV files -> back to PO.  We also look at a case where you may have
submitted a subset of the PO files for translation and you need to integrate
these.


Creating a subset

This step is optional.

To send a translator only those messages that are untranslated, fuzzy or need
review run:

pofilter --isfuzzy --isreview -t untranslated <po-dir> <po-filtered-dir>








Divide into sections

You might want to divide the work into sections if you are apportioning it to
different translators.  In that case create new directories:

e.g. po-filtered-dir-1 po-filtered-dir-2
or  po-filtered-dir-bob po-filtered-dir-mary





Copy files from po-filtered-dir to po-filtered-dir-N in a way that balance
the work or apportions the amounts you want for each translator.  Try to keep
sections together and not break them up to much e.g.  Give one translator all
the OpenOffice.org Calc work don’t split it between two people – this is just a
simple measure to ensure constancy.

Now continue as normal and convert to CSV and perform word counts for each
separate directory.




Creating the CSV files

po2csv <po-dir|po-filtered-dir> <csv-out>





This will create a set of CSV files in csv-out which you can compress using
zip (we use zip because most people are Windows users)




Creating a word count

Professional translators work on source word counts.  So we create a word count
to go with the file:

pocount `find po-dir|po-filtered-dir -name "*.po"`





We work on source words regardless of whether the string is fuzzy or not.  You
might want to get a lower rate for work on fuzzy strings.

Place the word count file in both the PO and CSV directory to avoid the problem
of finding it later.  Check the number to make sure you haven’t inadvertently
including something that you didn’t want in.




Package the CSV files

zip -r9 work.zip <csv-out>








Translating

Translators can use most Spreadsheets. Excel works well.  However there are a
few problems with spreadsheets:


	Encoding – you can sort that out later

	Strings that start with ‘ – most spreadsheets treat cells starting with ‘ as
text and gobble up the ‘.  A work around is to escape those like this ‘.
po2csv should do this for you.

	Autocorrect – Excel changes ... to a single character and does other odd
things.  pofilter will help catch these later.

	Sentences with + – or +- will create errors and the translators will have to
escape them as + - +-

	Sentences that only contain numbers can get broken: “1.” will be converted to
“1”






Converting Excel spreadsheets to CSV file

You can, and should, keep your files as CSV files.  However, many translators
are not the best wizzes at using their spreadsheet.  In this case many files
will have been changed to XLS files.  To convert them by hand is tedious and
error prone.  Rather make use of xlHtml [http://freecode.com/projects/xlhtml/] which can do all the work for you.

xlhtml -xp:0 -csv file.xls > file.csv








Converting CSV back to PO

Extract the CSV files here we assume they are in csv-in:

csv2po --charset=windows-1250 -t <templates> <csv-in> <po-in>





This will create new PO files in po-in based on the CSV files in the csv-in
and the template PO files in templates.  You shouldn’t run the csv2po command
without templates as this allows you to preserve the original file layout.
Only run it without -t if you are dealing with a partial part of the PO
that you will merge back using a pomerge.


Note

Running csv2po using the input PO files as templates give spurious
results.  It should probably be made to work but doesn’t




Note

You might have encoding problems with the returned files. Use the
--charset option to convert the file from another encoding (all PO
files are created using UTF-8).  Usually Windows user will be using
something like WINDOWS-1250. Check the file after conversion to see that
characters are in fact correct if not try another encoding.






Checking the new PO files

Use pofilter to run checks against your new files. Read
Checking your files with PO filter to get a good idea of how to use the tool.




Removing fuzzies

When you merge work back that you know is good you want to make sure that it
overrides the fuzzy status of the existing translations, in order to do that
you need to remove the “#, fuzzy” markers.

This is best performed against CVS otherwise who knows what changed.

po-in-dir=your-incomming-po-files
po-dir=your-existing-po-files

for pofile in `cd $po-in-dir; find . -name "\*.po"`
do
       egrep -v "^#, fuzzy" < $po-dir/$pofile > $po-dir/${pofile}.unfuzzy && \
       mv $po-dir/${pofile}.unfuzzy $po-dir/$pofile
done








Merging PO files into the main PO files

This step would not be necessary if the CSV contained the complete PO file.  It
is only needed when the translator has been editing a subset of the whole PO
file.

pomerge --mergeblank=no -t po-dir -i po-in -o po-dir





This will take PO files from po-in merge them with those in po-dir using
po-dir as the template – i.e. overwriting files in po-dir. It will also
ignore entries that have blank msgstr’s i.e. it will not merge untranslated
items. The default behaviour of pomerge is to take all changes from po-in and
apply them to po-dir by overriding this we can ignore all untranslated items.

There is no option to override the status of the destination PO files with that
of the input PO.  Therefore all your entries that were fuzzy in the destination
will still be fuzzy even thought the input was corrected.  If you are confident
that all your input is correct then relook at the previous section on removing
fuzzies.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Creating OpenOffice.org POT files

This quick start guide shows you how to create the PO Template files for your
OpenOffice.org translation.


Quick Start


	Download the latest POT and GSI files [ftp://ftp.linux.cz/pub/localization/openoffice.org/devel/pot]

	oo2po -P <gsi> <new-pots>






Detailed Description


Download the latest POT and GSI files

The POT files produced by Pavel Janik contain the associated en-US.sdf file
that you need to create your own languages SDF file.  This is the same file
that produces the POT files.  So to begin translating you don’t need to go
further than this.


	Download the latest POT and GSI files [ftp://ftp.linux.cz/pub/localization/openoffice.org/devel/pot]



However, you will need this file if you need to use some of the other features
of oo2po such as changing the source language from English.




Produce the POT files using oo2po

oo2po -P <gsi> <new-pots>
oo2po -P en-US.gsi pot





This takes the en-US.gsi file and creates POT files in the pot directory.
The -P option ensures that .pot files are created instead of .po file.

If you want to create one large .pot file instead of a lot of small ones, you
should use the:

oo2po -P --multifile=onefile en-US.gsi pot





option as described in oo2po.




Produce a POT files with French source text

You will need to have access to a French GSI file.  The following commands will
create a set of POT files with French as the source language:

oo2po -P --source-language=fr fr.gsi pot-fr





This will take translations from fr.gsi and create a set of POT files in
pot-fr.  These POT files will have French as the source language.  You need
to make sure that fr.gsi is in fact up to date.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Checking for inconsistencies in your translations

Over time language changes, hopefully not very quickly.  However, if your
language is new to computers the change might be rapid.  So now your older
translations have different text to your new translations.  In this use case we
look at how you can bring alignment back to your translations.

Other cases in which you can expect inconsistencies:


	Multiple translators are involved

	Translations are very old

	You prepared this set of translations with translations from multiple sources

	You changed terminology at some stage in the translation

	You did not do a formal glossary development stage




What we won’t be able to achieve

We cannot find grammatical errors and we won’t be able to find all cases of
words, etc




Scenario

You are translating Mozilla Firefox into Afrikaans.  The files are stored in
af.  You have the following issues:


	Your current translator is good but took over from a team of three

	Terminology is well defined but not well used by the old translators



We’ll look at the translations first from the English, or source text, point of
view.  Then we will look at it from the Afrikaans point of view.  The first
will pick up where we have translated the same English word differently in
Afrikaans i.e. an inconsistency.  While the second will determine if we use the
same English word for different English words, possibly this will confuse a
user.


Step 1: Extracting conflicting target text translations

poconflicts -I --accelerator="&" af af-conflicts





From our existing translation in af we extract conflicts and place them in
af-conflicts.  We are ignoring case with -I so that Save as is
considered the same as Save As.  The --accelerator options allows us
to ignore accelerators so that File is the sane as &File which is also
the same as Fi&le

If we browse into af-conflicts we will see a flat structure of words with
conflicts.

$ cd af-conflicts
$ ls
change.po         disc.po         functionality.po  letter.po          overwrite.po       restored.po
changes.po        document.po     gb.po             library.po         page.po            restore.po
character.po      dots.po         graphic.po        light.po           pager.po           retry.po
chart.po          double.po       grayscale.po      limit.po           percent.po         return.po
check.po          down.po         grid.po           line.po            pies.po            right.po
circle.po         drawing.po      group.po
etc...





These are normal PO files which you can edit in any PO editor or text editor.
If we look at the first file change.po we can see that the source text
Change was translated as Verander and Wysig.  The translators job is noe
to correct these PO files, ignoring instances where the difference is in fact
correct.

Once all fixes have been made we can merge our changes back into the original
files.




Step 2: Merging our corrections back into the original files

Our files in af-conflicts are in a flat structure.  We need to structure them
into the hierarchy of the existing PO files.

porestructure af-conflicts af-restructured





The entries that where in the files in af-conflicts have been placed in
af-restrucured, they now appear in the correct place in the directory
structure and also appear in the correct file.  We are now ready to merge.

pomerge -t af -i af-restructure -o af





Using the existing files in af we merge the corrected and restructured file
from af-restructure and place them back into af.  Note: use a different
output directory if you do not want to overwrite your existing files. All your
conflict corrections are now in the correct PO file in af.

You might want to run Step 1 again to make sure you didn’t miss anything or
introduce yet another problem.

Next we look at the inverted conflict problem.




Step 3: Extracting conflicts of meaning

If you have used the same Afrikaans word for two different English words then
you could have created a conflict of meaning.  For instance in our Xhosa
translations the word Cima was used for both Delete and Cancel.
Clearly this is a serious issue.  This step will allow us to find those errors
and take action.

poconflicts -v -I --accelerator="&" af af-conflicts-invert





We use the same command line as in Step 1 but add -v to allow us to
invert the match.  We are also now outputting to af-conflicts-invert to make
things clear.

This time the PO files that are created have Afrikaans names

$ cd af-conflicts-invert
$ ls
dataveld.po              grys.po             lisensieooreenkoms.po  paragraaf.po        sny.po
datumgekoop.po           hallo.po            lysinhoud.po           pasmaak.po          soek.po
datum.po                 hiperboliese.po     maateenheid.po         persentasie.po      sorteer.po
deaktiveer.po            hoekbeheer.po       maatskappynaam.po      posadres.po         sorteervolgorde.po
etc...





We edit these as usual.  You need to remember that you will see a normal PO
file but that you are looking at how the translation might be confusing to a
user.  If you see the same Afrikaans translation for two different English
terms but there is no conflict of meaning or no alternative then leave it as
is.  You will find a lot of these instances so the results are less dramatic
then the results from a normal conflict analysis.

Lastly follow Step 2 to restructure and merge these conflicts back into
your translations






Conclusion

You’ve now gone a long way to improving the quality of your translations.
Congratulations!  You might want to take some of what you’ve learnt here to
start building a terminology list that can help prevent some of the issues you
have seen.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Creating a terminology list from your existing translations

If you did not create a terminology list when you started your translation
project or if you have inherited some old translations you probably now want to
create a terminology list.

A terminology list or glossary is a list of words and phrases with their
expected translation.  They are useful for ensuring that your translations are
consistent across your project.

With existing translations you have embedded a list of valid translation.  This
example will help you to extract the terms.  It is only the first step you will
need to review the terms and must not regard this as a complete list.  And of
course you would want to take your corrections and feed them back into the
original translations.


Quick Overview

This describes a multi-stage process for extracting terminology from
translation files.  It is provided for historical interest and completeness,
but you will probably find that using poterminology is easier
and will give better results than following this process.


	Filter our phrases of more than N words

	Remove obviously erroneous phrases such as numbers and punctuation

	Create a single PO compendium

	Extract and review items that are fuzzy and drop untranslated items

	Create a new PO files and process into CSV and TMX format






Get short phrases from the current translations

We will not be able to identify terminology within bodies of text, we are only
going to extract short bit of text i.e. ones that are between 1 and 3 words
long.

pogrep --header --search=msgid -e '^\w+(\s+\w+){0,2}$' zulu zulu-short





We use --header to ensure that the PO files have a header entry (which
is important for encoding).  We are searching only in the msgid and the regular
expression we use is looking for a string with between 1 and 3 words in it.  We
are searching through the folder zulu and outputting the result in
zulu-short




Remove any translations with issues

You can for instance remove all entries with only a single letter.  Useful for
eliminating all those spurious accelerator keys.

pogrep --header --search=msgid -v -e "^.$" zulu-short zulu-short-clean





We use the -v option to invert the search.  Our cleaner potential
glossary words are now in zulu-short-clean.  What you can eliminate is only
limited by your ability to build regular expressions but yu could eliminate:


	Entries with only numbers

	Entries that only contain punctuation






Create a compendium

Now that we have our words we want to create a sinlge files of all terminology.
Thus we create a PO compendium:

~/path/to/pocompendium -i -su zulu-gnome-glossary.po -d zulu-short-clean





You can use various methods but our bash script is quite good.  Here we ignore
case, -i, and ignore the underscore (_) accelerator key, -su,
outputting the results in.

We now have a single file containing all glossary terms and the clean up and
review can begin.




Split the file

We want to split the file into translated, untranslated and fuzzy entries:

~/path/to/posplit ./zulu-gnome-glossary.po





This will create three files:


	zulu-gnome-glossary-translated.po – all fully translated entries

	zulu-gnome-glossary-untranslated.po – messages with no translation

	zulu-gnome-glossary-fuzzy.po – words that need investigation



rm zulu-gnome-glossary-untranslated.po





We discard zulu-gnome-glossary-untranslated.po since they are of no use to
us.




Dealing with the fuzzies

The fuzzies come in two kinds.  Those that are simply wrong or needed updating
and those where there was more then one translation for a given term.  So if
someone had translated ‘File’ differently across the translations we’d have an
entry that was marked fuzzy with the two options displayed.

pofilter -t compendiumconflicts zulu-gnome-glossary-fuzzy.po zulu-gnome-glossary-conflicts.po





These compedium conflicts are what we are interested in so we use pofilter to
filter them from the other fuzzies.

rm zulu-gnome-glossary-fuzzy.po





We discard the other fuzzies as they where probably wrong in the first place.
You could review these but it is not recommended.

Now edit zulu-gnome-glossary-conflicts.po to resolve the conflicts.  You
can edit them however you like but we usually follow the format:

option1, option2, option3





You can get them into that layout by doing the following:

sed '/#, fuzzy/d; /\"#-#-#-#-# /d; /# (pofilter) compendiumconflicts:/d; s/\\n"$/, "/' zulu-gnome-glossary-conflicts.po > tmp.po
msgcat tmp.po > zulu-gnome-glossary-conflicts.po





Of course if a word is clearly wrong, misspelled etc. then you can eliminate
it.  Often you will find the “problem” relates to the part of speech of the
source word and that indeed there are two options depending on the context.

You now have a cleaned fuzzy file and we are ready to proceed.




Put it back together again

msgcat zulu-gnome-glossary-translated.po zulu-gnome-glossary-conflicts.po > zulu-gnome-glossary.po





We now have a single file zulu-gnome-glossary.po which contains our
glossary texts.




Create other formats

It is probably good to make your terminology available in other formats.  You
can create CSV and TMX files from your PO.

po2csv zulu-gnome-glossary.po zulu-gnome-glossary.csv
po2tmx -l zu zulu-gnome-glossary.po zulu-gnome-glossary.tmx





For the terminology to be usable by Trados or Wordfast translators they need to
be in the following formats:


	Trados – comma delimited file source,target

	Wordfast – tab delimited file source[tab]target



In that format they are now available to almost all localisers in the world.

FIXME need scripts to generate these formats.






The work has only just begun

The lists you have just created are useful in their own right.  But you most
likely want to keep growing them, cleaning and improving them.

You should as a first step review what you have created and fix spelling and
other errors or disambiguate terms as needed.

But congratulations a Terminology list or Glossary is one of your most
important assets for creating good and consistent translations and it acts as a
valuable resource for both new and experienced translators when they need
prompting as to how to translate a term.





          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Running the tools on Microsoft Windows

Since the toolkit is written in Python, it should work perfectly on Windows.


Add the toolkit to your path


Windows 95/98

You might need to add the installation directory of the translate toolkit to
your path

path "C:\Program Files\translate-toolkit\"





This will work for one session, but will be lost when you reboot again.
Therefore you might want to add it to the autoexec.bat file.




Windows 2000/XP

You can add to the path permanently.  Check this [http://www.computerhope.com/issues/ch000549.htm] useful guide.  You should
add the following to your path:

C:\Programs Files\translate-toolkit\





If you have the Gettext tools [http://gnuwin32.sourceforge.net/packages/gettext.htm] installed, add it to
your path as well:

C:\Program Files\GnuWin32\bin\










Change Windows file to Unix file

Some programs in Windows will add CRLFs to the file which is considered rather
poor practice for l10ns that require Unix files.  To fix a text file, drag and
drop it to the dos2unix.exe utility from http://www.bastet.com/







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Cleanup translator comments

Translate Toolkit 1.1 saw source comments being converted to developer comments
instead of translator comments.

This use case shows you how to get rid of the old translator comments.


The Change

We used to put all source comments into translator comments.

# Some Comment





But now place them in developer comments.

#. Some Comment





This ensures that these source comments are updated to the newest versions from
the source files, which is a good thing.  Translator comments survive these
updates, just like you want, while developer comments are discarded.

If you don’t clean up your PO files you will now end up with:

# Some Comment
#. Some Comment





Thus a duplicated comment.  Fortunately you only need to clean your PO files
once.




Removing old translator comments


Note

This will remove all your translator comments.  So if you have some
that you actually want to keep then you will need to manual editing



Removal is simple using pocommentclean:

pocommentclean my-po-dir





Which will clean all your PO files in my-po-dir

pocommentclean is simply a nice wrapper for this sed command:

sed -i "/^#$/d;/^#[^\:\~,\.]/d" $(find po -name "*.po")





This will delete all lines starting with # that are not used by PO for
locations (#:), automatic/developer comments (#.), state (#,) and obsolete
(#~).

You can now safely commit your changes and begin your migrations using
pot2po of pomigrate2







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Creating Mozilla POT files

You can do this using Mozilla source from CVS or Mercurial


Using Mercurial

Since Firefox 3.1 and Thunderbird 3.0, Mozilla has switched to using Mercurial
for version control. See the Mozilla’s L10n on Mercurial [https://developer.mozilla.org/docs/Localizing_with_Mercurial] page for
instructions on how to checkout and update your Mozilla sources and l10n files.

You can use get_moz_enUS.py to
extract an en-US directory from the source tree:

get_moz_enUS.py -s mozilla-central/ -d l10n/ -p browser





This will move the correct en-US files to l10n/en-US.  You can now create
POT files as follows:

moz2po -P l10n/en-US l10n/pot





This will create the POT files in l10n/pot using the American English files
from en-US.  You now have a set of POT files that you can use for
translation or updating your existing PO files.

There are also other scripts that can
help with creating and updating POT and PO files for Mozilla localisation.




Using CVS

Firefox versions before 3.1 and Thunderbird versions before 3.0 still has its
source in CVS. Check out files from the Mozilla repository. If you don’t want
to checkout all files do:

make -f client.mk l10n-checkout





The English files are in the mozilla/ module, while the translated files
all reside in the l10n/ module.  They have different structure but not
enough to kill you.

Once you have checked out mozilla/ you will need to get the correct files
for en-US.  To do this we will create en-US as a pseudo language.

make -f tools/l10n/l10n.mk create-en-US





This will move the correct en-US files to l10n/en-US.  You can now create
POT files as follows:

moz2po -P l10n/en-US l10n/pot





This will create the POT files in l10n/pot using the American English files
from en-US.  You now have a set of POT files that you can use for
translation or updating your existing PO files.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Use Cases 
 
      

    


    
      
          
            
  
Document translation

Translating documents can be quite different from translating software
interfaces. Many issues specific to software localisation might not be relevant
in documents, such as accelerators, translation length, constructed phrases,
etc.  However, document translation has several other issues that is good to be
aware of.


Preparing for translation

Ideally a document should be prepared for translation. A good source document
will make translation easier. Possibilities:


	Proofread the document (spelling, grammar, clarity)

	Use consistent terminology

	Read “writing for translation” [http://www.multilingualwebmaster.com/library/writing-TR.html]

	For structured documents, use proper structure like headings and subheadings
instead of using style only.






Translation

A lot can be said about translation in general, but this is only meant to give
you some tips.

Be to be aware of issues arising out of translation memory. You could possibly
have exact matches (identical string translated before), or In Context Exact
(ICE) matches, where some translation tools will specifically indicate that the
translation is identical, but also that the surrounding text from the paragraph
is the same. It could also indicate agreement with regards to domain, file,
date, etc.




Post-processing

After generating the translated document, you very likely need to do some post
processing. Things to consider:


	Ensuring correct translation in cases where context might not have been
obvious during translation

	Document layout, page layout

	Fonts or other styling changes

	Style of generated content, such as numbers

	Generated sections, such as Table of contents, list of figures, index,
variables









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Translation Related File Formats

These are the different storage formats for translations and files associated
with translations that are supported by the toolkit. See also
Standards conformance for standards conformance.

The Translate Toolkit implements a set of classes for
handling translation files which allows for a uniform API which covers other
issues such as quoting and escaping of text.


Primary translation formats



	XLIFF

	Gettext PO








Other translation formats





	CSV

	INI Files (including Inno Setup .isl dialect)

	Java Mozilla and Java properties files (also Mozilla derived properties files)

	Mozilla Mozilla DTD format

	OpenOffice.org OpenOffice.org GSI/SDF format (Also called SDF)

	PHP translation arrays

	Qt Linguist Qt .ts (both 1.0 and 1.1 supported, 1.0 has a converter)

	Symbian localization files

	Windows Windows RC files files

	Mac OSX Mac OSX strings files (also used on the iPhone) (from version 1.8)

	Adobe Adobe Flex properties files files (from version 1.8)

	Haiku Haiku catkeys (from version 1.8)

	Android string resources (supports storage, not conversion)






Translation Memory formats





	TMX

	Wordfast Translation Memory: TM

	Trados: .txt TM (from v1.9.0 – read only)






Glossary formats





	OmegaT glossary (from v1.5.1)

	Qt Phrase Book (.qph)

	TBX

	Universal Terminology eXchange (UTX) (from v1.9.0)






Formats of translatable documents





	HTML

	iCalendar

	JSON

	OpenDocument [http://en.wikipedia.org/wiki/OpenDocument] – all ODF file types

	Text – plain text with blocks separated by whitespace

	Wiki – DokuWiki [http://en.wikipedia.org/wiki/DokuWiki] and MediaWiki [http://en.wikipedia.org/wiki/MediaWiki] supported

	Subtitles – various formats (v1.4)






Machine readable formats





	Gettext Gettext .mo

	Qt Qt .qm (read-only)






In development




Unsupported formats

Formats that we would like to support but don’t currently support:





	Wordfast:
	Glossary [http://www.wordfast.net/index.php?lang=engb&whichpage=specifications#glo]
tab-delimited “source,target,comment” i.e. like OmegaT but unsure if any
extension is required.





	Apple:
	AppleGlot [ftp://ftp.apple.com/developer/tool_chest/localization_tools/appleglot/appleglot_3.2_usersguide.pdf]

	.plist – see issue 633 [https://github.com/translate/translate/issues/633] and plistlib [https://docs.python.org/2/library/plistlib.html] for Python





	Adobe:
	FrameMaker’s Maker Interchange Format – MIF [http://help.adobe.com/en_US/FrameMaker/8.0/mif_reference.pdf] (See also
python-gendoc [http://lino.sourceforge.net/src/100.html], and Perl MIF
module [http://search.cpan.org/~rst/FrameMaker-MifTree-0.075/lib/FrameMaker/MifTree.pm])

	FrameMaker’s Maker Markup Language [http://www.adobe.com/support/downloads/detail.jsp?ftpID=137] (MML)





	Microsoft
	Word, Excel, etc (probably through usage of OpenOffice.org)

	OOXML [http://en.wikipedia.org/wiki/OOXML] (at least at the text level we don’t have to deal with much of
the mess inside OOXML).  See also: Open XML SDK v1 [http://go.microsoft.com/fwlink/?LinkId=120908]

	Rich Text Format [http://en.wikipedia.org/wiki/Rich_Text_Format] (RTF) see also pyrtf-ng [http://code.google.com/p/pyrtf-ng/]

	Open XML Paper Specification [http://en.wikipedia.org/wiki/Open_XML_Paper_Specification]

	.NET Resource files (.resx) – Issue 396 [https://github.com/translate/translate/issues/396]





	XML related
	Generic XML

	DocBook [http://en.wikipedia.org/wiki/DocBook] (can be handled by KDE’s xml2pot [http://linux.die.net/man/1/xml2pot])

	SVG [http://www.w3.org/TR/SVG/]





	DITA [http://en.wikipedia.org/wiki/Darwin_Information_Typing_Architecture]

	PDF [http://en.wikipedia.org/wiki/Portable_Document_Format] see spec [http://www.adobe.com/devnet/pdf/pdf_reference.html], PDFedit [http://pdfedit.cz/en/index.html]

	LaTeX [http://en.wikipedia.org/wiki/LaTeX] – see plasTeX [http://plastex.sourceforge.net/plastex/index.html], a Python framework for
processing LaTeX documents

	unoconv [http://dag.wiee.rs/home-made/unoconv/] – Python bindings to
OpenOffice.org UNO which could allow manipulation of all formats understood
by OpenOffice.org.

	Trados:
	TTX (Reverse Engineered DTD [http://www.tracom.de/04/EN/techdoccenter/download/TRADOS_TTX-DTD.zip],
other discussion [http://timsfoster.wordpress.com/2005/07/05/beds-mattresses-and-open-standards/])

	Multiterm XML TSV to MiltiTerm conversion script [http://syntax.biz.pl/multiterm.html] or XLST [http://translationzone.eu/mtxml2txt.html]

	.tmw

	.txt (You can interchange using TMX) Format explanation [http://translate.google.com/translate?js=y&prev=_t&hl=en&ie=UTF-8&layout=1&eotf=1&u=http%3A%2F%2Fwww.diemohrs.de%2Ftipps2_neu.html&sl=auto&tl=en]
with some examples [http://slaci.komarom.net/roli/Trados/TRADOS%206.5.5.439%20Freelance%20+%20TRADOS%20MultiTerm%20iX%206.0.1.209/TRADOS%206.5.5.439%20Freelance/Program%20Files/TRADOS/T65_FL/Samples/TW4Win/].





	Tcl: .msg files.  Good documentation [http://www.google.com/codesearch?hl=en&q=show:XvsRBDCljVk:M2kzUbm70Ts:D5EHICz0aaQ&sa=N&ct=rd&cs_p=http://www.scilab.org/download/4.0/scilab-4.0-src.tar.gz&cs_f=scilab-4.0/tcl/scipadsources/msg_files/AddingTranslations.txt]

	Installers:
	NSIS installer: Existing C++ implementation [http://trac.vidalia-project.net/browser/vidalia/trunk/src/tools]

	WiX – MSI (Microsoft Installer) creator.  Localization instructions [http://wix.mindcapers.com/wiki/Localization], more notes on
localisation [http://www.mail-archive.com/wix-users@lists.sourceforge.net/msg15489.html].
This is a custom XML format, another one!





	catgets/gencat [http://pubs.opengroup.org/onlinepubs/009695399/utilities/gencat.html]:
precedes gettext, looking in man packages is the best information I could
find.  Also LSB requires it [http://www.linuxbase.org/navigator/browse/cmd_single.php?cmd=list-by-name&Cname=gencat].
There is some info about the source (msgfile) format on GNU website [http://www.gnu.org/software/libc/manual/html_node/The-message-catalog-files.html#The-message-catalog-files]

	Wireless Markup Language

	GlossML [http://www.maxprograms.com/glossml/glossml.pdf]

	Deja Vu External View: Instructions sent to a translator [http://dvx.atril.com/docs/DVX/InstructionsExternalView.pdf], Description
of external view options and process [http://simmer-lossner.com/lib/presentations/External_Proofreading_for_DVX.pdf]

	Mozilla’s l20n.






Unlikely to be supported

These formats are either: too difficult to implement, undocumented, can be
processed using some intermediate format or used by too few people to justify
the effort.  Or some combination or these issues.










          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
XLIFF

XLIFF[*] is the OASIS [https://www.oasis-open.org/] standard for translation.




	[*]	XML Localization Interchange File Format





References


	XLIFF Standard [http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html]

	OASIS XLIFF Technical Committee [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff] website




Flavours

XLIFF also has documents that specify the conversion from various standard
source documents and localisation formats.


	PO – For conformance to the po2xliff spec, see xliff2po.
	Draft XLIFF 1.2 Representation Guide for Gettext PO [http://docs.oasis-open.org/xliff/v1.2/xliff-profile-po/xliff-profile-po-1.2.html]





	HTML – not implemented
	Draft XLIFF 1.2 Representation Guide for HTML [http://docs.oasis-open.org/xliff/v1.2/xliff-profile-html/xliff-profile-html-1.2.html]





	Java (includes .properties and Java resource bundles) – not implemented
	Draft XLIFF 1.2 Representation Guide for Java Resource Bundles [http://docs.oasis-open.org/xliff/v1.2/xliff-profile-java/xliff-profile-java-v1.2.html]





	ICU Resource Bundles – not officially being developed by XLIFF – Proposed
representation guide [http://www.icu-project.org/repos/icu/icuhtml/trunk/design/locale/xliff-profile-icuresourcebundle-1.2.htm]






Standard conformance






Done


	File creation and parsing



	API can create multiple files in one XLIFF (some tools only read the first
file)



	source-language attribute



	
	trans-unit with

	
	note: addnote() and getnotes()



	
	state

	
	fuzzy: isfuzzy() and markfuzzy()

	translated: marktranslated()

	approved

	needs-review-transaltion: isreview(), markreviewneeded()









	id: setid()



	context-group: createcontextgroup()











	context groups



	alt-trans






XLIFF and other tools

Here is a small report on XLIFF support by Windows programs [http://translate.sourceforge.net/wiki/guide/tools/xliff_support_by_ms_windows_programs].









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
PO Files

PO files use the file format of the Gettext tools.


See also

Gettext manual [http://www.gnu.org/software/gettext/]




Supported Features


	Headers



	Language header (since gettext version 0.17)



	Plural forms and plural form handling



	Message context

msgctxt "noun"
msgid "View"
msgstr ""







	Normal comments

# this is another comment







	Automatic comments

#. comment extracted from the source code







	Source location comments

#: sourcefile.xxx:35







	Typecomments

#, fuzzy







	Msgidcomments, also known as KDE style comments as they are used by KDE for
message disambiguation and comments to translators.


Note

Support for this is being phased out in favor of msgctxt.



msgid "_: comment\n"
"translation"







	Obsolete messages

#~ msgid "Blah"
#~ msgstr "Bleeh"







	Previous msgid

#| msgid "previous message"







	Previous msgctxt

#| msgctxt "previous context"















          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
CSV

CSV (Comma Separated Values) is a simple file format for general data
interchange. It can be used in the toolkit for simple data interchange, and can
be edited with most spreadsheet programs. There is no formal specification for
the CSV file format, but more information can be acquired from
Comma-Separated Values [http://en.wikipedia.org/wiki/Comma-separated_values]


Conformance

CSV files were initially used to convert from and to po files, and
therefore contained three columns as follows:







	Column
	Description




	location
	A column with the location of the original msgid (in other
words, a line in a programming source file, as indicated in
the #: comments of PO files).


	source
	The source text (or msgid)


	target
	The target text (or msgstr)





Tabs and newlines are maintained, although it is not clear how easy it is to
edit these things in a spreadsheet.

Quoting is a problem, because the different spreadsheet programs handle these
things differently. Notably, Microsoft’s excel handles single quotes slightly
differently. In future, it might be worthwhile to handle excel CSV as a
different format from other CSV files. An entry like ‘mono’ is ambiguous as it
is not sure whether this refers simply to the word mono or to the entry
‘mono’ quoted with single quotes. (Example from Audacity pot file)







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
INI Files

Also know as initialisation files.  These are in some cases used to store
translations.


Conformance

The toolkit uses iniparse [http://code.google.com/p/iniparse/], an INI file
parser that preserves layout and follows the .ini format as supported by the
Python language.


Dialects

The format supports two dialects:


	default: standard iniparse handling of INI files

	inno: follows Inno [http://www.innosetup.com/files/istrans/] escaping
conventions








References

Further information is available on .ini files:


	Wikipedia INI file format [http://en.wikipedia.org/wiki/INI_file] article

	Unofficial specification [http://www.cloanto.com/specs/ini/]









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Mozilla and Java properties files

The Translate Toolkit can manage Java .properties files with the
prop2po and po2prop tool. As part of the Mozilla localisation
process, the moz2po tool handles the properties files along
with the other files. The tools can also handle Skype .lang files. Some related
formats with their own documentation:


	Mac OSX strings

	Adobe Flex properties files.




Features


	Fully manage Java escaping (Mozilla non-escaped form is also handled)

	Preserves the layout of the original source file in the translated version




New in version 1.12.0.




	Mozilla accelerators – if a unit has an associated access key entry then
these are combined into a single unit






Not implemented


	We don’t allow filtering of unchanged values.  In Java you can inherit
translations, if the key is missing from a file then Java will look to other
files in the hierarchy to determine the translation.






Examples

editmenu.label = "Edit"
saveas.label = "Save As"








References


	Java Properties Class’s load() [http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)]
describes the properties format.

	http://www.oracle.com/webfolder/technetwork/jsc/dtd/properties.dtd –
alternate XML based property representation









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Mozilla DTD format

Mozilla makes use of a .dtd file to store many of its translatable elements,
the moz2po converter can handle these.


References


	XML specification [http://www.w3.org/TR/REC-xml/]






Features


	Comments – these are handled correctly and integrated with the unit

	Accelerators – if a unit has an associated access key entry then these are
combined into a single unit

	Translator directive – all LOCALIZATION NOTE items such as DONT_TRANSLATE
are handled and such items are discarded

	Entities – some entities such as &amp; or &quot; are expanded when
reading DTD files and escaped when writing them, so that translator see and
type & and " directly






Issues


	We don’t expand some character entities like &lt;, &#38; – this
doesn’t break anything but it would be nicer to see © rather than &copy;









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
OpenOffice.org GSI/SDF format

OpenOffice.org uses an internal format called SDF to manage localisation text.
The toolkit can successfully manage all features of this format converting it
to XLIFF or PO format with the oo2po and oo2xliff
tools.


Features


	Handles all translatable text from the SDF

	Can also use ‘x-comments’ ‘language’ found in the SDF to provide translator
comments









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
PHP

Many PHP [http://en.wikipedia.org/wiki/PHP] programs make use of a localisable string array.  The toolkit
supports the full localisation of such files with php2po and
po2php.


Conformance

Our format support allows:


	Single [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single]
and double [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double]
quoted strings (both for keys and values)

<?php
$variable = 'string';
$messages["language"] = 'Language';
define('item', "another string");







	PHP simple variable syntax

<?php
$variable = 'string';
$another_variable = "another string";







	PHP square bracket array syntax

<?php
$messages['language'] = 'Language';
$messages['file'] = "File";
$messages["window"] = 'Window';
$messages["firewall"] = "Firewall";







	PHP array syntax


New in version 1.7.0.



<?php
// Can be 'array', 'Array' or 'ARRAY'.
$lang = array(
   'name' => 'value',
   'name2' => "value2",
   "key1" => 'value3',
   "key2" => "value4",
);







	PHP define syntax


New in version 1.10.0.



<?php
define('item', 'string');
define('another_item', "another string");
define("key", 'and another string');
define("another_key", "yet another string");







	Escape sequences (both for single [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single]
and double [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double]
quoted strings)

<?php
$variable = 'He said: "I\'ll be back"';
$another_variable = "First line \n second line";
$key = "\tIndented string";







	Multiline entries

<?php
$lang = array(
   'name' => 'value',
   'info' => 'Some hosts disable automated mail sending
          on their servers. In this case the following features
          cannot be implemented.',
   'name2' => 'value2',
);







	Various layouts of the id

<?php
$string['name'] = 'string';
$string[name] = 'string';
$string[ 'name' ] = 'string';







	Comments


Changed in version 1.10.0.



<?php
# Hash one-line comment
$messages['language'] = 'Language';

// Double slash one-line comment
$messages['file'] = 'File';

/*
   Multi-line
   comment
*/
$messages['help'] = 'Help';







	Whitespace before end delimiter


New in version 1.10.0.



<?php
$variable = 'string'     ;

$string['name'] = 'string'     ;

$lang = array(
   'name' => 'value'           ,
);

define('item', 'string'    );







	Nested arrays with any number of nesting levels


New in version 1.11.0.



<?php
$lang = array(
   'name' => 'value',
   'datetime' => array(
      'TODAY' => 'Today',
      'YESTERDAY' => 'Yesterday',
      'AGO' => array(
          0 => 'less than a minute ago',
          2 => '%d minutes ago',
          60 => '1 hour ago',
      ),
      'Converted' => 'Converted',
      'LAST' => 'last',
   ),
);







	Whitespace in the array declaration


New in version 1.11.0.



<?php
$variable = array    (
   "one" => "this",
   "two" => "that",
);







	Blank array declaration, then square bracket syntax to fill that array


New in version 1.12.0.



<?php
global $messages;
$messages = array();

$messages['language'] = 'Language';
$messages['file'] = 'File';












Non-Conformance

The following are not yet supported:


	Keyless arrays:

<?php
$days = array('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday');

$messages['days_short'] = array('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat');







	Nested arrays without key for a nested array:

<?php
$lang = array(array("key" => "value"));







	Array entries without ending comma:

<?php
$variable = array(
   "one" => "this",
   "two" => "that"
);







	String concatenation:

<?php
$messages['welcome'] = 'Welcome ' . $name . '!';
$messages['greeting'] = 'Hi ' . $name;







	Assignment in the same line a multiline comment ends:

<?php
/*
   Multi-line
   comment
*/ $messages['help'] = 'Help';







	Heredoc [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc]



	Nowdoc [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.nowdoc]











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Qt .ts

The Qt toolkit uses a .ts file format to store translations which are
traditionally edited using Qt Linguist.


References

The format is XML and seems to only have been documented properly since Qt 4.3


	Current DTD Specification [http://qt-project.org/doc/qt-5.0/qtlinguist/linguist-ts-file-format.html] for Wt 5.0,
older versions; Qt 4.3 [http://doc.qt.digia.com/4.3/linguist-ts-file-format.html]

	http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt






Complete

Note that ts2po uses and older version and does not
support all of these features.  Virtaal [http://virtaal.org], Pootle [http://pootle.translatehouse.org] and other users of the new ts class
support the following:


	Context

	Message: status (unfinished, finished, obsolete), source, translation,
location

	Notes: comment, extracomment, translatorcomment (last two since Toolkit
1.6.0)

	Plurals: numerusform






TODO


Note

A new parser has been added to the toolkit in v1.2. This allows
Virtaal [http://virtaal.org], pocount and other users to
work with v1.1 of the .ts format.  This corrects almost all of the issues
listed below.  The converter ts2po continues to use
the older storage class and thus continue to experience some of these
problems.




	Compliance with above DTD

	byte: within various text areas

	translation: obsolete (currently handled with comments in conversion to PO.
But should be able to convert Obsolete PO back into obsolete TS.  This might
mean moving this format properly onto the base class).

	lengthvariants

	*comment: various new comment fields

	old*: ability to store previous source and comments






Validate

These might work but need validation


	Encoding handling for non-UTF-8 file encodings









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Windows RC files


New in version 1.2.



Windows .rc files, or resource files, are used to store translatable text,
dialogs, menu, etc. for Windows applications.  The format can be handled by the
Translate Toolkit rc2po and po2rc.


Conformance

The actual specification of .rc files is hard to come by.  The parser was built
using WINE [http://en.wikipedia.org/wiki/Wine_%28software%29] .rc files as a reference.  This was done
as WINE is a good target for .rc translations.  We are confident though that
the extraction will prove robust for all .rc files.




Useful resource


	RC converter [http://www.soft-gems.net:8080/browse/RC-Converter]

	ReactOS translation instructions [http://www.reactos.org/wiki/index.php/Translating_introduction]






Supported elements


	DIALOG, DIALOGEX: All translatables

	MENU: POPUP, MENUITEM

	STRINGTABLE

	LANGUAGE: We only parse the first language tag, further LANGUAGE section are
ignored






Bugs


	There may be problems with very deeply nested MENU’s

	LANGUAGE elements cannot yet be updated in po2rc
(Issue 360 [https://github.com/translate/translate/issues/360])









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Mac OSX strings


New in version 1.8.



Mac OSX .strings files are used for some Cocoa / Carbon application
localization, such as for the iPhone, iPod, and OSX. They are somewhat similar
to Java properties, and therefore prop2po and
po2prop are used for conversion.


References


	Localising string resources [https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html#//apple_ref/doc/uid/20000005-SW1]

	Manual creation of .strings files [https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingResources/Strings/Strings.html#//apple_ref/doc/uid/10000051i-CH6-SW10]

	String format specifiers [https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Strings/Articles/formatSpecifiers.html]









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Adobe Flex properties files


New in version 1.8.



Adobe Flex applications use .properties files similar to Java properties, but with UTF-8 encoding, and therefore prop2po and po2prop are used for conversion.

We welcome more testing and feedback, but based on our solid support for
properties, this probably works perfectly.


References


	Description for Adobe Flex properties files [http://livedocs.adobe.com/flex/3/html/l10n_3.html]









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Haiku catkeys


New in version 1.8.



Localisation for the Haiku [http://www.haiku-os.org/] operating system is
done with a file format called catkeys.  It is a bilingual file format.


Links


	Some notes about the format [http://www.haiku-os.org/blog/pulkomandy/2009-09-24_haiku_locale_kit_translator_handbook]

	Some example files [http://cgit.haiku-os.org/haiku/tree/data/catalogs/]









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Android string resources

Android [http://en.wikipedia.org/wiki/Android_%28operating_system%29] programs make use of localisable
string resources.


Note

The toolkit supports this format, but still doesn’t provide any
converter.




References


	Android Resource files reference [http://developer.android.com/guide/topics/resources/resources-i18n.html]

	Android String resources reference [http://developer.android.com/guide/topics/resources/available-resources.html#stringresources]

	Localizing Android Applications [http://www.linux-mag.com/id/7794] tutorial

	Reference for translatable attribute [http://tools.android.com/recent/non-translatablestrings]









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
TMX

TMX is the LISA OSCAR standard [http://www.gala-global.org/lisa-oscar-standards] for translation memories.


Standard conformance

Summary: TMX version 1.4 [http://www.gala-global.org/oscarStandards/tmx/tmx14b.html] conformance to
Level 1, except that no markup is stripped.


	All required header fields are supplied.

	The adminlang field in the header is always English.

	None of the optional header fields are supplied.

	We assume that only two languages are used (source and single target
language).

	No special consideration for segmentation.

	Currently text is treated as plain text, in other words no markup like HTML
inside messages are stripped or interpreted as it should be for complete
Level 1 conformance.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Wordfast Translation Memory

The Wordfast format, as used by the Wordfast [http://en.wikipedia.org/wiki/Wordfast] translation tool, is a
simple tab delimited file.

The storage format can read and write Wordfast TM files.


Conformance


	Escaping – The format correctly handles Wordfast &'XX; escaping and will
unescape and escape seamlessly.

	Soft-breaks – these are not managed and are left as escaped

	Replaceables – these are not managed

	Header – Only basic updating and reading of the header is implemented

	Tab-separated value (TSV) – the format correctly handles the TSV format used
by Wordfast.  There is no quoting, Windows newlines are used and the \t
is used as a delimiter (see issue 472 [https://github.com/translate/translate/issues/472])









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
OmegaT glossary


New in version 1.5.1.



OmegaT allows a translator to create a terminology list of glossary files.  It
uses this file to provide its glossary matches to the OmegaT users.


Format specifications

The glossary files is a tab delimeted files with three columns:


	source

	target

	comment



The files is stored in the system locale if the files extension is .txt or
in UTF-8 if the file extension is .utf8.




Conformance

The implementation can load files in UTF-8 or the system encoding.




Issues


	There has not been extensive testing on system encoded files and there are
likely to be issues in these files for encodings that fall outside of common
ASCII characters.

	Files with additional columns are read correctly but cannot be written.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Qt Phrase Book (.qph)


New in version 1.2.



Qt Linguist allows a translator to collect common phrases into a phrase book.
This plays a role of glossary lookup as opposed to translation memory.


Conformance

There is no formal definition of the format, although it follows a simple
structure

<!DOCTYPE QPH><QPH>
  <phrase>
    <source>Source</source>
    <target>Target</target>
    <definition>Optional definition</definition>
  </phrase>
</QPH>








Missing features

There are no missing features in our support in the toolkit.  The only slight
difference are:


	We don’t focus on adding and removing items, just updating and reading

	Comments are not properly escaped on reading, they might be on writing

	An XML header is output on writing while it seems that no files in the wild
contain an XML header.

	The <definition> is aimed at users, the toolkits addnote feature focuses
on programmer, translators, etc comments while there is really only one
source of comments in a .qph.  This causes duplication on the offline editor.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
TBX

TBX is the LISA OSCAR standard [http://www.gala-global.org/lisa-oscar-standards] for terminology and term
exchange.

For information on more file formats, see Standards conformance.


References


	Standard home page [http://www.gala-global.org/lisa-oscar-standards]

	Specification [http://www.gala-global.org/oscarStandards/tbx/tbx_oscar.pdf]

	ISO 30042 [http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45797]
– TBX is an approved ISO standard

	Additional TBX resources [http://www.tbxconvert.gevterm.net/]



You might also be interested in reading about TBX-Basic [http://www.gala-global.org/oscarStandards/tbx/tbx-basic.html] – a simpler,
reduced version of TBX with most of the useful features included.

Additionally notes and examples about TBX are available in Terminator TBX
conformance notes [http://terminator.readthedocs.org/en/latest/tbx_conformance.html] which might
help understanding this format.

Also you might want to use TBXChecker [http://sourceforge.net/projects/tbxutil/] in order to check that TBX files
are valid. Check the TBXChecker explanation [http://www.tbxconvert.gevterm.net/tbx_checker_explanation.html].




Conformance

Translate Toolkit TBX format support allows:


	Basic TBX file creation

	Creating a bilingual TBX from CSV using csv2tbx

	Using <tig> tags only






Non-Conformance

The following are not yet supported:


	id attribute for <termEntry> tags

	Definitions

	Multiple languages

	Parts of speech

	Multiple translations in the same language

	Cross references

	Context

	Abbreviations

	Synonyms

	<ntig> tag, read and write



Other features can be picked from the Terminator TBX conformance notes [http://terminator.readthedocs.org/en/latest/tbx_conformance.html] which also
include examples and notes about the TBX format.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Universal Terminology eXchange (UTX)


New in version 1.9.



UTX is implemented by the Asia-Pacific Association for Machine Translation


Resources


	UTX site [http://www.aamt.info/english/utx/index.htm]

	Current Specification [http://www.aamt.info/english/utx/#Download]
(implementation is based on UTX 1.0 which is no longer available)






Conformance

The Translate Toolkit implementation of UTX can correctly:


	Handle the header.  Although we don’t generate the header at the moment

	Read any of the standard columns and optional columns.  Although we can
access these extra columns we don’t do much with them.



Adjustments and not implemented features where the spec is not clear:


	We do not implement the “#.” comment as we need clarity on this

	The “<space>” override for no part of speech is not implemented

	The spec calls for 2 header lines, while examples in the field have 2-3
lines.  We can read as many as supplied but assume the last header line is
the column titles

	We remove # from all field line entries, some examples in the field have
#tgt as a column name









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
HTML

The Translate Toolkit is able to process HTML files using the html2po converter.

The HTML support is basic, so please be aware of that.


Conformance


	Can identify almost all tags and attributes that are localisable.

	Does not convert HTML entities (e.g. &copy;) to normal strings

	It does not handle inline elements well and will drop them, so complicated
HTML might not make it through the filter






References


	Using character entities:
http://www.w3.org/International/questions/qa-escapes









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
iCalendar

Support for iCalendar [http://en.wikipedia.org/wiki/ICalendar] (*.ics) files.  This allows calendars
to be localised.

The format extracts certain properties from VEVENT objects.  The properties are
limited to textual entries that would need to be localised, it does not include
entries such as dates and durations that would indeed change for various
locales.


Resources


	rfc2445 [http://tools.ietf.org/html/rfc2445] – Internet Calendaring and
Scheduling Core Object Specification (iCalendar)

	iCal spec [http://www.kanzaki.com/docs/ical/] in a simple adaptation of
the rfc that makes it easy to refer to all sections, items and attributes.

	VObject [http://vobject.skyhouseconsulting.com/] – the python library
used to read the iCal file.

	iCalender validator [http://severinghaus.org/projects/icv/]

	iCalendar [http://en.wikipedia.org/wiki/ICalendar]

	Components and their properties [https://upload.wikimedia.org/wikipedia/commons/c/c0/ICalendarSpecification.png]






Conformance

We are not creating iCal files, simply extracting localisable information and
rebuilding the file.  We rely on VObject to ensure correctness.

The following data is extracted:


	VEVENT:
	SUMMARY

	DESCRIPTION

	LOCATION

	COMMENTS







No other sections are extracted.




Notes


LANGUAGE: not a multilingual solution

It is possible to set the language attribute on an entry e.g.:

SUMMARY:LANGUAGE=af;New Year's Day





However since only one SUMMARY entry is allowed this does not allow you to
specify multiple entries which would allow a single multilingual file.  With
that in mind it is not clear why the LANGUAGE attribute is allowed, the
examples they give are for LOCATION entries but that is still not clearly
useful.




Broken Lotus Notes

Lotus notes creates broken iCalendar files.  They include _ (underscore) in
some of the property names, while [A-Z0-9\-] are the only valid chars.
Therefore, we require vobject >= v0.6.5 (but there is unfortunately no way to
check for the version of vobject).  See vobject bug 12008 [https://bugzilla.osafoundation.org/show_bug.cgi?id=12008] for further
details.






Development Notes

If we use LANGUAGE at all it will be to ensure that we specify that an entry is
in a given language.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
JSON


New in version 1.9.0.



JSON [http://en.wikipedia.org/wiki/JSON] is a common format for web data interchange.

Example:

{
    "firstName": "John",
    "lastName": "Smith",
    "age": 25,
    "address": {
        "streetAddress": "21 2nd Street",
        "city": "New York",
        "state": "NY",
        "postalCode": 10021
    },
    "phoneNumbers": [
        {
            "type": "home",
            "number": "212 555-1234"
        },
        {
            "type": "fax",
            "number": "646 555-4567"
        }
    ]
}









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
OpenDocument Format

This page summarises the support for the OpenDocument [http://en.wikipedia.org/wiki/OpenDocument] format (ODF) in the
Translate Toolkit.  This currently involves only the odf2xliff and xliff2odf converters.

The Translate Toolkit aims to support version 1.1 of the ODF standard, although
it should work reasonably well with older or newer files to the extent that
they are similar.

Our support is implemented to classify tags as not containing translatable
text, or as being inline tags inside translatable tags. This approach means
that new fields added in future versions will automatically be seen as
translatable and should still be extracted successfully, even if the currently
released versions of the Translate Toolkit are not aware of their existence.


	Currently used and classified tags [https://github.com/translate/translate/blob/master/translate/storage/odf_shared.py#L23]



More complex tag uses are still needed to extract 100% correctly in some
complex cases. For more information, see the list of issues from testing [http://translate.sourceforge.net/wiki/odf/testing].





          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Simple Text Documents

The Translate Toolkit can process simple Text files.  This is very useful for
translating installation files and READMEs.  The processing of these files is
performed by the txt2po converter.

In some cases you will need to adjust the source text for the conversion
management to work well.  This is because the text file format support
considered units to be space separated blocks of text.


Example

Heading
=======

Paragraph One

Paragraph Two:
* First bullet
* Second bullet





This example will result in three units.  The first will include the underline
in the header.  The third will include all the bullet points in one paragraph
together with the paragraph lead in.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Wiki Syntax

The Translate Toolkit can manage Wiki syntax pages.  This is implemented as
part of the text format and the conversion is supported in
txt2po.

Those who edit wikis will appreciate that wiki text is simply a normal text
document edited using a form of wiki syntax.  Whether the final storage is a
database or a flat file the part that a user edits is a simple text file.

The format does not support all features of the wiki syntax and will simply
dump the full form if it doesn’t understand the text.  But structures such as
headers and lists are understood and the filter can remove these are correctly
add them.


Supported Wiki Formats

The following is a list of the wikis supported together with a list of the
items that we can process:


	dokuwiki [http://wiki.splitbrain.org/wiki:dokuwiki] – heading, bullet,
numbered list

	MediaWiki [http://www.mediawiki.org/wiki/MediaWiki] – heading, bullet,
numbered list






Possible uses

As part of a localisation process for a wiki this format and the filters could
be used to provide a good localisation of existing wiki content.

With further enhancement the tool could probably be capable of converting from
one wiki syntax to another, but that is of course not its main aim




Additional notes on MediaWiki

Media wiki can also export in XML format, see
http://en.wikipedia.org/wiki/Special:Export and
http://www.mediawiki.org/wiki/Manual:Parameters_to_Special:Export this however
exports in XML so not directly usable by txt2po.

For importing please see http://en.wikipedia.org/wiki/Help:Import this is
disabled on most wikis so not directly usable currently.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Subtitles


New in version 1.4.



The translation of subtitles are supported in the toolkit with the commands
sub2po and po2sub.

The following formats are supported for subtitles:


	MicroDVD

	MPL2

	MPsub

	SubRip [http://en.wikipedia.org/wiki/SubRip] (.srt)

	SubViewer [http://en.wikipedia.org/wiki/SubViewer] 2.0 (.sub)

	TMPlayer

	Sub Station Alpha

	Advanced Sub Station Alpha



YouTube supports a number of formats [https://support.google.com/youtube/answer/2734698?hl=en&ref_topic=2734694]


Implementation details

Format support is provided by Gaupol [http://home.gna.org/gaupol/] a
subtitling tool.  Further enhancement of format support in Gaupol will directly
benefit our conversion ability.




Usage

It must be noted that our tools provide the ability to localise the subtitles.
This in itself is useful and allows a translator to use their existing
localisation tools.  But this is pure localisation and users should be aware
that they might still need to post edit their work to account for timing,
limited text space, limits in the ability of viewers to keep up with the text.

For most cases simply localising will be good enough.  But in some cases the
translated work might need to be reviewed to fix any such issues.  You can use
Gaupol to perform those reviews.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Gettext .mo

The Gettext .mo (Machine Object) file is a compiled Gettext PO
file.  In execution Gettext enabled programs retrieve translations from the .mo
file.  The file contains arrays for the English and the translations, an
optional hash can speed up the access to the translations.


Conformance

The toolkit can create .mo files from PO or XLIFF files, handling plurals and
msgctxt.  It can also read .mo files, allowing counting, etc and also allowing
the .mo files to act as a translation memory.


Changed in version 1.2: The hash table is also generated (the Gettext .mo files works fine without
it). Due to slight differences in the construction of the hashing, the
generated files are not identical to those generated by msgfmt, but they
should be functionally equivalent and 100% usable. Issue 326 [https://github.com/translate/translate/issues/326]
tracked the implementation of the hashing. The hash is platform dependent.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Qt .qm

A .qm file is a compiled Qt linguist file.  In many ways it is
similar to Gettext, in that it uses a hashing table to lookup the translated
text.  In older version they store only the hash and the translation which
doesn’t make the format useful for recovering translated text.


Conformance

The toolkit can read .qm files correctly.  There are some unimplemented aspects
of the message block, but these seem to be legacy features and require examples
to be able to implement the feature.

The .qm implementation cannot write a .qm file, thus you are only able to use
this format in a read-only context: counting messages
(pocount), reading in messages for a TM or using it as a
source format for a converter e.g. a possible qm2xliff converter.




TODO


	Writing
	Hash algorithm













          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Mozilla l20n

L20n is a proposed method for localisation in the Mozilla project.
https://wiki.mozilla.org/L20n


Comments

Here we collect some comments about the possibility of l20n support in our
tools.

Our tools are based on the idea of units. Each unit has an associated (source,
target) pair, possibly containing more, like comments, state, etc. We prefer to
build our richer tools against bilingual formats like PO Files, XLIFF,
Qt .ts, etc. and provide converters to these formats when we want to support
guide/monolingual [http://translate.sourceforge.net/wiki/guide/monolingual] formats. Pootle also implements its own bilingual
format in its database.

l20n is based on the idea of entity soup, or object soup. Files are (at least
in the first iteration) monolingual, and each language defines a set of objects
which can contain one or more presentation forms of an entity/string, to vary
it according to gender, case, declension, plural, time of day, etc.  A language
can define extra entities to help in constructing others by “factoring out”
things, if you will. The structure of each object is left to the programmer for
the target language to define.


Findings

Our tools work on the principle of units.  A unit being in its simplest form a
source to target mapping, in other words the English source text plus the
target translation make a unit.  Our code has, for a long time now, a good
understanding of units that don’t have a one to one mapping.  In PO those are
plural units.  This is where N source strings map to M target strings.  We
currently only have 1-M and 2-M mappings for Qt and PO files. l20n introduces
N-M mappings which we don’t currently support.

l20n is of course working around an idea of translation objects not strings.
But I think the string metaphor works in most cases to ease explanation.

The closest thing we have to this is plural support by means of multistrings.

l20n is pretty powerful with the ability to arbitrarily make up
functions/macros that then map to the correct string to use in the translation.
In PO the number of possible (plural) strings is mapped before you begin, l20n
potentially has any arbitrary mapping.

We could write a simple converter to another format for simple string based
objects without further structure, but that doesn’t expose the power of l20n
yet, and doesn’t handle complexity in the source text if it was present.




Issues


	N-M mapping. We need to support arbitrary mappings between source and target

	Determining N and M on the fly.  We need to have the ability to determine N
and M in real time.  So that would mean being able to read l20n files and
determine what function is used, then determine how many possible results
that function can return.  We’d do that for both source and target.  Thus
we’d get N and M counts which we can use in the interface.

	GUI for Pootle/Virtaal to allow dynamic source and target numbers.  We
already adapt to N and M on both platforms, but doing this on the fly is
harder.
	If we assume that functions are implemented once in a common library and
named the same (for example for plural support) then this is easy.

	If functions are arbitrarily implemented per target file but at least named
the same then this is harder.

	If names of functions are changed then we’d need to present the ability to
change the function that a translator would use in their translation.  How
to do this so that it isn’t confusing would require quite some thought.

	Being able to write functions on the fly within the translation tool would
most likely be the ultimate ability.  We suspect we won’t need to address
that level just yet.





	Backend file store.  We have two options.
	Covert to a bilingual store – this is what we do in moz2po.

	Support monolingual stores – we can do that in Pootle, but it needs wider
testing.  In Virtaal we do automatic conversion to bilingual formats, but
is is currently disabled.  To enable this so that we can rely on it we’d need
some work on both Pootle and Virtaal; in testing and in managing source and
target files changes reliably.





	More complex l20n interactions.  These start pushing the translation tool
into an IDE but would include:
	A translator making a 1-1 into a 1-M (to add gender, vary on the time of
day, platform, etc). Since no functions are present in the source we’d need
to have access to a library of functions or have a structured object
editor.

	A translator might want to define a local entity (an entity which is not in
the original source document), or it might be there from before.





	Still needs some thought on how to do anything meaningful with our current
translation features like TM, MT, quality checks.






Approach

The problems above really highlight the approach we’d take to implement l20n in
our tools.


	Expand the toolkit to do N-M mapping

	Include l20n parser to allows N and M mapping determination on the fly

	Convert to an interim store.  Before tackling the monoligual side we’d look
at converting to an interim store to reduce the risks.  We’d determine what
to use at the time.  The only thing certain is that it would not be PO, as PO
can’t do N source strings.

	GUI changes. This would be to allow N and M to change dynamically.  But we’d
limit this to at first relying on 1-1 mappings of functions.  Thus plural()
in source means plural() in target.



At this point we have a usable translation tool for l20n.  The next steps would
be about making that support more robust.  Each of these would really be
determined closer to the time.


	Adaptable N and M.  First allowing functions within a file to adapt the
values of N and M.

	GUI selection of functions.  Ability to select functions from within the GUI.

	Monolingual on the fly.  We’d then look at the monolingual side of things.
This would be so that we can work on the source and target without the need
for the interim store.



We’re now really at a position where we’ve solved things up to point 4 above.
Addressing issues in point 5 and 6 would be the next steps.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Wireless Markup Language

This page documents the support for WML [http://en.wikipedia.org/wiki/Wireless_Markup_Language] and is
used for planning our work on it.

This is implemented as a generic XML document type that is handled similarly to
the way the developers/projects/odf [http://translate.sourceforge.net/wiki/developers/projects/odf] project handles ODF documents.





          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Standards conformance

This page links to pages documenting standard conformance for different
standards or file formats.


LISA and OASIS standards


	TMX

	XLIFF

	TBX






Other formats


	Gettext PO

	Gettext .mo

	CSV

	Qt Linguist

	Qt .qph and .qm files

	Wordfast translation memory

	OmegaT glossary






Searching and matching


	Levenshtein distance









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Base classes

NOTE: This page is mostly useful for developers as it describes some programming detail of the
toolkit.

For the implementation of the different storage classes that the toolkit
supports, we want to define a set of base classes to form a common API for all
formats. This will simplify implementation of new storage formats, and enable
easy integration into external tools, such as Pootle. It will also mean less
duplication of code in similar storage formats.

These ideas explained here should be seen as drafts only.


Requirements

The base classes should be rich enough in functionality to enable users of the
base classes to have access to all or most of the features that are available
in the formats. In particular, the following are considered requirements:


	Seamless and hidden handling of escaping, quoting and character sets

	Parsing a file when given a file name or file contents (whole file in a
string)

	Writing a file to disk

	Getting and setting source and target languages

	Accessing units, and determining if they are translatable, translated, a
unique identifier for the unit in the file, etc.

	Support for plural units that can vary between different languages (as the PO
format allows with msgid_plural, etc.)



Other possibilities:


	Support for variable number of languages in the format. Examples: .txt and
.properties support one language, PO supports two, TMX supports many.

	Support for “multifiles”, in other words a file that contain other entities
that corresponds to files in other formats. Examples: ZIP and
XLIFF. In reality this is only used by some of the converters. This
isn’t present in the base class yet.



All these do not mean that all formats must support al these features, but in
the formats that do support these features, it must be accessible through the
base class, and it must be possible to interrogate the storage format through
the base class to know which features it supports.




The classes

A file contains a number of translation units, and possibly a header. Each
translation unit contains one or more strings corresponding to each of the
languages represented in that unit.


Message/string (multistring)

This class represents a single conceptual string in a single language. It must
know its own requirements for escaping and implement it internally. Escaped
versions are only used for internal representation and only exposed for file
creation and testing (unit tests, for example).

Note that when storing different plural forms of the same string, they should
be stored in this class. The main object is the singular string, and all of the
string forms can be accessed in a list at x.strings. Most of the time the
object can be dealt with as a single string, only when it is necessary to deal
with plural forms do the extra strings have to be taken into account.

Any string from a plural unit must be a multistring.




Translation unit

This class represents a unit of one or several related messages/strings. In
most formats the contained strings will be translations of some original
message/string. It must associate a language value with each message/string. It
must know how to join all contained messages/strings to compile a valid
representation. For formats that support at least two languages, the first two
languages will serve as “source” and “target” languages for the common case of
translating from one language into another language.

Some future ideas:

As the number of of languages can be seen as one “dimension” of the translation
unit, plurality can be seen as a second dimension. A format can thus be
classified according to the dimensionality that it supports, as follows:


	.properties files supports one language and no concept of plurals. This
include most document types, such as .txt, HTML and OpenDocument formats.

	Old style PO files supported two languages and no plurals.

	New style PO files support two languages and any number of plurals as
required by the target language. The plural forms are stored in the original
or target strings, as extra forms of the string (See message/string class
above).

	TMX files support any number of languages, but has no concept of plurality.



Comments/notes are supported in this class. Quality or status information
(fuzzy, last-changed-by) should be stored. TODO: see if this should be on unit
level or language level.




Store

This class represents a whole collection of translation units, usually stored
in a single file. It supports the concept of a header, and possibly comments at
file level. A file will not necessarily be contained alone in single file on
disc. See “multifile” below.




Multifile

This abstraction is only used by a few converters.

This class represents a storage format that contains other files or file like
objects. Examples include ZIP, XLIFF, and OpenOffice SDF files. It must
give access to the contained files, and possibly give access to the translation
units contained in those files, as if they are contained natively.








Additional Notes

Dwayne and I (Andreas) discussed cleaning up the storage base class.  A lot of
what we discussed is related to the above.  A quick summary:


	Implement a new base class.


	Flesh out the API, clean and clear definitions.

	Document the API.





	We need to discuss the class hierarchy, e.g.:

base
     -- po
     -- text
     -- xml
            -- xhtml
            -- lisa
                    -- xliff
                    -- tmx
                    -- tbx







	Clean up converters.


	Parsing of file content needs to happen only in the storage implementation
of each filetype/storage type. Currently parsing happens all over the
place.



	Currently there are separate conversion programs for each type and
direction to convert to, e.g. po2xliff and xliff2po (24 commands with lots
of duplicate code in them). Ideally conversion should be as simple as:

>>> po_store = POStore(filecontent)
>>> print str(po_store)
msgid "bleep"
msgstr "blorp"

>>> xliff_store = XliffStore(po_store)
>>> print str(xliff_store)
<xliff>
  <file>
    <trans-unit>
      <source>bleep</source>
      <target>blorp</target>
    </trans-unit>
  </file>
</xliff>













Note that the xliffstore is being instantiated using the postore object.  This
works because all the data in any translation store object is accessible via
the same well-defined base API.  A concept class implementing the above code
snippet has already been written.


	Move certain options into their respective storage classes.
	e.g. the --duplicates option can move into po.py





	Store the meta data for a storage object.
	Can be implemented as separate sqlite file that accompanies the real file.

	Features not directly supported by a file format can be stored in the
metadata file.





	A storage object should know all information pertaining to itself.
	e.g. “am I monolingual?”





	We should discuss how to make an object aware that it is monolingual,
bilingual or multilingual.
	Maybe through mixin-classes?

	How will the behaviour of a monolingual store differ from a bilingual
store?











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Translation Related File Formats 
 
      

    


    
      
          
            
  
Quoting and Escaping

Different translation formats handle quoting and escaping
strings differently. This is meant to be a common page which outlines the
differences


PO format

Strings are quoted using double quotes. For long strings multiline quotes are
done by opening and closing the quotes on each line. Usually in this case the
first line is left blank. The splitting of strings over lines is transparent
i.e. it does not imply line breaks in the translated strings.

Escaping is done with a backslash. An escaped double quote (\") corresponds
to a double quote in the original string. \n for newline, \t for tabs
etc are used. Backslashes can be escaped to to give a native backslash.

See also escaping [http://translate.sourceforge.net/wiki/guide/translation/escaping] in the translation
guide.

Example:

msgid ""
"This is a long string with a \n newline, a \" double quote, and a \\ backslash."
"There is no space between the . at the end of the last sentence "
"and the T at the beginning of this one."








DTD format

Strings are quoted using either double or single quotes. The quoting character
may not occur within the string. There is no provision for escaping. XML
entities can be used e.g. &apos; can be used to denote a single quote
within the single-quoted string.

Some DTD files seem to have backslash-escapes, but these are anomalies: see
discussion thread on Mozilla l10n-dev [http://groups.google.com/group/mozilla.dev.l10n/browse_thread/thread/58256c1f59c22798/b4bac2de4182f3e0]




Mozilla properties format

Note that this section does not describe the Java properties files, even though
they are quite similar.

It seems that the literal string \n (a backslash followed by the character
‘n’) and \t and \r can not be encoded in properties files. This is the
assumption of the toolkit.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Translate Styleguide

The Translate styleguide is the styleguide for all Translate projects,
including Translate Toolkit, Pootle, Virtaal and others.  Patches are required
to follow these guidelines.

This Styleguide follows PEP 8 [http://www.python.org/dev/peps/pep-0008] with some clarifications. It is based almost
verbatim on the Flask Styleguide [http://flask.pocoo.org/docs/styleguide/].


Python

These are the Translate conventions for Python coding style.


General


Indentation

4 real spaces, no tabs. Exceptions: modules that have been copied into the
source that don’t follow this guideline.




Maximum line length

79 characters with a soft limit for 84 if absolutely necessary. Try to avoid
too nested code by cleverly placing break, continue and return
statements.




Continuing long statements

To continue a statement you can use backslashes (preceeded by a space) in which
case you should align the next line with the last dot or equal sign, or indent
four spaces:

MyModel.query.filter(MyModel.scalar > 120) \
             .order_by(MyModel.name.desc()) \
             .limit(10)

my_long_assignment = MyModel.query.filter(MyModel.scalar > 120) \
                     .order_by(MyModel.name.desc()) \
                     .limit(10)

this_is_a_very_long(function_call, 'with many parameters') \
    .that_returns_an_object_with_an_attribute





If you break in a statement with parentheses or braces, align to the braces:

this_is_a_very_long(function_call, 'with many parameters',
                    23, 42, 'and even more')





If you need to break long strings, on function calls or when assigning to
variables, try to use implicit string continuation:

this_holds_a_very_long_string("Very long string with a lot of characters "
                              "and words on it, so many that it is "
                              "necessary to break it in several lines to "
                              "improve readability.")
long_string_var = ("Very long string with a lot of characters and words on "
                   "it, so many that it is necessary to break it in "
                   "several lines to improve readability.")





For lists or tuples with many items, break immediately after the opening brace:

items = [
    'this is the first', 'set of items', 'with more items',
    'to come in this line', 'like this'
]








Blank lines

Top level functions and classes are separated by two lines, everything else
by one. Do not use too many blank lines to separate logical segments in code.
Example:

def hello(name):
    print 'Hello %s!' % name


def goodbye(name):
    print 'See you %s.' % name


class MyClass(object):
    """This is a simple docstring"""

    def __init__(self, name):
        self.name = name

    @property
    def annoying_name(self):
        return self.name.upper() + '!!!!111'








Imports

Like in PEP 8 [http://www.python.org/dev/peps/pep-0008], but:


	Imports should be grouped in the following order:
	__future__ library imports

	Python standard library imports

	Third party libraries imports

	Translate Toolkit imports

	Current package imports, using explicit relative imports (See PEP 328 [http://www.python.org/dev/peps/pep-0328/#guido-s-decision])





	A blank line must be present between each group of imports (like in PEP8).

	Imports on each group must be arranged alphabetically by module name:
	Shortest module names must be before longer ones:
from django.db import ... before from django.db.models import ....





	import ... calls must precede from ... import ones on each group:
	On each of these subgroups the entries should be alphabetically arranged.

	No blank lines between subgroups.





	On from ... import
	Use a CONSTANT, Class, function order, where the constants,
classes and functions are in alphabetical order inside of its respective
groups.

	If the import line exceeds the 80 chars, then split it using parentheses to
continue the import on the next line (aligning the imported items with the
opening parenthesis).







from __future__ import absolute_import

import re
import sys.path as sys_path
import time
from datetime import timedelta
from os import path

from lxml.html import fromstring

from translate.filters import checks
from translate.storage import versioncontrol
from translate.storage.aresource import (EOF, WHITESPACE, AndroidFile,
                                         AndroidUnit, android_decode,
                                         android_encode)

from . import php2po








Properties


	Never use lambda functions:

# Good.
@property
def stores(self):
  return self.child.stores


# Bad.
stores = property(lambda self: self.child.stores)







	Try to use @property instead of get_* or is_* methods that don’t
require passing any parameter:

# Good.
@property
def terminology(self):
  ...

@property
def is_monolingual(self):
  ...


# Also good.
def get_stores_for_language(self, language):
  ...


# Bad.
def get_terminology(self):
  ...

def is_monolingual(self):
  ...







	Always use @property instead of property(...), even for properties
that also have a setter or a deleter:

# Good.
@property
def units(self):
  ...


# Also good.
@property
def x(self):
  """I'm the 'x' property."""
  return self._x

@x.setter
def x(self, value):  # Note: Method must be named 'x' too.
  self._x = value

@x.deleter
def x(self):  # Note: Method must be named 'x' too.
  del self._x


# Bad.
def _get_units(self):
  ...
units = property(_get_units)


# Also bad.
def getx(self):
  return self._x
def setx(self, value):
  self._x = value
def delx(self):
  del self._x
x = property(getx, setx, delx, "I'm the 'x' property.")












Single vs double quoted strings

There is no preference on using single or double quotes for strings, except in
some specific cases:


	Always use single quotes for string dictionary keys:

# Good.
demo = {
    'language': language,
}


# Bad.
demo = {
    "language": language,
}







	When a single or double quote character needs to be escaped it is recommended
to instead enclose the string using the other quoting:

# Good.
str1 = "Sauron's eye"
str2 = 'Its name is "Virtaal".'


# Bad.
str3 = 'Sauron\'s eye'
str4 = "Its name is \"Virtaal\"."














Expressions and Statements


General whitespace rules


	No whitespace for unary operators that are not words (e.g.: -, ~
etc.) as well on the inner side of parentheses.

	Whitespace is placed between binary operators.



# Good.
exp = -1.05
value = (item_value / item_count) * offset / exp
value = my_list[index]
value = my_dict['key']


# Bad.
exp = - 1.05
value = ( item_value / item_count ) * offset / exp
value = (item_value/item_count)*offset/exp
value=( item_value/item_count ) * offset/exp
value = my_list[ index ]
value = my_dict ['key']








Slice notation

While PEP 8 [http://www.python.org/dev/peps/pep-0008] calls for spaces around operators a = b + c this results in
flags when you use a[b+1:c-1] but would allow the rather unreadable
a[b + 1:c - 1] to pass. PEP 8 [http://www.python.org/dev/peps/pep-0008] is rather quiet on slice notation.


	Don’t use spaces with simple variables or numbers



	Use brackets for expressions with spaces between binary operators

# Good.
a[1:2]
a[start:end]
a[(start - 1):(end + var + 2)]  # Brackets help group things and don't hide the slice
a[-1:(end + 1)]


# Bad.
a[start: end]  # No spaces around :
a[start-1:end+var+2]  # Insanely hard to read, especially when your expressions are more complex
a[start - 1:end + 2]  # You lose sight of the fact that it is a slice
a[- 1:end]  # -1 is unary, no space










Note

String slice formatting is still under discussion.






Comparisons


	Against arbitrary types: == and !=

	Against singletons with is and is not (e.g.: foo is not None)

	Never compare something with True or False (for example never do foo ==
False, do not foo instead)






Negated containment checks


	Use foo not in bar instead of not foo in bar






Instance checks


	isinstance(a, C) instead of type(A) is C, but try to avoid instance
checks in general.  Check for features.






If statements


	Use () brackets around complex if statements to allow easy wrapping,
don’t use backslash to wrap an if statement.



	Wrap between and, or, etc.



	Keep not with the expression



	Use () alignment between expressions



	Use extra () to eliminate ambiguity, don’t rely on an understanding of
Python operator precedence rules.

# Good.
if length >= (upper + 2):
    ...

if (length >= 25 and
    string != "Something" and
    not careful):
    do_something()


# Bad.
if length >= upper + 2:
    ...

if (length...
    and string !=...














Naming Conventions


Note

This has not been implemented or discussed.  The Translate code
is not at all consistent with these conventions.




	Class names: CamelCase, with acronyms kept uppercase (HTTPWriter and
not HttpWriter)

	Variable names: lowercase_with_underscores

	Method and function names: lowercase_with_underscores

	Constants: UPPERCASE_WITH_UNDERSCORES

	precompiled regular expressions: name_re



Protected members are prefixed with a single underscore.  Double underscores
are reserved for mixin classes.

To prevent name clashes with keywords, one trailing underscore may be appended.
Clashes with builtins are allowed and must not be resolved by appending an
underline to the name.  If your code needs to access a shadowed builtin, rebind
the builtin to a different name instead.  Consider using a different name to
avoid having to deal with either type of name clash, but don’t complicate names
with prefixes or suffixes.


Function and method arguments


	Class methods: cls as first parameter

	Instance methods: self as first parameter












Documentation

We use Sphinx [http://sphinx-doc.org/] to generate our API and user documentation. Read the
reStructuredText primer [http://sphinx-doc.org/rest.html] and Sphinx documentation [http://sphinx-doc.org/contents.html] as needed.


Special roles

We introduce a number of special roles for documentation:


	:issue: – links to a toolkit issue Github.
	:issue:`234` gives: issue 234 [https://github.com/translate/translate/issues/234]

	:issue:`broken <234>` gives: broken [https://github.com/translate/translate/issues/234]





	:opt: – mark command options and command values.
	:opt:`-P` gives -P

	:opt:`--progress=dots` gives --progress=dots

	:opt:`dots` gives dots





	:man: – link to a Linux man page.
	:man:`msgfmt` gives msgfmt [http://linux.die.net/man/1/msgfmt]










Code and command line highlighting

All code examples and format snippets should be highlighted to make them easier
to read.  By default Sphinx uses Python highlighting of code snippets (but it
doesn’t always work).  You will want to change that in these situations:


	The examples are not Python e.g. talking about INI file parsing.  In which
case set the file level highlighting using:

.. highlight:: ini







	There are multiple different code examples in the document, then use:

.. code-block:: ruby





before each code block.



	Python code highlighting isn’t working, then force Python highlighting using:

.. code-block:: python










Note

Generally we prefer explicit markup as this makes it easier for those
following you to know what you intended.  So use .. code-block:: python
even though in some cases this is not required.



With bash command line examples, to improve readability use:

.. code-block:: bash





Add $ command prompt markers and # comments as required, as shown in
this example:

$ cd docs
$ make html  # Build all Sphinx documentation
$ make linkcheck  # Report broken links








User documentation

This is documentation found in docs/ and that is published on Read the
Docs. The target is the end user so our primary objective is to make accesible,
readable and beautiful documents for them.




Docstrings


	Docstring conventions:

	All docstrings are formatted with reStructuredText as understood by
Sphinx.  Depending on the number of lines in the docstring, they are
laid out differently.  If it’s just one line, the closing triple
quote is on the same line as the opening, otherwise the text is on
the same line as the opening quote and the triple quote that closes
the string on its own line:

def foo():
    """This is a simple docstring."""


def bar():
    """This is a longer docstring with so much information in there
    that it spans three lines.  In this case the closing triple quote
    is on its own line.
    """









Please read PEP 257 [http://www.python.org/dev/peps/pep-0257] (Docstring Conventions) for a general overview,
the important parts though are:


	A docstring should have a brief one-line summary, ending with a period. Use
Do this, Return that rather than Does ..., Returns ....

	If there are more details there should be a blank line between the one-line
summary and the rest of the text.  Use paragraphs and formatting as needed.

	Use reST field lists [http://sphinx-doc.org/domains.html#info-field-lists] to describe the input parameters and/or return types
as the last part of the docstring.

	Use proper capitalisation and punctuation.

	Don’t restate things that would appear in parameter descriptions.



def addunit(self, unit):
    """Append the given unit to the object's list of units.

    This method should always be used rather than trying to modify the
    list manually.

    :param Unit unit: Any object that inherits from :class:`Unit`.
    """
    self.units.append(unit)






	Parameter documentation:

	Document parameters using reST field lists [http://sphinx-doc.org/domains.html#info-field-lists] as follows:

def foo(bar):
    """Simple docstring.

    :param SomeType bar: Something
    :return: Returns something
    :rtype: Return type
    """







	Cross referencing code:

	When talking about other objects, methods, functions and variables
it is good practice to cross-reference them with Sphinx’s Python
cross-referencing [http://sphinx-doc.org/domains.html#cross-referencing-python-objects].

	Other directives:

	Use paragraph-level markup [http://sphinx-doc.org/markup/para.html#paragraph-level-markup] when needed.




Note

We still need to gather the useful ones that we want you to use and how to use
them.  E.g. how to talk about a parameter in the docstring.  How to reference
classes in the module.  How to reference other modules, etc.




	Module header:

	The module header consists of an utf-8 encoding declaration, copyright
attribution, license block and a standard docstring:

# -*- coding: utf-8 -*-
#
... LICENSE BLOCK...

"""A brief description"""










	Deprecation:

	Document the deprecation and version when deprecating features:

from translate.misc.deprecation import deprecated


@deprecated("Use util.run_fast() instead.")
def run_slow():
    """Run fast

    .. deprecated:: 1.5
       Use :func:`run_fast` instead.
    """
    run_fast()












Comments


	General:

	
	The # symbol (pound or hash) is used to start comments.

	A space must follow the # between any written text.

	Line length must be observed.

	Inline comments are preceded by two spaces.

	Write sentences correctly: proper capitalisation and punctuation.



# Good comment with space before and full sentence.
statement  # Good comment with two spaces


#Bad comment no space before
statement # Bad comment, needs two spaces







	Docstring comments:

	Rules for comments are similar to docstrings.  Both are formatted with
reStructuredText.  If a comment is used to document an attribute, put a
colon after the opening pound sign (#):

class User(object):
    #: the name of the user as unicode string
    name = Column(String)
    #: the sha1 hash of the password + inline salt
    pw_hash = Column(String)












String formatting

While str.format() is more powerful than %-formatting, the latter has been the
canonical way of formatting strings in Python for a long time and the Python
core team has shown no desire to settle on one syntax over the other.
For simple, serial positional cases (non-translatable strings), the old “%s”
way of formatting is preferred.
For anything more complex, including translatable strings, str.format is
preferred as it is significantly more powerful and often cleaner.

# Good
print("Hello, {thing}".format(thing="world"))
print("%s=%r" % ("hello", "world"))  # non-translatable strings

# Bad
print("%s, %s" % ("Hello", "world"))  # Translatable string.
print("Hello, %(thing)s" % {"thing": "world"})  # Use {thing}.
print("Hello, {}".format("world"))  # Incompatible with Python 2.6. Use %s.











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Building


UNIX




Windows


Requirements


	Innosetup [http://www.jrsoftware.org/isinfo.php]

	py2exe [http://www.py2exe.org/]



Consult the README in the source distribution for the build dependencies.


Building Python packages with C extensions under Windows

In order to build modules which have C extensions, you will need either the
Visual Studio C++ compiler or MinGW [http://sourceforge.net/projects/mingw/files/MSYS/Extension/].

Make sure that your Visual Studio C++ or MinGW program path is part of your
system’s program path, since the Python build system requires this.

To build and install a package with MinGW, you need to execute:

python setup.py build -c mingw32 install





from the command line.

To build a Windows installer when using MinGW, execute:

python setup.py build -c mingw32 bdist_wininst










Building

Simply execute:

python setup.py innosetup





The generated file can be found under translate-toolkit-<version>\Output
(where <version> is the software version).









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Testing

Our aim is that all new functionality is adequately tested. Adding tests for
existing functionality is highly recommended before any major reimplementation
(refactoring, etcetera).

We use py.test [http://pytest.org/] for (unit) testing. You need at least pytest >= 2.2.

To run tests in the current directory and its subdirectories:

$ py.test  # runs all tests
$ py.test storage/test_dtd.py  # runs just a single test module





We use several py.test features to simplify testing, and to suppress errors in
circumstances where the tests cannot possibly succeed (limitations of
tests and missing dependencies).


Skipping tests

Pytest allows tests, test classes, and modules to be skipped or marked as
“expected to fail” (xfail).
Generally you should skip only if the test cannot run at all (throws uncaught
exception); otherwise xfail is preferred as it provides more test coverage.


importorskip

Use the builtin importorskip() [http://pytest.org/latest/builtin.html#_pytest.runner.importorskip] function
to skip a test module if a dependency cannot be imported:

from pytest import importorskip
importorskip("vobject")





If vobject can be imported, it will be; otherwise it raises an exception
that causes pytest to skip the entire module rather than failing.




skipif

Use the skipif decorator to mark tests to be skipped [http://pytest.org/latest/skipping.html#skipif]
unless certain criteria are met.  The following skips a test if the version of
mymodule is too old:

import mymodule

@pytest.mark.skipif("mymodule.__version__ < '1.2'")
def test_function():
    ...





In Python 2.6 and later, you can apply this decorator to classes as well as
functions and methods.

It is also possible to skip an entire test module by creating a pytestmark
static variable in the module:

# mark entire module as skipped for py.test if no indexer available
pytestmark = pytest.mark.skipif("noindexer")








xfail

Use the xfail decorator to mark tests as expected to fail [http://pytest.org/latest/skipping.html#xfail]. This allows you to do the following:


	Build tests for functionality that we haven’t implemented yet

	Mark tests that will fail on certain platforms or Python versions

	Mark tests that we should fix but haven’t got round to fixing yet



The simplest form is the following:

from pytest import pytest.mark

@mark.xfail
def test_function():
    ...





You can also pass parameters to the decorator to mark expected failure only
under some condition (like skipif), to document the reason failure is
expected, or to actually skip the test:

@mark.xfail("sys.version_info >= (3,0)")  # only expect failure for Python 3
@mark.xfail(..., reason="Not implemented")  # provide a reason for the xfail
@mark.xfail(..., run=False)  # skip the test but still regard it as xfailed










Testing for Warnings


deprecated_call

The builtin deprecated_call() [http://pytest.org/latest/builtin.html#pytest.deprecated_call] function checks that a
function that we run raises a DeprecationWarning:

from pytest import deprecated_call

def test_something():
    deprecated_call(function_to_run, arguments_for_function)








recwarn

The recwarn plugin [http://pytest.org/latest/recwarn.html] allows us to test for other warnings. Note that
recwarn is a funcargs plugin, which means that you need it in your test
function parameters:

def test_example(recwarn):
    # do something
    w = recwarn.pop()
    # w.{message,category,filename,lineno}
    assert 'something' in str(w.message)












Command Line Functional Testing

Functional tests allow us to validate the operation of the tools on the command
line.  The execution by a user is simulated using reference data files and the
results are captured for comparison.

The tests are simple to craft and use some naming magic to make it easy to
refer to test files, stdout and stderr.


File name magic

We use a special naming convention to make writing tests quick and easy.  Thus
in the case of testing the following command:

$ moz2po -t template.dtd translations.po translated.dtd





Our test would be written like this:

$ moz2po -t $one $two $out





Where $one and $two are the input files and $out is the result file
that the test framework will validate.

The files would be called:









	File
	Function
	Variable
	File naming conventions




	test_moz2po_help.sh
	Test script
	
	




	test_${command}_${description}.sh


	test_moz2po_help/one.dtd
	Input
	$one
	${testname}/${variable}.${extension}


	test_moz2po_help/two.po
	Input
	$two
	${testname}/${variable}.${extension}


	test_moz2po_help/out.dtd
	Output
	$out
	${testname}/${variable}.${extension}


	test_moz2po_help/stdout.txt
	Output
	$stdout
	${testname}/${variable}.${extension}


	test_moz2po_help/stderr.txt
	Output
	$stderr
	${testname}/${variable}.${extension}






Note

A test filename must start with test_ and end in .sh.  The
rest of the name may only use ASCII alphanumeric characters and underscore
_.



The test file is placed in the tests/ directory while data files are placed
in the tests/data/${testname} directory.

There are three standard output files:


	$out - the output from the command

	$stdout - any output given to the user

	$stderr - any error output



The output files are available for checking at the end of the test execution
and a test will fail if there are differences between the reference output and
that achieved in the test run.

You do not need to define reference output for all three, if one is missing
then checks will be against /dev/null.

There can be any number of input files.  They need to be named using only ASCII
characters without any punctuation.  While you can give them any name we
recommend using numbered positions such as one, two, three.  These are
converted into variables in the test framework so ensure that none of your
choices clash with existing bash commands and variables.

Your test script can access variables for all of your files so e.g.
moz2po_conversion/one.dtd will be referenced as $one and output
moz2po_conversion/out.dtd as $out.




Writing

The tests are normal bash scripts so they can be executed on their own.  A
template for a test is as follows:

#!/bin/bash

# Import the test framework
source $(basename $0)/test.inc.sh

# You can put any extra preperation here

# Your actual command line to test No need for redirecting to /dev/stdout as
# the test framework will do that automatically
myprogram $one $two -o $out

# Check that the results of the test match your reference resulst
check_results  # does start_check and diff_all

# OR do the following
# start_checks - begin checking
# has_stdout|has_stderr|has $file - checks that the file exists we don't care for content
# startswith $file|startswith_stderr|startswith_stdout - the output starts with some expression
# startswithi $file|startswithi_stderr|startswithi_stdout - case insensitive startswith
# end_checks





For simple tests, where we diff output and do the correct checking of output
files, simply use check_results.  More complex tests need to wrap tests in
start_checks and end_checks.

start_checks
has $out
containsi_stdout "Parsed:"
end_checks





You can make use of the following commands in the start_checks scenario:







	Command
	Description




	has $file
	$file was output and it not empty


	has_stdout
	stdout is not empty


	has_stderr
	stderr is not empty


	startswith $file “String”
	$file starts with “String”


	startswithi $file “String”
	$file starts with “String” ignoring case


	startswith_stdout “String”
	stdout starts with “String”


	startswithi_stdout “String”
	stdout starts with “String” ignoring case


	startswith_stderr “String”
	stderr starts with “String”


	startswithi_stderr “String”
	stderr starts with “String” ignoring case


	contains $file “String”
	$file contains “String”


	containsi $file “String”
	$file contains “String” ignoring case


	contains_stdout “String”
	stdout contains “String”


	containsi_stdout “String”
	stdout contains “String” ignoring case


	contains_stderr “String”
	stderr contains “String”


	containsi_stderr “String”
	stderr contains “String” ignoring case


	endswith $file “String”
	$file ends with “String”


	endswithi $file “String”
	$file ends with “String” ignoring case


	endswith_stdout “String”
	stdout ends with “String”


	endswithi_stdout “String”
	stdout ends with “String” ignoring case


	endswith_stderr “String”
	stderr ends with “String”


	endswithi_stderr “String”
	stderr ends with “String” ignoring case






–prep

If you use the –prep options on any test then the test will change behavior.
It won’t validate the results against your reference data but will instead
create your reference data.  This makes it easy to generate your expected
result files when you are setting up your test.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Contributing

We could use your help.  If you are interesting in contributing then please
join us on IRC on #pootle-dev and on
the translate-devel mailing
list.

Here are some idea of how you can contribute


	Test – help us test new candidate releases
before they are released

	Debug – check bug reports, create tests to
highlight problems

	Develop – add your Python developer skills
to the mix

	Document – help make our docs readable,
useful and complete



Below we give you more detail on these:


Testing

Before we release new versions of the Toolkit we need people to check that they
still work correctly.  If you are a frequent user you might want to start using
the release candidate on your current work and report any errors before we
release them.

Compile and install the software to see if we have any platform issues:

./setup.py install





Check for any files that are missing, tools that were not installed, etc.

Run unit tests [http://translate.sourceforge.net/wiki/developers/testing_guidelines#running_tests] to see if
there are any issues.  Please report any failures.

Finally, simply work with the software.  Checking all your current usage
patterns and report problems.




Debugging


	Make sure your familiar with the bug reporting guidelines [http://translate.sourceforge.net/wiki/developers/reporting_bugs].

	Create a login for yourself at https://github.com

	Then choose an issue [https://github.com/translate/translate/issues]



Now you need to try and validate the bug.  Your aim is to confirm that the bug
is either fixed, is invalid or still exists.

If its fixed please close the bug and give details of how when it was fixed or
what version you used to validate it as corrected.

If you find that the bug reporter has made the incorrect assumptions or their
suggestion cannot work.  Then mark the bug as invalid and give reasons why.

The last case, an existing bug is the most interesting.  Check through the bug
and do the following:


	Fix up the summary to make it clear what the bug is

	Create new bugs for separate issues

	Set severity level and classifications correctly

	Add examples to reproduce the bug, or make the supplied files simpler

	If you can identify the bug but not fix it then explain what needs fixing

	Move on to the next bug






Developing

Don’t ignore this area if you feel like you are not a hotshot coder!

You will need some Python skills, this is a great way to learn.

Here are some ideas to get you going:


	Write a test to expose some bug

	Try to fix the actual code to fix your bug

	Add a small piece of functionality that helps you

	Document the methods in especially the base class and derived classes

	Add a format type and converters

	Add more features to help our formats conform to the standards



You will definitely need to be on the Development [https://lists.sourceforge.net/lists/listinfo/translate-devel] and probably
on the Subversion checkin [https://lists.sourceforge.net/lists/listinfo/translate-cvs] lists.

Now is the time to familiarise yourself with the developers guide.




Documenting

This is the easy one.  Login to the wiki and start!

The key areas that need to be looked at are:


	Do the guides to each tool cover all command line options

	Are the examples clear for the general cases

	Is the tools use clear

	In the Use cases, can we add more, do they need updating. Has upstream
changed its approach



After that and always:


	Grammar

	Spelling

	Layout









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Translate Toolkit Developers Guide

The goal of the translate toolkit is to simplify and unify the process of
translation.


History

The initial toolkit was designed to convert Mozilla .dtd and .properties files
into Gettext PO format.  The logic was not that PO was in any way superior but
that by simplifying the translations process i.e. allowing a translator to use
one format and one tool that we could get more people involved and more
translators.

The tools have now evolved to include other formats such as OpenOffice.org and
the goal is still to migrate various formats to a common format, PO and in the
future XLIFF as more tools become available for that format.

These tools we group as converters.  Along the way we developed other tools
that allowed us to manipulate PO files and check them for consistency.  As we
evolved the converter tools we have also improved and abstracted the classes
that read the various file types.  In the future we hope to define these better
so that we have a more or less stable API for converters.




Resources


Git access

Translate Toolkit uses Git as a Version Control System. You can directly clone
the translate repository or fork it at GitHub.

git clone https://github.com/translate/translate.git








Issues


	https://github.com/translate/translate/issues






Communication


	IRC channels:
	Development - no support related questions.

	Help





	Developers mailing list [https://lists.sourceforge.net/lists/listinfo/translate-devel]

	Commits to version control [https://lists.sourceforge.net/lists/listinfo/translate-cvs]








Working with Bugzilla

When you close bugs ensure that you give a description and git hash for the
fix.  This ensures that the reporter or code reviewer can see your work and has
an easy method of finding your fix.  This is made easier by GitHub’s Bugzilla
integration.


Automated Bugzilla update from commits

Github will post comments on Bugzilla bugs when the commit messages make
references to the bug by its bug number.


	Bugs are recognised by the following format (which are case-insensitive):

Bug 123







	Multiple bugs can be specified by separating them with a comma, ampersand,
plus or “and”:

Bug 123, 124 and 125







	Commits to all branches will be processed.



	If there is a “fix”, “close”, or “address” before the bug then that bug is
closed.

Fix bug 123














Source code map

The source code for the tools is hosted on GitHub [https://github.com/translate/translate].  This rough map will allow you to
navigate the source code tree:


	convert – convert between different formats and PO format

	filters – pofilter and its helper functions (badly named,
it is really a checking tool)

	storage – all base file formats: XLIFF, .properties, OpenOffice.org, TMX,
etc.

	misc – various helper functions

	tools – all PO manipulation programs: pocount,
pogrep, etc

	lang – modules with data / tweaks for various languages

	search – translation memory, terminology matching, and indexing / searching

	share – data files






Setup

The toolkit is installed by running:

./setup.py install





As root

The various setup options are yours to explore




General overview of the programs

Each tool in the toolkit has both a core program and a command line wrapper.
For example the oo2po converter:


	oo2po – the command line tool

	oo2po.py – the core program



This is done so that the tools can be used from within the Pootle server thus
reusing the toolkit easily.


Command line options

Getting lost with the command line options?  Well you might want to volunteer
to move some of them into configuration files.  But in terms of programming you
might be confused as to where they are located.  Many of the command line
options are implemented in each tool.  Things such as --progress and
--errorlevel are used in each program.  Thus these are abstracted in
misc/optrecurse.py.  While each tools unique command line options are
implemented in xxx.py.






Converters

The converters each have a class that handles the conversion from one format to
another.  This class has one important method convertfile which handles the
actual conversion.

A function convertXXX manages the conversion for the command line
equivalent and essentially has at least 3 parameters: inputfile, outputfile and
templatefile.  It itself will call the conversion class to handle conversion of
individual files.  Recursing through multiple files is handled by the
optrecurse.py logic.

The converters main function handles any unique command line options.

Where we are headed is to get to a level where the storage formats themselves
are more aware of themselves and their abilities.  Thus the converter could end
up as one program that accepts storage format plugins to convert from anything
to almost anything else.  Although our target localisation formats are PO and
XLIFF only.

If you want to create a new converter it is best to look at a simple instance
such as csv2tbx or txt2po and their
associated storage classes.  The storage base class documentation will give you the information you need for the storage class
implementation.




Tools

The tools in some way copy the logic of the converters.  We have a class so
that we can reuse a lot of the functionality in Pootle.  We have a core
function that take: input, output and templates.  And we have a main
function to handle the command line version.

pocount should be converted to this but does not follow this
conventions.  In fact pocount should move the counting to the storage formats
to allow any format to return its own word count.




Checks

There’s really only one, pofilter.  But there are lots of
helper functions for pofilter.  pofilters main task is to check for errors in
PO or XLIFF files.  Here are the helper file and their descriptions.


	autocorrect.py – when using --autocorrect it will attempt some basic
corrections found in this file

	checks.py – the heart. This contains: the actual checks and their error
reports, and defined variables and accelerators for e.g, --mozilla

	decorations.py – various helper functions to identify accelerators,
variables and markers

	helpers.py – functions used by the tests

	prefilters.py – functions to e.g. remove variables and accelerators before
applying tests to the PO message



pofilter is now relatively mature.  The best areas for contributions are:


	more tests

	language specific configuration files

	tests for the tests – so we don’t break our good tests

	defining a config files scheme to do cool stuff off of the command line.
Globally enable or disable tests based on language, etc

	some approach to retesting that would remove ‘# (pofilter)’ failure markings
if the test now passes.

	ability to mark false positives



The API documentation is a good start if you want to add
a new tests.  To add a new language have a look at a language you understand
amongst those already implemented.




Storage

These are the heart of the converters.  Each destination storage format is
implemented in its own file.  Up until toolkit version 0.8, there was no
formally defined API (the tools have been evolving and only recently
stabilised), but they generally followed this structure.  These classes are
defined:


	XXelement – handles the low level individual elements of the file format.
e.g. PO message, CSV records, DTD elements

	XXfile – handles the document or file level of the format.  Eg a PO file, a
CSV file a DTD file
	fromlines – read in a file and initialise the various elements

	tolines – convert the elements stored in XXelements and portions in XXfile
to a raw file in that format







In the XML based formats e.g.  TMX, XLIFF and HTML there is usually just an
extended parser to manage the file creation.

Within each storage format there are many helper functions for escaping and
managing the unique features of the actual format.

You can help by:


	abstracting more of the functions and documenting that so that we can get a
better API

	adding other formats and converters e.g. .DOC, .ODF and others

	helping us move to a position where any format should convert to the base
format: PO and in the future XLIFF without having to create a specific
converter wrapper.

	Ensuring that our formats conform to the standards




Base Classes

From toolkit 0.9 onwards, we are moving towards basing all storage formats on a
set of base classes, in the move to a universal
API.  We’re also fixing things so that escaping is much more sane and handled
within the class itself not by the converters.

In base classes we have different terminology


	XXXunit = XXXelement

	XXXstore = XXXfile



We have also tried to unify terminology but this has been filtered into the old
classes as far as possible.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Making a Translate Toolkit Release


Summary


	Git clone git@github.com:translate/translate.git translate-release

	Create release notes

	Up version number

	make build

	Test install and other tests

	Tag the release

	Publish on PyPI

	Upload to Github

	Upload to Sourceforge

	Release documentation

	Update translate website

	Unstage sourceforge

	Announce to the world

	Cleanup

	Other possible steps






Detailed instructions


Get a clean checkout

We work from a clean checkout to ensure that everything you are adding to the
build is what is in VC and doesn’t contain any of your uncommitted changes.  It
also ensure that someone else could replicate your process.

$ git clone git@github.com:translate/translate.git translate-release
$ cd translate-release
$ git submodule update --init








Create release notes

The release notes will be used in these places:


	Toolkit website - download page [http://toolkit.translatehouse.org/download.html] (used in gh-pages)

	Sourceforge download - README.rst (used to give user info)

	Email announcements - text version



We create our release notes in reStructured Text, since we use that elsewhere
and since it can be rendered well in some of our key sites.

First we need to create a log of changes in the Translate Toolkit, which is
done generically like this:

$ git log $previous_version..HEAD > docs/release/$version.rst





Or a more specific example:

$ git log 1.10.0..HEAD > docs/releases/1.11.0-rc1.rst





Edit this file.  You can use the commits as a guide to build up the release
notes.  You should remove all log messages before the release.


Note

Since the release notes will be used in places that allow linking we
use links within the notes.  These should link back to products websites
(Virtaal [http://virtaal.org], Pootle [http://pootle.translatehouse.org], etc), references to Translate [http://translatehouse.org] and possibly bug numbers, etc.



Read for grammar and spelling errors.


Note

When writing the notes please remember:


	The voice is active. ‘Translate has released a new version of the
toolkit’, not ‘A new version of the toolkit was release by Translate’.

	The connection to the users is human not distant.

	We speak in familiar terms e.g. “I know you’ve been waiting for this
release” instead of formal.





We create a list of contributors using this command:

$ git log 1.10.0..HEAD --format='%aN, ' | awk '{arr[$0]++} END{for (i in arr){print arr[i], i;}}' | sort -rn | cut -d\  -f2-








Add release notes for dev

After updating the release notes for the about to be released version, it is
necessary to add new release notes for the next release, tagged as dev.




Up version numbers

Update the version number in:


	translate/__version__.py

	docs/conf.py



In __version__.py, bump the build number if anybody used the toolkit with
the previous number, and there have been any changes to code touching stats or
quality checks.  An increased build number will force a toolkit user, like
Pootle, to regenerate the stats and checks.

For conf.py change version and release


Todo

FIXME - We might want to consolidate the version and release info so
that we can update it in one place.



The version string should follow the pattern:

$MAJOR-$MINOR-$MICRO[-$EXTRA]





E.g.

1.10.0
0.9.1-rc1





$EXTRA is optional but all the three others are required.  The first
release of a $MINOR version will always have a $MICRO of .0. So
1.10.0 and never just 1.10.




Build the package

Building is the first step to testing that things work.  From your clean
checkout run:

$ mkvirtualenv build-ttk-release
(build-ttk-release)$ pip install -r requirements/dev.txt
(build-ttk-release)$ make build
(build-ttk-release)$ deactivate
$ rmvirtualenv build-ttk-release





This will create a tarball in dist/ which you can use for further testing.


Note

We use a clean checkout just to make sure that no inadvertant changes
make it into the release.






Test install and other tests

The easiest way to test is in a virtualenv. You can test the installation of
the new toolkit using:

$ mkvirtualenv test-ttk-release
(releasing)$ pip install path/to/dist/translate-toolkit-$version.tar.bz2





You can then proceed with other tests such as checking:


	Documentation is available in the package



	Converters and scripts are installed and run correctly:

(test-ttk-release)$ moz2po --help
(test-ttk-release)$ php2po --version
(test-ttk-release)$ deactivate
$ rmvirtualenv test-ttk-release







	Meta information about the package is correct. This is stored in
setup.py, to see some options to display meta-data use:

$ ./setup.py --help





Now you can try some options like:

$ ./setup.py --name
$ ./setup.py --version
$ ./setup.py --author
$ ./setup.py --author-email
$ ./setup.py --url
$ ./setup.py --license
$ ./setup.py --description
$ ./setup.py --long-description
$ ./setup.py --classifiers





The actual descriptions are taken from translate/__init__.py.








Tag and branch the release

You should only tag once you are happy with your release as there are some
things that we can’t undo. You can safely branch for a stable/ branch
before you tag.

$ git checkout -b stable/1.10.0
$ git push origin stable/1.10.0
$ git tag -a 1.10.0 -m "Tag version 1.10.0"
$ git push --tags








Publish on PyPI


Note

You need a username and password on Python Package Index (PyPI) [https://pypi.python.org] and have rights to the project before you can
proceed with this step.

These can be stored in $HOME/.pypirc and will contain your username
and password. A first run of:

$ ./setup.py register





will create such file. It will also actually publish the meta-data so only
do it when you are actually ready.



To test before publishing run:

$ make test-publish-pypi





Then to actually publish:

$ make publish-pypi








Create a release on Github


	https://github.com/translate/translate/releases/new



You will need:


	Tarball of the release

	Release notes in Markdown




	Draft a new release with the corresponding tag version

	Convert the release notes to Markdown with Pandoc [http://johnmacfarlane.net/pandoc/] and add those to the release

	Attach the tarball to the release

	Mark it as pre-release if it’s a release candidate.






Copy files to sourceforge


Note

You need to have release permissions on sourceforge to perform this
step.




	http://sourceforge.net/projects/translate/files/Translate%20Toolkit/



You will need:


	Tarball of the release

	Release notes in reStructured Text



These are the steps to perform:


	Create a new folder in the Translate Toolkit [https://sourceforge.net/projects/translate/files/Translate%20Toolkit/]
release folder using the ‘Add Folder’ button.  The folder must have the same
name as the release version e.g.  1.10.0-rc1.  Mark this as being for
staging for the moment.

	make publish-sourceforge will give you the command to upload your
tarball and README.rst.
	Upload tarball for release.

	Upload release notes as README.rst.

	Click on the info icon for README.rst and tick “Exclude Stats” to
exclude the README from stats counting.





	Check that the README.rst for the parent Translate Toolkit folder is
still appropriate, this is the text from translate/__info__.py.

	Check all links for README.rst files, new release and parent.






Release documentation

We need a tagged release before we can do this.  The docs are published on Read
The Docs.


	https://readthedocs.org/dashboard/translate-toolkit/versions/



Use the admin pages to flag a version that should be published


Todo

FIXME we might need to do this before publishing so that we can
update doc references to point to the tagged version as apposed to the
latest version.






Update translate website

We use github pages for the website. First we need to checkout the pages:

$ git checkout gh-pages






	In _posts/ add a new release posting.  This is in Markdown format (for
now), so we need to change the release notes .rst to .md, which mostly means
changing URL links from `xxx <link>`_ to [xxx](link).

	Change $version as needed. See download.html, _config.yml and
egrep -r $old_release *

	git commit and git push – changes are quite quick, so
easy to review.






Unstage on sourceforge

If you have created a staged release folder, then unstage it now.




Announce to the world

Let people know that there is a new version:


	Announce on mailing lists:
Send the announcement to the translate-announce mailing lists on
translate-announce@lists.sourceforge.net

	Adjust the #pootle channel notice. Use /topic to change the topic.

	Email important users

	Tweet about it

	Update Toolkit’s Wikipedia page [http://en.wikipedia.org/wiki/Translate_Toolkit]








Cleanup

These are tasks not directly related to the releasing, but that are
nevertheless completely necessary.


Bump version to N+1-alpha1

Now that we’ve release lets make sure that master reflect the current state
which would be {N+1}-alpha1. This prevents anyone using master being
confused with a stable release and we can easily check if they are using master
or stable.






Other possible steps

Some possible cleanup tasks:


	Remove any RC builds from the sourceforge download pages (maybe?).

	Commit any release notes and such (or maybe do that before tagging).

	Remove your translate-release checkout.

	Update and fix these release notes.



We also need to check and document these if needed:


	Change URLs to point to the correct docs: do we want to change URLs to point
to the $version docs rather then ‘latest’

	Building on Windows, building for other Linux distros. We have produced
Windows builds in the past.

	Communicating to upstream packagers









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Deprecation of Features

From time to time we need to deprecate functionality, this is a guide as to how
we implement deprecation.


Types of deprecation


	Misspelled function

	Renamed function

	Deprecated feature






Period of maintenance

Toolkit retains deprecated features for a period of two releases.  Thus
features deprecated in 1.7.0 are removed in 1.9.0.




Documentation

Use the @deprecated decorator with a comment and change the docstring to
use the Sphinx deprecation syntax [http://sphinx-doc.org/markup/para.html#directive-deprecated].

@deprecated("Use util.run_fast() instead.")
def run_slow():
    """Run slowly

    .. deprecated:: 1.9.0
       Use :func:`run_fast` instead.
    """
    run_fast()  # Call new function if possible








Implementation

Deprecated features should call the new functionality if possible.  This may
not always be possible, such as the cases of drastic changes.  But it is the
preferred approach to reduce maintenance of the old code.




Announcements


Note

This applies only to feature deprecation and renamed functions.
Announcements for corrections are at the coders discretion.




	On first release with deprecation highlight that the feature is
deprecated in this release and explain reasons and alternate approaches.

	On second relase warn that the feature will be removed in the next
release.

	On third release remove the feature and announce removal in the release
announcements.



Thus by examples:


	Translate Toolkit 1.9.0:

	The run_slow function has been deprecated and replaced by the faster and
more correct run_fast.  Users of run_slow are advised to migrate
their code.

	Translate Toolkit 1.10.0:

	The run_slow function has been deprecated and replaced by run_fast
and will be removed in the next version.  Users of run_slow are advised
to migrate their code.

	Translate Toolkit 1.11.0:

	The run_slow function has been removed, use run_fast instead.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Changelog

The Translate Toolkit might have changed how it functions in certain cases.
This page lists what has changed, how it might affect you and how to work
around the change either to bring your files in line or to use the old
behaviour if required.


Note

For newer Translate Toolkit versions changes please check the
Release notes.




1.6.0


PO files now always have headers

Generated PO files now always contain headers. This will mainly affect the
output of pofilter and pogrep. This should allow better interoperability with
gettext tools, and allowed for some improvement in the code.  You should still
be able to use headerless files in msgmerge, although it is recommended that PO
files are consistently handled with headers wherever possible.






1.4.1


CSV column header names

The names given to CSV column headers have been changed. Early releases of
csv2po would name the columns “comment,original,translation”.
This was done mostly to make it easy for non-technical translators.  However,
comments in the command line help used terms like source and target.  This
release changes the column header names to “location,source,target”, this
aligns with terms used throughout the toolkit.

If you have CSV file generated by older versions of the toolkit then a header
entry of “comment,original,translation” will be turned into a unit instead of
being ignored.  You can either change your CSV file to use the headers
“location,source,target” or delete the header row completely.  Once this is
done the files will work as expected.






1.4.0


Java and Mozilla .properties

Unusual keys, separators and spacing should all be handled correctly now. Some
Mozilla .properties files might now have changed. Regenerate your Mozilla l10n
files from fresh POT files without any changes to your PO files to ensure that
you can see and review these changes.




Hashing in podebug

The --hash option in podebug has been replaced by a
format specifier %h to be able to better control the positioning of the hash
value.






1.3.0

Several duplicate styles were removed as has been warned about long before.
Please check the recommendations posted at the time that msgctxt was added on
how to migrate.




1.2


New formats

The toolkit now supports:


	Qt Phrase Book (.qph)

	Qt .ts v1.1



This allows reading, counting and working on these formats.  The
ts2po converter has not been changed so you will not be able
to benefit from the new .ts support. However, you can use the format for
translation memory, etc as its is now fully base class compliant.




Stats database change

There were some changes in the database used by pocount for storing statistics.
The location of the database might also have changed, depending on what the
last version is that you used. Remove the file stats.db from any of
~/.translate_toolkit, ~/.wordforge (or the corresponding directories on your
Windows installation.




Valid accelerators

The pofilter accelerator test is now able to make use of a
list of valid accelerators.  This allows translators to control the behaviour
of the test for their language and add or remove characters that can be used as
accelerators.  Please define the valid accelerators [http://docs.translatehouse.org/projects/localization-guide/en/latest/l10n/valid_accelerators.html#valid-accelerators] for your language and these will then be included
in future releases of the toolkit.  By default the old process is followed so
that if you take no action then this check will continue to work as expected.






branches

These are branches that contain quite invasive changes that will most likely be
merged into the main development and be released sometime in the future.


toolkit-C-po

Converting the current Python based PO parser to the Gettext C based parser for
PO.  This offers quite a dramatic speed improvement and conformance to the
output found in Gettext itself.  For most users there will be a number of
changes in layout of the files as they will now conform fully to Gettext
layout.  The ‘keep’ option in --duplicatestyle will no longer be
supported as this is not valid Gettext output.






1.1.1


Premature termination of DTD entities

Although this does not occur frequently a case emerged where some DTD entities
where not fully extracted from the DTD source.  This was fixed in issue 331 [https://github.com/translate/translate/issues/331].

We expect this change to create a few new fuzzy entries.  There is no action
required from the user as the next update of your PO files will bring the
correct text into your translations, if you are using a translation memory your
translation might be recovered from obsolete translations.






1.1


oo2po Help (helpcontent2) escaping fixed

OpenOffice.org Help (helpcontent2) has notoriously contained some unreadable
esacping, e.g. \\\\<tag attr=\\"value\\"\\\\>.  The escaping has been fixed
and oo2po now understands helpcontent2 escaping while leaving the current GUI
escape handling unaltered.

If you have not translated helpcontent2 then you are unaffected by this change.
If you have translated this content then you will need to follow these
instructions when upgrading.

If you follow normal procedures of creating POT files and upgrading your PO
files using pot2po then your strings will not match and you will obtain files
with many fuzzies.  To avoid this do the following:


	Make sure your PO files contain no fuzzy entries

	Use po2oo from the previous release to create and SDF file

	Upgrade to the latest Translate Toolkit with new po2oo

	Use po2oo -l xx-YY your.sdf po to create a new set of PO files with
correct escaping



You can choose to do this with only your helpcontent2 PO files if needed, this
will allow you to leave your GUI work in its current state.  Simply do the
above procedure and discard all PO files except helpcontent2, then move these
new helpcontent2 files into your current work.




prop2po uses developer comments

prop2po used to place comments found in the source .properties file in
traditional translator comments, they should of course go into developer
comments.    The reason for this change is twofold, it allows these comments to
be correctly managed and it is part of the process of cleaning up these formats
so that they are closer to the base class and can thus work with XLIFF.

For the user there will be fairly large changes as one comment format moves to
the next.  It is best to cleanup translator comments and get your translations into a fit
state, i.e. no fuzzies, and then proceed with any migrations.




moz2po no longer uses KDE comments

moz2po has traditionally used KDE style comments for storing comments aimed at
translators.  Many translators confuse these and try to translate them.  Thus
these have been moved into automatic or developer comments.  The result for
many people migrating Mozilla PO files will be that many strings will become
fuzzy, you can avoid much of this by using pot2po which should intelligently be
able to match without considering the KDE comments.

The best strategy is to get your translations into a relatively good shape
before migration.  You can then migrate them first to a new set of POT files
generated from the same source files that the translation is based on.
Eliminate all fuzzies as these should only relate to the changes in layout.
Then proceed to migrate to a new set of POT files.  If you cannot work against
the original source files then the best would be to also first eliminate fuzzy
matches before proceeding to translation.  Your fuzzies will include changes in
layout and changes in content so proceed carefully.

At the end of this you should have PO files that conform to the Gettext
standard without KDE comments.




Read and Write MO files

You can read and write Gettext MO files (compiled PO files).  Thus pocount can
now count files on your filesystem and you can also compile MO files using
pocompile.  MO files can be compiled from either PO or XLIFF sources.

MO will now also produce correct output for msgctxt and plural forms found in
PO files.




Read Qt .qm files

We can now read Qt .qm files, thus pocount can count the contents of compiled
files.  We cannot however write .qm files at this time.






1.0.1


pot2po will create new empty PO files if needed

From version 1.0.1, pot2po will create empty PO files corresponding to new POT
files that might have been introduced. If some new POT files are present in the
input to pot2po, you will see a new PO file appear in your output directory
that was not in your old PO files.  You will not lose any data but in the worst
case you will see new files on projects that you thought were fully translated.






1.0


Improved XLIFF support

Many toolkit tools that only worked with PO files before, can now also work
with XLIFF files. pogrep, pocount, pomerge, and pofilter all work with XLIFF,
for example.




Pretty XML output

All XML formats should now be more human readable, and the converters to Qt .ts
files should work correctly again.




Fuzzy matching in pot2po is optional

Fuzzy matching can now be entirely disabled in pot2po with the
--nofuzzymatching parameter. This should make it much faster, although
pot2po is substantially faster than earlier versions, especially if
python-Levenshtein is installed.




Old match/Levenshtein.py* can cause name clash

The file previously called match/Levenshtein.py was renamed to lshtein.py in
order to use the python-Levenshtein package mentioned above. If you follow the
basic installation instructions, the old file will not be overwritten, and can
cause problems. Ensure that you remove all files starting with Levenshtein.py
in the installation path of the translate toolkit, usually something like
/usr/lib/python2.4/site-packages/translate/search/. It could be up to three
files.




PO file layout now follows Gettext more closely

The toolkits output PO format should now resemble Gettext PO files more
closely.  Long lines are wrapped correctly, messages with long initial lines
will start with a ‘msgid “”’ entry.  The reason for this change is to ensure
that differences in files relate to content change not format change, no matter
what tool you use.

To understand the problem more clearly.  If a user creates POT files with e.g.
oo2po.  She then edits them in a PO editor or manipulate them
with the Gettext tools.  The layout of the file after manipulation was often
different from the original produced by the Toolkit.  Thus making it hard to
tell what where content changes as opposed to layout changes.

The changes will affect you as follows:


	They will only impact you when using the Toolkit tools.

	You manipulate your files with a tool that follows Gettext PO layout
	your experience should now improve as the new PO files will align with
your existing files

	updates should now only include real content changes not layout changes





	You manipulate your files using Toolkit related tools or manual editing
	your files will go through a re-layout the first time you use any of the
tools

	subsequent usage should continue as normal

	any manipulation using Gettext tools will leave your files correctly layed
out.







Our suggestion is that if you are about to suffer a major reflow that your
initial merge contain only reflow and update changes.  Do content changes in
subsequent steps.  Once you have gone through the reflow you should see no
layout changes and only content changes.




Language awareness

The toolkit is gradually becoming more aware of the differences between
languages. Currently this mostly affects pofilter checks (and therefore also
Pootle) where tests involving punctuation and capitalisation will be more aware
of the differences between English and some other languages. Provisional
customisation for the following languages are in place and we will welcome more
work on the language module: Amharic, Arabic, Greek, Persian, French, Armenian,
Japanese,  Khmer, Vietnamese, all types of Chinese.




New pofilter tests: newlines and tabs

The escapes test has been refined with two new tests, newlines and
tabs.  This makes identifying the errors easier and makes it easier to
control the results of the tests.  You shouldn’t have to change your testing
behaviour in any way.




Merging can change fuzzy status

pomerge now handles fuzzy states:

pomerge -t old -i merge -o new





Messages that are fuzzy in merge will now also be fuzzy in new.  Similarly
if a fuzzy state is present in old but removed in merge then the message in
new will not be fuzzy.

Previously no fuzzy states were changed during a merge.




pofilter will make Mozilla accelerators a serious failure

If you use pofilter with the --mozilla option then
accelerator failures will produce a serious filter error, i.e. the message will
be marked as fuzzy.  This has been done because accelerator problems in
your translations have the potential to break Mozilla applications.




po2prop can output Mozilla or Java style properties

We have added the --personality option to allow a user to select output
in either java, or mozilla style (Java property files use escaped
Unicode, while Mozilla uses actual Unicode characters).  This functionality was
always available but was not exposed to the user and we always defaulted to the
Mozilla style.

When using po2moz the behaviour is not changed for
the user as the programs will ensure that the properties convertor uses Mozilla
style.

However, when using po2prop the default style is now
java, thus if you are converting a single .properties file as part of a
Mozilla conversion you will need to add --personality=mozilla to your
conversion.  Thus:

po2prop -t moz.properties moz.properties.po my-moz.properties





Would become:

po2prop --personality=mozilla -t moz.properties moz.properties.po my-moz.properties






Note

Output in java style escaped Unicode will still be usable by Mozilla
but will be harder to read.






Support for compressed files

There is some initial support for reading from and writing to compressed files.
Single files compressed with gzip or bzip2 compression is supported, but not
tarballs.  Most tools don’t support it, but pocount and the --tm
parameter to pot2po will work with it, for example. Naturally it is slower than
working with uncompressed files. Hopefully more tools can support it in future.






0.11


po2oo defaults to not check for errors

In po2oo we made the default --filteraction=none i.e. do nothing and
don’t warn.  Until we have a way of clearly marking false positives we’ll have
to disable this functionality as there is no way to quiet the output or mark
non errors.  Also renamed exclude to exclude-all so that it is clearer what it
does i.e. it excludes ‘all’ vs excludes ‘serious’.




pofilter xmltags produces less false positives

In the xmltags check we handle the case where we had some false positives. E.g.
“<Error>” which looks like XML/HTML but should actually be translated. These
are handled by


	identifying them as being the same length as the source text,

	not containing any ‘=’ sign.  Thus the following would not be detected by
this hack. “An <Error> occurred” -> “<Error name=”bob”>”, but these ones need
human eyes anyway.








0.10


PO to XLIFF conversion

Conversion from PO to XLIFF is greatly improved in 0.10 and this was done
according to the specification at
http://xliff-tools.freedesktop.org/wiki/Projects/XliffPoGuide – please let us
know if there are features lacking.




pot2po can replace msgmerge

pot2po has undergone major changes which means that it now
respects your header entries, can resurrect obsolete messages, does fuzzy
matching using Levenshtein distance
algorithm, will correctly match messages with KDE style comments and can use an
external Translation Memory.  You can now use pot2po instead of Gettext’s
msgmerge and it can also replace pomigrate2.  You may still
want to use pomigrate2 if there where file movements between versions as pot2po
can still not do intelligent matching of PO and POT files, pomigrate2 has also
been adapted so that it can use pot2po as it background merging tool.

pomigrate2 --use-compendium --pot2po <old> <pot> <new>





This will migrate file with a compendium built from PO files in <old> and
will use pot2po as its conversion engine.




.properties pretty formatting

When using templates for generating translated .properties files we will now
preserve the formatting around the equal sign.

# Previously if the template had
property     =      value





# We output
property=translation





# We will now output
property     =      translation





This change ensures that there is less noise when checking differences against
the template file.  However, there will be quite a bit of noise when you make
your first .properties commits with the new pretty layout.  Our suggestion is
that you make a single commit of .properties files without changes of
translations to gt the formatting correct.






0.9


Escaping – DTD files are no longer escaped

Previously each converter handled escaping, which made it a nightmare every
time we identified an escaping related error or added a new format.  Escaping
has now been moved into the format classes as much as possible, the result
being that formats exchange Python strings and manage their own escaping.

I doing this migration we revisited some of the format migration.  We found
that we were escaping elements in our output DTD files.  DTD’s should have no
escaping i.e. \n is a literal \ followed by an n not a newline.

A result of this change is that older PO files will have different escaping to
what po2moz will now expect. Probably resulting in bad output .dtd files.

We did not make this backward compatible as the fix is relatively simple and is
one you would have done for any migration of your PO files.


	Create a new set of POT files

moz2po -P mozilla pot







	Migrate your old PO files

pomigrate2 old new pot







	Fix all the fuzzy translations by editing your PO files



	Use pofilter to check for escaping problems and fix them

pofilter -t escapes new new-check







	Edit file in new-check in your PO editor

pomerge -t new -i new-check -o new-check












Migration to base class

All filters are/have been migrate to a base class.  This move is so that it is
easier to add new format, interchange formats and to create converters.  Thus
xx2po and xx2xlf become easier to create.  Also adding a new format should be
as simple as working towards the API exposed in the base class. An unexpected
side effect will be the Pootle should be able to work directly with any base
class file (although that will not be the normal Pootle operation)

We have checks in place to ensure the the current operation remains correct.
However, nothing is perfect and unfortunately the only way to really expose all
bugs is to release this software.

If you discover a bug please report it on Bugzilla or on the Pootle mailing
list.  If you have the skills please check on HEAD to see if it is not already
fixed and if you regard it as critical discuss on the mailing list backporting
the fix (note some fixes will not be backported because they may be too
invasive for the stable branch).  If you are a developer please write a test to
expose the bug and a fix if possible.




Duplicate Merging in PO files – merge now the default

We added the --duplicatestyle option to allow duplicate messages to be
merged, commented or simply appear in the PO unmerged.  Initially we used the
msgid_comments options as the default.  This adds a KDE style comment to all
affected messages which created a good balance allowing users to see duplicates
in the PO file but still create a valid PO file.

‘msgid_comments’ was the default for 0.8 (FIXME check), however it seemed to
create more confusion then it solved.  Thus we have reverted to using ‘merge’
as the default (this then completely mimics Gettext behaviour).

As Gettext will soon introduce the msgctxt attribute we may revert to using
that to manage disambiguation messages instead of KDE comments.  This we feel
will put us back at a good balance of usefulness and usability.  We will only
release this when msgctxt version of the Gettext tools are released.




.properties files no longer use escaped Unicode

The main use of the .properties converter class is to translate Mozilla files,
although .properties files are actually a Java standard.  The old Mozilla way,
and still the Java way, of working with .properties files is to escape any
Unicode characters using the \uNNNN convention.  Mozilla now allows you to
use Unicode in UTF-8 encoding for these files.  Thus in 0.9 of the Toolkit we
now output UTF-8 encoded properties files. Issue 193 [https://github.com/translate/translate/issues/193] tracks the
status of this and we hope to add a feature to prop2po to restore the correct
Java convention as an option.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
Release Notes

The following are release notes used on PyPI [https://pypi.python.org/pypi/translate-toolkit], Sourceforge [http://sourceforge.net/projects/translate/files/Translate%20Toolkit/] and
mailing lists for Translate Toolkit releases.



	dev

	1.12.0

	1.12.0-rc1

	1.11.0

	1.11.0-rc1

	1.10.0

	1.9.0

	1.8.1









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.12.0-rc1

Not yet released

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes and
optimizations for the upcoming Pootle [http://pootle.translatehouse.org/]
2.6.0 and Virtaal [http://virtaal.translatehouse.org] releases.

It is just over X months since the last release and there are many improvements
across the board.  A number of people contributed to this release and we’ve
tried to credit them wherever possible (sorry if somehow we missed you).


Highlighted improvements


Major changes


	Properties and DTD formats fix a number of issues

	Massive code cleanup looking forward Python 3 compatibility

	Important changes in development process to ease testing






Formats and Converters


	Mozilla properties
	The \uNN characters are now properly handled

	Fixed conversion of successive Gaia plural units in prop2po





	DTD
	Underscore character is now a valid character in entity names










General


	Misc docs cleanups



...and loads of general code cleanups and of course many many bugfixes.




Contributors

This release was made possible by the following people:

%CONTRIBUTORS%

And to all our bug finders and testers, a Very BIG Thank You.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.12.0

Released on 12 August 2014

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes and
optimizations for the upcoming Pootle [http://pootle.translatehouse.org/]
2.6.0 and Virtaal [http://virtaal.translatehouse.org] releases.

It is just over 6 months since the last release and there are many improvements
across the board.  A number of people contributed to this release and we’ve
tried to credit them wherever possible (sorry if somehow we missed you).


Highlighted improvements


1.12.0 vs 1.12.0-rc1

Changes since 1.12.0 RC1:


	Added support for UTF-8 encoded OS X strings

	RC format received some bugfixes and now ignores TEXTINCLUDE sections and
one line comments (//)

	Qt Linguist files now output the XML declaration (issue 3198 [https://github.com/translate/translate/issues/3198])

	xliff2po now supports files with .xliff extension

	Minor change in placeables to correctly insert at an existing parent if
appropriate

	Recovered diff-match-patch to provide support for old third party consumers

	Added new tests for the UTF-8 encoded OS X strings, Qt linguist and RC
formats and the rc2po converter






Major changes


	Properties and DTD formats fix a number of issues

	Massive code cleanup looking forward Python 3 compatibility

	Important changes in development process to ease testing






Formats and Converters


	Mozilla properties
	If a unit has an associated access key entry then these are combined into a
single unit

	Encoding errors are now reported early to prevent them being masked by
subsequent errors

	Leading and trailing spaces are escaped in order to avoid losing them when
using the converters

	The \uNN characters are now properly handled

	po2prop Now uses the source language accesskey if translation is missing

	Fixed conversion of successive Gaia plural units in prop2po





	DTD
	The &amp; entity is automatically expanded when reading DTD files, and
escaped back when writing them

	Underscore character is now a valid character in entity names

	Nonentities at end of string are now correctly handled

	po2dtd:
	Now uses the source language accesskey if target accesskey is missing

	Doesn’t remove stray & as they probably &amp;









	HTML
	The HTML5 figcaption tag is now localizable

	The title attribute is now localizable

	po2html now retains the untranslated attributes





	Accesskeys
	Now accesskeys are combined using the correct case

	Added support for accesskey after ampersand and space





	PHP
	Fall back to default dialect after adding every new unit

	Added support for empty array declaration when it is filled later





	Android
	Added support for plurals

	Text is now properly escaped when using markup





	TS
	The message id attribute is added to contextname










Version Control improvements


	Added support for Subversion .svn directories






Checks


	Added specific checks for LibreOffice






Tools


	The pocount tool has now a better counting algorithm for things that look
like XML






Mozilla tooling fixes


	Added support to check for bad accesskeys in .properties files

	Now the Mozilla roundtrip script can be silently run

	Added a new Gaia roundtrip script

	The buildxpi --disable-compile-environment option has been restored,
resulting in huge speed improvements






General


	Extensive cleanup of setup script

	Some bugfixes for placeables

	Misc docs cleanups

	Code cleanups:
	Applied tons of PEP8 and style guide cleanups

	Python 2.6 is our new minimum:
	Removed lots of code used to support old Python versions

	Dropped custom code in favor of Python standard libraries

	Updated codebase to use newer libraries

	Changed code to use newer syntax seeking Python 3 compatibility





	Updated some third party bundled software: CherryPy, BeautifulSoup4

	Added document to track licenses used by third party bundled code

	Removed TODO items. Some of them were moved to the bug tracker





	Development process:
	Added a functional test framework

	Added dozens of new unit and functional tests

	Expanded the tasks performed in Travis: pep8, pytest-xdist, compile all
files, coveralls.io, ...







...and loads of general code cleanups and of course many many bugfixes.




Contributors

This release was made possible by the following people:

Dwayne Bailey, Jerome Leclanche, Leandro Regueiro, Khaled Hosny,
Javier Alfonso, Friedel Wolff, Michal Čihař, Heiki Ojasild, Julen Ruiz Aizpuru,
Florian Preinstorfer, damian.golda, Zolnai Tamás, Vladimir Rusinov,
Stuart Prescott, Luca De Petrillo, Kevin KIN-FOO, Henrik Saari, Dominic König.

And to all our bug finders and testers, a Very BIG Thank You.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.12.0-rc1

Released on 11 July 2014

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes and
optimizations for the upcoming Pootle [http://pootle.translatehouse.org/]
2.6.0 and Virtaal [http://virtaal.translatehouse.org] releases.

It is just over 6 months since the last release and there are many improvements
across the board.  A number of people contributed to this release and we’ve
tried to credit them wherever possible (sorry if somehow we missed you).


Highlighted improvements


Major changes


	Properties and DTD formats fix a number of issues

	Massive code cleanup looking forward Python 3 compatibility

	Important changes in development process to ease testing






Formats and Converters


	Mozilla properties
	If a unit has an associated access key entry then these are combined into a
single unit

	Encoding errors are now reported early to prevent them being masked by
subsequent errors

	Leading and trailing spaces are escaped in order to avoid losing them when
using the converters

	The \uNN characters are now properly handled

	po2prop Now uses the source language accesskey if translation is missing

	Fixed conversion of successive Gaia plural units in prop2po





	DTD
	The &amp; entity is automatically expanded when reading DTD files, and
escaped back when writing them

	Underscore character is now a valid character in entity names

	Nonentities at end of string are now correctly handled

	po2dtd:
	Now uses the source language accesskey if target accesskey is missing

	Doesn’t remove stray & as they probably &amp;









	HTML
	The HTML5 figcaption tag is now localizable

	The title attribute is now localizable

	po2html now retains the untranslated attributes





	Accesskeys
	Now accesskeys are combined using the correct case

	Added support for accesskey after ampersand and space





	PHP
	Fall back to default dialect after adding every new unit

	Added support for empty array declaration when it is filled later





	Android
	Added support for plurals

	Text is now properly escaped when using markup





	TS
	The message id attribute is added to contextname










Version Control improvements


	Added support for Subversion .svn directories






Checks


	Added specific checks for LibreOffice






Tools


	The pocount tool has now a better counting algorithm for things that look
like XML






Mozilla tooling fixes


	Added support to check for bad accesskeys in .properties files

	Now the Mozilla roundtrip script can be silently run

	Added a new Gaia roundtrip script

	The buildxpi --disable-compile-environment option has been restored,
resulting in huge speed improvements






General


	Extensive cleanup of setup script

	Some bugfixes for placeables

	Misc docs cleanups

	Code cleanups:
	Applied tons of PEP8 and style guide cleanups

	Python 2.6 is our new minimum:
	Removed lots of code used to support old Python versions

	Dropped custom code in favor of Python standard libraries

	Updated codebase to use newer libraries

	Changed code to use newer syntax seeking Python 3 compatibility





	Updated some third party bundled software: CherryPy, BeautifulSoup4

	Added document to track licenses used by third party bundled code

	Removed TODO items. Some of them were moved to the bug tracker





	Development process:
	Added a functional test framework

	Added dozens of new unit and functional tests

	Expanded the tasks performed in Travis: pep8, pytest-xdist, compile all
files, coveralls.io, ...







...and loads of general code cleanups and of course many many bugfixes.




Contributors

This release was made possible by the following people:

Dwayne Bailey, Jerome Leclanche, Leandro Regueiro, Khaled Hosny, Friedel Wolff,
Heiki Ojasild, Julen Ruiz Aizpuru, damian.golda, Zolnai Tamás,
Vladimir Rusinov, Stuart Prescott, Michal Čihař, Luca De Petrillo,
Kevin KIN-FOO, Henrik Saari, Dominic König.

And to all our bug finders and testers, a Very BIG Thank You.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.11.0

Released on 22 January 2014

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes and
optimizations for the upcoming Pootle [http://pootle.translatehouse.org/]
2.5.1 and Virtaal [http://virtaal.translatehouse.org] releases.

It is just over a ten months since the last release and there are many
improvements across the board.  A number of people contributed to this release
and we’ve tried to credit them wherever possible (sorry if somehow we missed
you).


Highlighted improvements


1.11.0 vs 1.11.0-rc1

Changes since 1.11.0 RC1:


	Improve handling of escapes in wrapping

	Handle a broken version of python-Levenshtein

	Output HTML source in po2html when a unit is fuzzy (issue 3145 [https://github.com/translate/translate/issues/3145])






Major changes


	The PO format now matches Gettext more closely

	PHP format adds a number of new features

	Support for Python 2.5 has been dropped






Formats and Converters


	Gettext PO:
	cPO now handles fuzzy obsolete messages correctly

	Line wrapping improvement allow PO files to more closely match Gettext

	Optimization to increase performance





	PHP:
	Warn about duplicate entries

	Allow blank spaces in array declaration (issue 2646 [https://github.com/translate/translate/issues/2646])

	Support nested arrays (issue 2240 [https://github.com/translate/translate/issues/2240])





	XLIFF:
	Correctly parse XLIFF 1.2





	Properties
	Blank source text is now always translated

	Fuzzy units are discarded with –remove-untranslated

	prop2po no longer drops entries that are translated the same as the source





	TMX:
	po2tmx support comments





	Android:
	Detect untranslatable resource strings

	Various format improvements





	New conversion options:
	--timestamp – skip conversion if the output file has a newer
timestamp (Makefile-alike)

	--threshold – in po2* converters this allows you to specify a
percentage complete threshold.  If the PO files passes this theshold then
the file is output (issue 2998 [https://github.com/translate/translate/issues/2998])

	--removeuntranslated – Extend this option to po2dtd and thus
po2moz – don’t output untranslated text (issue 1718 [https://github.com/translate/translate/issues/1718])










Language specific fixes


	The toolkit now supports: Sakha, N’ko, Turkish, improvements for Bengali &
Hindi

	Pootle special characters are now stored on Toolkit and available for other
tools to use

	Rules for language ab are now available for language ab_CD






Checks


	Spelling test improvements including speed and optimization

	Reduce false positive for the filepath test in cases of self closing tags
e.g. <br />

	Lowered the accelerator check severity to reduce false positive impact






Mozilla tooling fixes


	Better decoding of some characters in DTD e.g » and &x0022 (”)

	.lang – Improved support for untranslated entries

	buildxpi:
	Can now build multiple languages at once (issue 2999 [https://github.com/translate/translate/issues/2999])

	Set a max product version to allow the language pack to continue to work
once the browser version has moved out of Aurora channel





	Dropped native XPI building support (untested and no longer used)

	Add Mozilla plural formulas, in time we’ll handle Mozilla plurals correctly






General


	Dropped support for Python 2.5 since it is no longer supported by the Python
Foundation. Also sticking to it was preventing us from using features that
are not supported on Python 2.5 but they are on later versions.

	Dropped psyco support – it is no longer maintained

	Use logging throught instead of sys.stderr

	Lots of cleanups on docs: TBX, PHP, added Android and JSON docs

	Use requirements files for documenting all requirements and make it easy to
install Translate Toolkit using pip

	Added some functional tests

	Improve searching to find words with hyphens

	Choose the closest repo in nested VCS

	Test suite down to zero failing tests



...and loads of internal changes to improve maintainability, remove unused
imports, remove unused code and general code cleanups, some changes to ensure
future Python 3 portability and of course many many bugfixes.




Contributors

This release was made possible by the following people:

Dwayne Bailey, Leandro Regueiro, Alexander Dupuy, Friedel Wolff, Khaled Hosny,
Michal Čihař, Jordi Mas, Stuart Prescott, Trung Ngo, Ronald Sterckx, Rail
Aliev, Michael Schlenker, Martin-Zack Mekkaoui, Iskren Chernev, Luiz Fernando
Ranghetti & Christian Hitz

And to all our bug finders and testers, a Very BIG Thank You.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.11.0-rc1

Released on 28 November 2013

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes and
optimizations for the upcoming Pootle [http://pootle.translatehouse.org/]
2.5.1 and Virtaal [http://virtaal.translatehouse.org] releases.

It is just over a eight months since the last release and there are many
improvements across the board.  A number of people contributed to this release
and we’ve tried to credit them wherever possible (sorry if somehow we missed
you).


Highlighted improvements


Major changes


	The PO format now matches Gettext more closely

	PHP format adds a number of new features

	Support for Python 2.5 has been dropped






Formats and Converters


	Gettext PO:
	cPO now handles fuzzy obsolete messages correctly

	Line wrapping improvement allow PO files to more closely match Gettext

	Optimization to increase performance





	PHP:
	Warn about duplicate entries

	Allow blank spaces in array declaration (issue 2646 [https://github.com/translate/translate/issues/2646])

	Support nested arrays (issue 2240 [https://github.com/translate/translate/issues/2240])





	XLIFF:
	Correctly parse XLIFF 1.2





	Properties
	Blank source text is now always translated

	Fuzzy units are discarded with –remove-untranslated

	prop2po no longer drops entries that are translated the same as the source





	TMX:
	po2tmx support comments





	Android:
	Detect untranslatable resource strings

	Various format improvements





	New conversion options:
	--timestamp – skip conversion if the output file has a newer
timestamp (Makefile-alike)

	--threshold – in po2* converters this allows you to specify a
percentage complete threshold.  If the PO files passes this theshold then
the file is output (issue 2998 [https://github.com/translate/translate/issues/2998])

	--removeuntranslated – Extend this option to po2dtd and thus
po2moz – don’t output untranslated text (issue 1718 [https://github.com/translate/translate/issues/1718])










Language specific fixes


	The toolkit now supports: Sakha, N’ko, Turkish, improvements for Bengali &
Hindi

	Pootle special characters are now stored on Toolkit and available for other
tools to use

	Rules for language ab are now available for language ab_CD






Checks


	Spelling test improvements including speed and optimization

	Reduce false positive for the filepath test in cases of self closing tags
e.g. <br />

	Lowered the accelerator check severity to reduce false positive impact






Mozilla tooling fixes


	Better decoding of some characters in DTD e.g » and &x0022 (”)

	.lang – Improved support for untranslated entries

	buildxpi:
	Can now build multiple languages at once (issue 2999 [https://github.com/translate/translate/issues/2999])

	Set a max product version to allow the language pack to continue to work
once the browser version has moved out of Aurora channel





	Dropped native XPI building support (untested and no longer used)

	Add Mozilla plural formulas, in time we’ll handle Mozilla plurals correctly






General


	Dropped support for Python 2.5 – 2.5 has reached end-of-life

	Dropped psyco support – it is no longer maintained

	Use logging throught instead of sys.stderr

	Lots of cleanups on docs: TBX, PHP, added Android and JSON docs

	Use requirements files for documenting all requirements and make it easy to
install Translate Toolkit using pip

	Added some functional tests

	Improve searching to find words with hyphens

	Choose the closest repo in nested VCS

	Test suite down to zero failing tests



...and loads of internal changes to improve maintainability, remove unused
imports, remove unused code and general code cleanups, some changes to ensure
future Python 3 portability and of course many many bugfixes.




Contributors

This release was made possible by the following people:

Dwayne Bailey, Leandro Regueiro, Alexander Dupuy, Friedel Wolff, Khaled Hosny,
Michal Čihař, Jordi Mas, Stuart Prescott, Trung Ngo, Ronald Sterckx, Rail
Aliev, Michael Schlenker, Martin-Zack Mekkaoui, Iskren Chernev, Luiz Fernando
Ranghetti & Christian Hitz

And to all our bug finders and testers, a Very BIG Thank You.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.10.0

Released on 12 March 2013

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes for the
upcoming Pootle [http://pootle.translatehouse.org/] 2.5.0.

It is just over a year since the last release so there are many improvements
across the board.  A number of people contributed to this release and we’ve
tried to credit them wherever possible (sorry if somehow we missed you).


Highlighted improvements


	Android format support

	Version control improvements

	Source now on Github - all our code is now on github

	Documentation - migrated all from our wiki into the code and Read The Docs

	Continuous Integration using Travis




Most important for Pootle


	Version control improvements

	Categorize pofilter checks into critical, functional, cosmetic, etc






Formats and Converters


	Android format support [Michal Čihař]

	Mozilla .lang, many improvements

	PHP support for defintions, // comments and improved whitespace preservation

	PO: X-Merge-On header to explicitly demand a conversion strategy instead of
guessing

	.properties: BOMs in messages and C style comments [Roman Imankulov]

	Mac OS String formatting improved [Roman Imankulov]

	The spaces in DTD files are now preserved. For example the spaces in
<!ENTITY some.label "definition"> around the entity
name some.label are now kept.

	The matching criterion when merging units can now be specified with the
X-Merge-On header. Available values for this header are location and
id. By default merges will be done by matching IDs. This supersedes the
effects of the X-Accelerator header when merging and establishes an
explicit way to set the desired matching criterion.






Version Control improvements


	Interface for adding files to a repository & Implement .add() for all VCSs.

	Caching of VC version info

	Don’t look for VCS if it’s not available

	Stop looking for VCS at a given parent

	Subversion VC tests

	Alway pass -m to ‘commit’ in Subversion to prevent blocking






Checks


	New OpenOffice variables style used in extensions

	Check for self-closing tags in the xmltags test [Seb M].

	GConf test fixes

	Terminology checker type for future terminology features

	Categorize pofilter checks into critical, functional, cosmetic, etc

	Added support for Objective-C %@ printf specifiers






Language specific fixes


	Correct plurals: Scottish Gaelic (gd), Irish

	Plural rules: Fulah, Brazilian Portuguese

	Punctuation rules and tests to ignore for: Burmese, Urdu, Afrikaans, Wolof






Documentation


	Moved to Git and we are now using reStructured Text and Sphinx

	Published in Read The Docs (RTD).

	Old wiki migrated to RTD.

	New clean theme for documentation and website

	API and code epydoc moved to reStructured Text.

	Translate code Style Guide written






Mozilla tooling fixes


	Mozilla specific test for dialog size settings

	Gaia properties dialect and plural handling

	Fixes and imporovement to the Firefox build scripts

	Improved accesskey detection

	Improved DTD escaping for &quote, %, etc

	Improvement of DTD to align with Base classes

	Support new {{xx}} variable style introduced in PDF viewer



...and refactoring, PEP8, test coverage and of course many many bugfixes.




Contributors

This release was made possible by the following people:

Dwayne Bailey, Friedel Wolff, Leandro Regueiro, Julen Ruiz Aizpuru,
Michal Čihař, Roman Imankulov, Alexander Dupuy, Frank Tetzel,
Luiz Fernando Ranghetti, Laurette Pretorius, Jiro Matsuzawa, Henrik Saari,
Luca De Petrillo, Khaled Hosny, Dave Dash & Chris Oelmueller.

And to all our bug finders and testers, a Very BIG Thank You.









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.9.0 Released

Released on 12 April 2011

This release contains many improvements and bug fixes. While it contains many
general improvements, it also specifically contains needed changes for the
upcoming Pootle [http://pootle.translatehouse.org] 2.1.6 and Virtaal [http://virtaal.translatehouse.org/] 0.7.


Highlighted improvements


	Faster terminology matching

	Several small optimisations to performance and memory use

	More advanced state support (visible in pocount [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html]
and Virtaal [http://virtaal.translatehouse.org/] 0.7)

	Improved language detection models (+South African languages)

	Improve handling of printf variable reordering [Jacques Beaurain]

	Review of the wording of the messages of pofilter [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html]
checks

	Better sentence segmentation for some non-Latin languages

	More supported formats for podebug [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/podebug.html]

	Extra options for pomerge [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html],
pogrep [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html]
and po2oo/xliff2oo.



The new pogrep [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html]
options made this possible for GNOME [http://translate.org.za/blogs/friedel/en/content/better-lies-about-gnome-localisation].


Most relevant for Pootle


	Support for Xapian 1.2 (issue 1766 [https://github.com/translate/translate/issues/1766]) [Rimas Kudelis]

	Work around some changes introduced in Django 1.2.5/1.3






Format support


	Always use UNIX line endings for PO (even on Windows)

	XLIFF and .ts files now shows “fuzzy” only the target present

	Improved support for .ts comment as context (issue 1739 [https://github.com/translate/translate/issues/1739])

	Support for Java properties in UTF-8 encoding

	More natural string ordering in json converter

	Improved handling of trailing spaces in Mozilla DTD files

	Removed unused support for _old_ KDE plurals in pocount



...and several small bugfixes









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Translate Toolkit 1.8.1

Released on 19 Novermber 2010

Today the Translate team released version 1.8.1 of the Translate Toolkit.  The
Translate Toolkit contains many useful tools for translation, management, and
quality control. It is the technology platform for Pootle, Virtaal, and other
software.

This release contains many improvements and bug fixes. It is a recommended
upgrade for users of Pootle and Virtaal. There were over 200 commits since
version 1.8.0.


	This work was made possible by volunteers and our funders:

	
	ANLoc [http://africanlocalisation.net/], funded by IDRC








Highlighted improvements

File formats:


	A rewrite and major improvement of the html format and html2po [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html] converter

	New JSON format introduced

	Support for Universal Terminology Exchange (UTX) [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/utx.html] format

	Support for Java properties [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html] files encoded in UTF-8

	Improvements to CSV [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/csv.html] format, and improved compatibility with Excel exports

	Bug fixes to Qt .ts [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html]

	Support for XLIFF [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html]‘s state attributes (pocount [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html] now lists detailed state
statistics)

	Minor bug fixes for PHP [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html] format



Languages and quality checks:


	Support for Persian quotations

	Major performance improvements to quality checks



Pootle will regenerate all statistics with the new Translate Toolkit installed.
Read about the quality checks [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html].

Other improvements:


	Improvements to stability of Lucene text indexing (affecting Pootle)

	Parameter for po2prop [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html] to ignore untranslated strings

	Many improvements to pot2po [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html] including Qt ts support, improved handling of
extra XML namespaces in XLIFF, and performance improvements.



Further resources:


	Full feature list [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/features.html]

	Download [http://sourceforge.net/projects/translate/files/Translate%20Toolkit/1.8.1/]

	Bugs [https://github.com/translate/translate/issues]



Happy translating!

The Translate team







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
History of the Translate Toolkit

This is a short history of the Translate Toolkit. In many ways written so that
people who see problems in the toolkit can understand how it evolved and where
it is going.


Conception

The toolkit was developed by David Fraser while working for Translate.org.za [http://translate.org.za].  Initially Translate.org.za had focussed on
translating KDE into South Africa languages, this work was PO based.  The next
project was to translate Mozilla which used a combination of DTD and
.properties files.  The Mozilla project used a tool called Mozilla Translator,
which mostly worked although it was not as feature rich as KBabel that was
being used to manage PO translations.  A decision was made to create a set of
tools that could convert the DTD and .properties files into PO files.  The
advantage being that translators would not need to learn new tools, that
existing translations could be leveraged and that the resultant files, being
bilingual, would make it easier to upgrade and manage translations.

Thus was born what initially was called the mozpotools.




Growth

The first problem with the tools was that it was possible to break Mozilla
translations.  This was a combination of the fact that translators would often
translate variables such as &browserName; and that the toolkit had developed a
method of folding labels and accelerators into one PO field.  These breakages
where presented as broken XML.  Thus was born pofilter which allowed us to
check the translations for problems in variables and accelerators.  pomerge its
sister allowed us to merge the corrections back into the main.  We also
developed pocount which allowed us to for the first time get a real feel of the
volume of work required in translating a PO file.




Expansion

Of course once you can convert the convoluted Mozilla translations then you
realise you can do anything.  A key addition was the converter for
OpenOffice.org but also added where TMX, Qt .ts, txt and OpenOffice.org SXW
files.

The key being that files are converted to PO to allow translations and use of
the Gettext tools and existing PO files.




Pootle

Initially started as a separate project to allow online translation it was soon
realised that the toolkit being file based gave all the infrastructure to allow
Pootle to be a wrapper around the toolkit.  So a file based, web translation
tool was created.




WordForge project

In 2006 with funding from the Open Society Institute [http://www.opensocietyfoundations.org/] (OSI) and IDRC [http://www.idrc.ca/] the toolkit was adapted to allow many core changes.
The first being to introduce the concept of a base class from which PO and
XLIFF storage formats are derived.  This allowed tools to be adapted to allow
output to XLIFF or PO files.  The tools themselves where adapted to allow them
to work with the core formats XLIFF and PO as well as all base class derived
formats.  Thus we can count XLIFF, PO, MO and other formats.

Additional contributions during this phase where the adaptation of Pootle to
use XLIFF as well as PO.  The creation of tools to manage translation memory
files and glossary files.

The toolkit was also adapted to make dealing with encodings, plural forms, and
escaping easier and more consistent throughout the code.  Many but not all of
the formats where converted to the base class.

As part of the WordForge project Pootling was created which in the same way
that Pootle is a web-based wrapper around the toolkit so Pootling is a GUI
wrapper around the toolkit.




ANLoc project

The African Network for Localisation [http://africanlocalisation.net]
provided the opportunity for further improvements to the project.  We saw the
first official releases of Virtaal [http://virtaal.org] and massive
improvements to all the translation tools.

Format support improved a lot, with several bilingual file formats now support
(Wordfast TM, Qt TS, etc.), and several monolingual file formats (PHP arrays,
video subtitles, Mac OS X strings, etc.).




The Future

The toolkit continues to evolve with clean-up focused in various areas:


	Pulling features out of Pootle that should be in the Toolkit

	Cleaning up storage classes and converters to be XLIFF/PO interchangeable

	Cleaning up the converters to use only base class features and migrating code
from the converters to the storage class

	Adding storage classes as needed

	Optimisation where needed



The toolkit continues to serve as the core for the command line tools and for
Pootle.  Key new features:


	Process Management









          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
License

The Translate Toolkit documentation is released under the GNU General Public
License (GPL) [http://www.gnu.org/licenses/gpl.html].





          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            
  
API

The Translate Toolkit provides several modules for programmers to build
their own tools.


Module overview

The following will give you an idea about what each module is capable of.


convert

Code to convert between different storage formats for localizations.




filters

Filters that can be used on translations...




lang

Classes that represent languages and provides language-specific information.

All classes inherit from the parent class called common.

The type of data includes:


	Language codes

	Language name

	Plurals

	Punctuation transformation

	etc.






misc

Miscellaneous modules for translate - including modules for backward
compatibility with pre-2.3 versions of Python




search

Services for searching and matching of text.




services

translate.services is part of the translate toolkit.
It provides network services for interacting with the toolkit




storage

Classes that represent various storage formats for localization.




tools

Code to perform various operations, mostly on po files.






Module list

All the modules included in the Translated Toolkit are listed here.



	convert
	acesskey

	convert

	csv2po

	csv2tbx

	dtd2po

	factory

	html2po

	ical2po

	ini2po

	json2po

	moz2po

	mozfunny2prop

	mozlang2po

	odf2xliff

	oo2po

	oo2xliff

	php2po

	po2csv

	po2dtd

	po2html

	po2ical

	po2ini

	po2json

	po2mozlang

	po2moz

	po2oo

	po2php

	po2prop

	po2rc

	po2sub

	po2symb

	po2tiki

	po2tmx

	po2ts

	po2txt

	po2web2py

	po2wordfast

	po2xliff

	poreplace

	pot2po

	prop2mozfunny

	prop2po

	rc2po

	sub2po

	symb2po

	tiki2po

	ts2po

	txt2po

	web2py2po

	xliff2odf

	xliff2oo

	xliff2po





	filters
	autocorrect

	checks

	decoration

	helpers

	pofilter

	prefilters

	spelling





	lang
	af

	am

	ar

	bn

	code_or

	common

	data

	de

	el

	es

	factory

	fa

	fi

	fr

	gu

	he

	hi

	hy

	identify

	ja

	km

	kn

	ko

	ml

	mr

	ne

	ngram

	pa

	poedit

	si

	st

	sv

	ta

	team

	te

	th

	ug

	ur

	vi

	zh





	misc
	autoencode

	dictutils

	file_discovery

	lru

	multistring

	optrecurse

	ourdom

	progressbar

	quote

	sparse

	stdiotell

	wsgi

	wStringIO

	xml_helpers





	search
	indexing
	CommonIndexer

	PyLuceneIndexer1

	PyLuceneIndexer

	XapianIndexer





	lshtein

	match

	segment

	terminology





	services
	tmserver





	storage
	base

	benchmark

	bundleprojstore

	catkeys

	cpo

	csvl10n

	directory

	dtd

	_factory_classes

	factory

	fpo

	html

	ical

	ini

	jsonl10n

	lisa

	mo

	mozilla_lang

	odf_io

	odf_shared

	omegat

	oo

	placeables
	base

	general

	interfaces

	lisa

	parse

	strelem

	terminology

	xliff





	php

	pocommon

	poheader

	poparser

	po

	poxliff

	project

	projstore

	properties

	pypo

	qm

	qph

	rc

	statistics

	statsdb

	subtitles

	symbian

	tbx

	tiki

	tmdb

	tmx

	trados

	ts2

	ts

	txt

	utx

	versioncontrol
	bzr

	cvs

	darcs

	git

	hg

	svn





	wordfast

	workflow

	xliff

	xml_extract
	extract

	generate

	misc

	unit_tree

	xpath_breadcrumb





	xml_name

	zip





	tools
	build_tmdb

	phppo2pypo

	poclean

	pocompile

	poconflicts

	pocount

	podebug

	pogrep

	pomerge

	porestructure

	posegment

	poswap

	poterminology

	pretranslate

	pydiff

	pypo2phppo















          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
convert

Code to convert between different storage formats for localizations.


acesskey

functions used to manipulate access keys in strings


	
class translate.convert.accesskey.UnitMixer(labelsuffixes, accesskeysuffixes)

	Helper to mix separately defined labels and accesskeys into one unit.


	
match_entities(index)

	Populates mixedentities from the index.






	
mix_units(label_unit, accesskey_unit, target_unit)

	Mix the given units into the given target_unit if possible.

Might return None if no match is possible.










	
translate.convert.accesskey.combine(label, accesskey, accesskey_marker=u'&')

	Combine a label and and accesskey to form a label+accesskey string

We place an accesskey marker before the accesskey in the label and this
creates a string with the two combined e.g. “File” + “F” = “&File”

The case of the accesskey is preferred unless no match is found, in which
case the alternate case is used.





	Parameters:	
	label (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – a label

	accesskey (unicode char) – The accesskey






	Return type:	unicode or None




	Returns:	label+accesskey string or None if uncombineable












	
translate.convert.accesskey.extract(string, accesskey_marker=u'&')

	Extract the label and accesskey from a label+accesskey string

The function will also try to ignore &entities; which would obviously not
contain accesskeys.





	Parameters:	
	string (Unicode) – A string that might contain a label with accesskey marker

	accesskey_marker (Char) – The character that is used to prefix an access key
















convert

Handles converting of files between formats (used by
translate.convert tools).


	
class translate.convert.convert.ArchiveConvertOptionParser(formats, usetemplates=False, usepots=False, description=None, archiveformats=None)

	ConvertOptionParser that can handle recursing into single archive files.

archiveformats maps extension to class. If the extension doesn’t
matter, it can be None.

If the extension is only valid for input/output/template, it can be
given as (extension, filepurpose).


	
add_duplicates_option(default='msgctxt')

	Adds an option to say what to do with duplicate strings.






	
add_fuzzy_option(default=False)

	Adds an option to include / exclude fuzzy translations.






	
add_multifile_option(default='single')

	Adds an option to say how to split the po/pot files.






	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
add_threshold_option(default=None)

	Adds an option to output only stores where translation percentage
exceeds the threshold.






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be
created, creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
filterinputformats(options)

	Filters input formats, processing relevant switches in options.






	
filteroutputoptions(options)

	Filters output options, processing relevant switches in options.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getarchiveclass(fileext, filepurpose, isdir=False)

	Returns the archiveclass for the given fileext and filepurpose






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initoutputarchive(options)

	Creates an outputarchive if required.






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
inittemplatearchive(options)

	Opens the templatearchive if not already open.






	
isarchive(fileoption, filepurpose='input')

	Returns whether the file option is an archive file.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openarchive(archivefilename, filepurpose, **kwargs)

	Creates an archive object for the given file.






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
parse_args(args=None, values=None)

	Parses the command line options, handling implicit input/output
args.






	
potifyformat(fileformat)

	Converts a .po to a .pot where required.






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)

	Run an invidividual conversion.






	
recursearchivefiles(options)

	Recurse through archive files and convert files.






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through archive file / directories and return files
to be converted.






	
recursiveprocess(options)

	Recurse through directories and convert files.






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run(argv=None)

	Parses the command line options and runs the conversion.






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for
each option






	
setarchiveoptions(**kwargs)

	Allows setting options that will always be passed to openarchive.






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setpotoption()

	Sets the -P/--pot option depending on input/output
formats etc.






	
setprogressoptions()

	Sets the progress options.






	
settimestampoption()

	Sets -S/--timestamp option.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
verifyoptions(options)

	Verifies that the options are valid (required options are
present, etc).






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.










	
class translate.convert.convert.ConvertOptionParser(formats, usetemplates=False, usepots=False, allowmissingtemplate=False, description=None)

	A specialized Option Parser for convertor tools...


	
add_duplicates_option(default='msgctxt')

	Adds an option to say what to do with duplicate strings.






	
add_fuzzy_option(default=False)

	Adds an option to include / exclude fuzzy translations.






	
add_multifile_option(default='single')

	Adds an option to say how to split the po/pot files.






	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
add_threshold_option(default=None)

	Adds an option to output only stores where translation percentage
exceeds the threshold.






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
filterinputformats(options)

	Filters input formats, processing relevant switches in options.






	
filteroutputoptions(options)

	Filters output options, processing relevant switches in options.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
parse_args(args=None, values=None)

	Parses the command line options, handling implicit input/output
args.






	
potifyformat(fileformat)

	Converts a .po to a .pot where required.






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	Recurse through directories and process files.






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run(argv=None)

	Parses the command line options and runs the conversion.






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for
each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setpotoption()

	Sets the -P/--pot option depending on input/output
formats etc.






	
setprogressoptions()

	Sets the progress options.






	
settimestampoption()

	Sets -S/--timestamp option.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
verifyoptions(options)

	Verifies that the options are valid (required options are
present, etc).






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.










	
class translate.convert.convert.Replacer(searchstring, replacestring)

	An object that knows how to replace strings in files.


	
doreplace(text)

	actually replace the text






	
searchreplaceinput(inputfile, outputfile, templatefile, **kwargs)

	copies the input file to the output file, searching and replacing






	
searchreplacetemplate(inputfile, outputfile, templatefile, **kwargs)

	Copies the template file to the output file, searching and
replacing.










	
translate.convert.convert.copyinput(inputfile, outputfile, templatefile, **kwargs)

	Copies the input file to the output file.






	
translate.convert.convert.copytemplate(inputfile, outputfile, templatefile, **kwargs)

	Copies the template file to the output file.






	
translate.convert.convert.should_output_store(store, threshold)

	Check if the percent of translated source words more than or equal to
the given threshold.








csv2po

Convert Comma-Separated Value (.csv) files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2po.html
for examples and usage instructions.


	
translate.convert.csv2po.convertcsv(inputfile, outputfile, templatefile, charset=None, columnorder=None, duplicatestyle='msgctxt')

	reads in inputfile using csvl10n, converts using csv2po, writes to
outputfile






	
class translate.convert.csv2po.csv2po(templatepo=None, charset=None, duplicatestyle='keep')

	a class that takes translations from a .csv file and puts them in a
.po file


	
convertstore(thecsvfile)

	converts a csvfile to a pofile, and returns it. uses templatepo if
given at construction






	
convertunit(csvunit)

	converts csv unit to po unit






	
handlecsvunit(csvunit)

	handles reintegrating a csv unit into the .po file






	
makeindex()

	makes indexes required for searching...










	
translate.convert.csv2po.replacestrings(source, *pairs)

	Use pairs of (original, replacement) to replace text found in
source.





	Parameters:	
	source (String) – String to on which pairs of strings are to be replaced

	*pairs (One or more tuples of (original, replacement)) – Strings to be matched and replaced






	Returns:	String with *pairs of strings replaced














csv2tbx

Convert Comma-Separated Value (.csv) files to a TermBase eXchange (.tbx)
glossary file

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2tbx.html
for examples and usage instructions


	
translate.convert.csv2tbx.convertcsv(inputfile, outputfile, templatefile, charset=None, columnorder=None)

	reads in inputfile using csvl10n, converts using csv2tbx, writes to
outputfile






	
class translate.convert.csv2tbx.csv2tbx(charset=None)

	a class that takes translations from a .csv file and puts them in a
.tbx file


	
convertfile(csvfile)

	converts a csvfile to a tbxfile, and returns it. uses templatepo
if given at construction












dtd2po

Convert a Mozilla .dtd UTF-8 localization format to a
Gettext PO localization file.

Uses the po and dtd modules, and the
dtd2po convertor class which is in this module
You can convert back to .dtd using po2dtd.py.


	
translate.convert.dtd2po.convertdtd(inputfile, outputfile, templatefile, pot=False, duplicatestyle='msgctxt')

	reads in inputfile and templatefile using dtd, converts using dtd2po,
writes to outputfile






	
translate.convert.dtd2po.is_css_entity(entity)

	Says if the given entity is likely to contain CSS that should not be
translated.








factory

Factory methods to convert supported input files to supported translatable files.




html2po

Convert HTML files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html
for examples and usage instructions.


	
translate.convert.html2po.converthtml(inputfile, outputfile, templates, includeuntagged=False, pot=False, duplicatestyle='msgctxt', keepcomments=False)

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout








ical2po

Convert iCal files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ical2po.html
for examples and usage instructions.


	
translate.convert.ical2po.convertical(input_file, output_file, template_file, pot=False, duplicatestyle='msgctxt')

	Reads in input_file using iCal, converts using ical2po,
writes to output_file.






	
class translate.convert.ical2po.ical2po

	convert a iCal file to a .po file for handling the translation...


	
convert_store(input_store, duplicatestyle='msgctxt')

	converts a iCal file to a .po file...






	
convert_unit(input_unit, commenttype)

	Converts a .ini unit to a .po unit. Returns None if empty
or not for translation.






	
merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle='msgctxt')

	converts two iCal files to a .po file...












ini2po

Convert .ini files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ini2po.html
for examples and usage instructions.


	
translate.convert.ini2po.convertini(input_file, output_file, template_file, pot=False, duplicatestyle='msgctxt', dialect='default')

	Read in input_file using ini, converts using ini2po, writes
to output_file.






	
class translate.convert.ini2po.ini2po

	Convert a .ini file to a .po file for handling the translation...


	
convert_store(input_store, duplicatestyle='msgctxt')

	Convert a .ini file to a .po file...






	
convert_unit(input_unit, commenttype)

	Convert a .ini unit to a .po unit. Returns None if empty or not for
translation.






	
merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle='msgctxt')

	Convert two .ini files to a .po file...












json2po

Convert JSON files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/json2po.html
for examples and usage instructions.


	
translate.convert.json2po.convertjson(input_file, output_file, template_file, pot=False, duplicatestyle='msgctxt', dialect='default', filter=None)

	Reads in input_file using jsonl10n, converts using json2po,
writes to output_file.






	
class translate.convert.json2po.json2po

	Convert a JSON file to a PO file


	
convert_store(input_store, duplicatestyle='msgctxt')

	Converts a JSON file to a PO file






	
convert_unit(input_unit, commenttype)

	Converts a JSON unit to a PO unit





	Returns:	None if empty or not for translation










	
merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle='msgctxt')

	Converts two JSON files to a PO file












moz2po

Convert Mozilla .dtd and .properties files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/moz2po.html
for examples and usage instructions.




mozfunny2prop

Converts additional Mozilla files to properties files.


	
translate.convert.mozfunny2prop.inc2po(inputfile, outputfile, templatefile, encoding=None, pot=False, duplicatestyle='msgctxt')

	wraps prop2po but converts input/template files to properties first






	
translate.convert.mozfunny2prop.inc2prop(lines)

	convert a .inc file with #defines in it to a properties file






	
translate.convert.mozfunny2prop.it2po(inputfile, outputfile, templatefile, encoding='cp1252', pot=False, duplicatestyle='msgctxt')

	wraps prop2po but converts input/template files to properties first






	
translate.convert.mozfunny2prop.it2prop(lines, encoding='cp1252')

	convert a pseudo-properties .it file to a conventional properties file








mozlang2po

Convert Mozilla .lang files to Gettext PO localization files.


	
translate.convert.mozlang2po.convertlang(inputfile, outputfile, templates, pot=False, duplicatestyle='msgctxt', encoding='utf-8')

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout








odf2xliff

Convert OpenDocument (ODF) files to XLIFF localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/odf2xliff.html
for examples and usage instructions.


	
translate.convert.odf2xliff.convertodf(inputfile, outputfile, templates, engine='toolkit')

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout








oo2po

Convert an OpenOffice.org (SDF) localization file to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
for examples and usage instructions.


	
translate.convert.oo2po.convertoo(inputfile, outputfile, templates, pot=False, sourcelanguage=None, targetlanguage=None, duplicatestyle='msgid_comment', multifilestyle='single')

	reads in stdin using inputstore class, converts using convertorclass, writes to stdout






	
translate.convert.oo2po.verifyoptions(options)

	verifies the commandline options








oo2xliff

Convert an OpenOffice.org (SDF) localization file to XLIFF localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
for examples and usage instructions.


	
translate.convert.oo2xliff.convertoo(inputfile, outputfile, templates, pot=False, sourcelanguage=None, targetlanguage=None, duplicatestyle='msgctxt', multifilestyle='single')

	reads in stdin using inputstore class, converts using convertorclass, writes to stdout






	
translate.convert.oo2xliff.verifyoptions(options)

	verifies the commandline options








php2po

Convert PHP localization files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/php2po.html
for examples and usage instructions.


	
translate.convert.php2po.convertphp(inputfile, outputfile, templatefile, pot=False, duplicatestyle='msgctxt')

	Read inputfile using php, convert using php2po, write to outputfile.






	
class translate.convert.php2po.php2po

	Convert a .php file to a .po file for handling the translation.


	
convertstore(inputstore, duplicatestyle='msgctxt')

	Convert a .php file to a .po file.






	
convertunit(inputunit, origin)

	Convert a .php unit to a .po unit.






	
mergestore(templatestore, inputstore, blankmsgstr=False, duplicatestyle='msgctxt')

	Convert two .php files to a .po file.












po2csv

Convert Gettext PO localization files to Comma-Separated Value (.csv) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2po.html
for examples and usage instructions.


	
translate.convert.po2csv.convertcsv(inputfile, outputfile, templatefile, columnorder=None)

	reads in inputfile using po, converts using po2csv, writes to outputfile








po2dtd

Converts a Gettext PO file to a UTF-8 encoded Mozilla .dtd file.


	
translate.convert.po2dtd.applytranslation(entity, dtdunit, inputunit, mixedentities)

	applies the translation for entity in the po unit to the dtd unit






	
class translate.convert.po2dtd.po2dtd(android=False, remove_untranslated=False)

	this is a convertor class that creates a new dtd file based on a po file without a template






	
class translate.convert.po2dtd.redtd(dtdfile, android=False, remove_untranslated=False)

	this is a convertor class that creates a new dtd based on a template using translations in a po








po2html

Convert Gettext PO localization files to HTML files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html
for examples and usage instructions.


	
translate.convert.po2html.converthtml(inputfile, outputfile, templatefile, includefuzzy=False, outputthreshold=None)

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout






	
class translate.convert.po2html.po2html

	po2html can take a po file and generate html. best to give it a
template file otherwise will just concat msgstrs


	
mergestore(inputstore, templatetext, includefuzzy)

	converts a file to .po format












po2ical

Convert Gettext PO localization files to iCal files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ical2po.html
for examples and usage instructions.




po2ini

Convert Gettext PO localization files to .ini files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ini2po.html
for examples and usage instructions.




po2json

Convert Gettext PO localization files to JSON files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/json2po.html
for examples and usage instructions.




po2mozlang

Convert Gettext PO localization files to Mozilla .lang files.


	
translate.convert.po2mozlang.convertlang(inputfile, outputfile, templates, includefuzzy=False, mark_active=True, outputthreshold=None, remove_untranslated=None)

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout








po2moz

Convert Gettext PO localization files to Mozilla .dtd and .properties files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/moz2po.html
for examples and usage instructions.




po2oo

Convert Gettext PO localization files to an OpenOffice.org (SDF) localization file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
for examples and usage instructions.




po2php

Convert Gettext PO localization files to PHP localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/php2po.html
for examples and usage instructions.




po2prop

Convert Gettext PO localization files to Java/Mozilla .properties files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html
for examples and usage instructions.


	
translate.convert.po2prop.applytranslation(key, propunit, inunit, mixedkeys)

	applies the translation for key in the po unit to the prop unit






	
translate.convert.po2prop.convertmozillaprop(inputfile, outputfile, templatefile, includefuzzy=False, remove_untranslated=False, outputthreshold=None)

	Mozilla specific convertor function






	
translate.convert.po2prop.convertstrings(inputfile, outputfile, templatefile, personality='strings', includefuzzy=False, encoding=None, outputthreshold=None, remove_untranslated=False)

	.strings specific convertor function








po2rc

Convert Gettext PO localization files back to Windows Resource (.rc) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/rc2po.html
for examples and usage instructions.




po2sub

Convert Gettext PO localization files to subtitle files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/sub2po.html
for examples and usage instructions.




po2symb

Convert Gettext PO localization files to Symbian translation files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/symb2po.html
for examples and usage instructions.




po2tiki

Convert Gettext PO files to TikiWiki’s language.php files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tiki2po.html
for examples and usage instructions.


	
translate.convert.po2tiki.convertpo(inputfile, outputfile, template=None)

	Converts from po file format to tiki.





	Parameters:	
	inputfile – file handle of the source

	outputfile – file handle to write to

	template – unused














	
translate.convert.po2tiki.main(argv=None)

	Will convert from .po to tiki style .php








po2tmx

Convert Gettext PO localization files to a TMX (Translation Memory eXchange) file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/po2tmx.html
for examples and usage instructions.


	
translate.convert.po2tmx.convertpo(inputfile, outputfile, templatefile, sourcelanguage='en', targetlanguage=None, comment=None)

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout








po2ts

Convert Gettext PO localization files to Qt Linguist (.ts) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ts2po.html
for examples and usage instructions.


	
translate.convert.po2ts.convertpo(inputfile, outputfile, templatefile, context)

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout








po2txt

Convert Gettext PO localization files to plain text (.txt) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/txt2po.html
for examples and usage instructions.


	
translate.convert.po2txt.converttxt(inputfile, outputfile, templatefile, wrap=None, includefuzzy=False, encoding='utf-8', outputthreshold=None)

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout






	
class translate.convert.po2txt.po2txt(wrap=None)

	po2txt can take a po file and generate txt. best to give it a template file otherwise will just concat msgstrs


	
convertstore(inputstore, includefuzzy)

	converts a file to txt format






	
mergestore(inputstore, templatetext, includefuzzy)

	converts a file to txt format






	
wrapmessage(message)

	rewraps text as required












po2web2py

Convert GNU/gettext PO files to web2py translation dictionaries (.py).

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/web2py2po.html
for examples and usage instructions.




po2wordfast

Convert Gettext PO localization files to a Wordfast translation memory file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/po2wordfast.html
for examples and usage instructions.


	
translate.convert.po2wordfast.convertpo(inputfile, outputfile, templatefile, sourcelanguage='en', targetlanguage=None)

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout








po2xliff

Convert Gettext PO localization files to XLIFF localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/xliff2po.html
for examples and usage instructions.


	
translate.convert.po2xliff.convertpo(inputfile, outputfile, templatefile)

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout








poreplace

Simple script to do replacements on translated strings inside po files.




pot2po

Convert template files (like .pot or template .xlf files) to translation
files, preserving existing translations.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html
for examples and usage instructions.


	
translate.convert.pot2po.convert_stores(input_store, template_store, temp_store=None, tm=None, min_similarity=75, fuzzymatching=True, **kwargs)

	Actual conversion function, works on stores not files, returns
a properly initialized pretranslated output store, with structure
based on input_store, metadata based on template_store, migrates
old translations from template_store and pretranslating from TM.






	
translate.convert.pot2po.convertpot(input_file, output_file, template_file, tm=None, min_similarity=75, fuzzymatching=True, classes=None, classes_str={'lang': ('mozilla_lang', 'LangStore'), 'tbx': ('tbx', 'tbxfile'), 'qph': ('qph', 'QphFile'), 'xlf': ('xliff', 'xlifffile'), 'mo': ('mo', 'mofile'), '_trados_txt_tm': ('trados', 'TradosTxtTmFile'), 'tmx': ('tmx', 'tmxfile'), 'utf8': ('omegat', 'OmegaTFile'), 'pot': ('po', 'pofile'), 'ts': ('ts2', 'tsfile'), 'sdlxliff': ('xliff', 'xlifffile'), 'tab': ('omegat', 'OmegaTFileTab'), 'catkeys': ('catkeys', 'CatkeysFile'), 'xliff': ('xliff', 'xlifffile'), 'gmo': ('mo', 'mofile'), 'utx': ('utx', 'UtxFile'), 'csv': ('csvl10n', 'csvfile'), 'qm': ('qm', 'qmfile'), 'po': ('po', 'pofile'), '_wftm': ('wordfast', 'WordfastTMFile')}, **kwargs)

	Main conversion function.








prop2mozfunny

Converts properties files to additional Mozilla format files.


	
translate.convert.prop2mozfunny.po2inc(inputfile, outputfile, templatefile, encoding=None, includefuzzy=False, remove_untranslated=False, outputthreshold=None)

	wraps po2prop but converts outputfile to properties first






	
translate.convert.prop2mozfunny.po2ini(inputfile, outputfile, templatefile, encoding='UTF-8', includefuzzy=False, remove_untranslated=False, outputthreshold=None)

	wraps po2prop but converts outputfile to properties first using UTF-8 encoding






	
translate.convert.prop2mozfunny.po2it(inputfile, outputfile, templatefile, encoding='cp1252', includefuzzy=False, remove_untranslated=False, outputthreshold=None)

	wraps po2prop but converts outputfile to properties first






	
translate.convert.prop2mozfunny.prop2inc(pf)

	convert a properties file back to a .inc file with #defines in it






	
translate.convert.prop2mozfunny.prop2it(pf)

	convert a properties file back to a pseudo-properties .it file








prop2po

Convert Java/Mozilla .properties files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html
for examples and usage instructions.


	
translate.convert.prop2po.convertmozillaprop(inputfile, outputfile, templatefile, pot=False, duplicatestyle='msgctxt')

	Mozilla specific convertor function






	
translate.convert.prop2po.convertprop(inputfile, outputfile, templatefile, personality='java', pot=False, duplicatestyle='msgctxt', encoding=None)

	reads in inputfile using properties, converts using prop2po, writes
to outputfile






	
translate.convert.prop2po.convertstrings(inputfile, outputfile, templatefile, personality='strings', pot=False, duplicatestyle='msgctxt', encoding=None)

	.strings specific convertor function






	
class translate.convert.prop2po.prop2po(personality='java', blankmsgstr=False, duplicatestyle='msgctxt')

	convert a .properties file to a .po file for handling the
translation.


	
convertpropunit(store, unit, commenttype, mixbucket='dtd')

	Converts a unit from store to a po unit, keeping track of mixed
names along the way.

mixbucket can be specified to indicate if the given unit is part of
the template or the translated file.






	
convertstore(thepropfile)

	converts a .properties file to a .po file...






	
convertunit(propunit, commenttype)

	Converts a .properties unit to a .po unit. Returns None if empty
or not for translation.






	
fold_gaia_plurals(postore)

	Fold the multiple plural units of a gaia file into a gettext plural.






	
mergestore(origpropfile, translatedpropfile)

	converts two .properties files to a .po file...












rc2po

Convert Windows RC files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/rc2po.html
for examples and usage instructions.


	
translate.convert.rc2po.convertrc(input_file, output_file, template_file, pot=False, duplicatestyle='msgctxt', charset=None, lang=None, sublang=None)

	reads in input_file using rc, converts using rc2po, writes to output_file






	
class translate.convert.rc2po.rc2po

	Convert a .rc file to a .po file for handling the translation.


	
convert_store(input_store, duplicatestyle='msgctxt')

	converts a .rc file to a .po file...






	
convert_unit(input_unit, commenttype)

	Converts a .rc unit to a .po unit. Returns None if empty
or not for translation.






	
merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle='msgctxt')

	converts two .rc files to a .po file...












sub2po

Convert subtitle files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/sub2po.html
for examples and usage instructions.


	
translate.convert.sub2po.convert_store(input_store, duplicatestyle='msgctxt')

	converts a subtitle file to a .po file...






	
translate.convert.sub2po.convert_unit(input_unit, commenttype)

	Converts a subtitle unit to a .po unit. Returns None if empty
or not for translation.






	
translate.convert.sub2po.convertsub(input_file, output_file, template_file=None, pot=False, duplicatestyle='msgctxt')

	Reads in input_file using translate.subtitles, converts using
sub2po, writes to output_file.






	
translate.convert.sub2po.merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle='msgctxt')

	converts two subtitle files to a .po file...








symb2po

Convert Symbian localisation files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/symb2po.html
for examples and usage instructions.




tiki2po

Convert TikiWiki’s language.php files to GetText PO files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tiki2po.html
for examples and usage instructions.


	
translate.convert.tiki2po.converttiki(inputfile, outputfile, template=None, includeunused=False)

	Converts from tiki file format to po.





	Parameters:	
	inputfile – file handle of the source

	outputfile – file handle to write to

	template – unused

	includeunused – Include the “usused” section of the tiki
file? Default: False














	
translate.convert.tiki2po.main(argv=None)

	Converts tiki .php files to .po.








ts2po

Convert Qt Linguist (.ts) files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ts2po.html
for examples and usage instructions.


	
translate.convert.ts2po.convertts(inputfile, outputfile, templates, pot=False, duplicatestyle='msgctxt')

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout








txt2po

Convert plain text (.txt) files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/txt2po.html
for examples and usage instructions.


	
translate.convert.txt2po.converttxt(inputfile, outputfile, templates, duplicatestyle='msgctxt', encoding='utf-8', flavour=None)

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout








web2py2po

Convert web2py translation dictionaries (.py) to GNU/gettext PO files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/web2py2po.html
for examples and usage instructions.




xliff2odf

Convert XLIFF translation files to OpenDocument (ODF) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/odf2xliff.html
for examples and usage instructions.


	
translate.convert.xliff2odf.convertxliff(input_file, output_file, template)

	reads in stdin using fromfileclass, converts using convertorclass, writes to stdout








xliff2oo

Convert XLIFF localization files to an OpenOffice.org (SDF) localization file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
for examples and usage instructions.




xliff2po

Convert XLIFF localization files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/xliff2po.html
for examples and usage instructions.


	
translate.convert.xliff2po.convertxliff(inputfile, outputfile, templates, duplicatestyle='msgctxt')

	reads in stdin using fromfileclass, converts using convertorclass,
writes to stdout











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
filters

Filters that can be used on translations...


autocorrect

A set of autocorrect functions that fix common punctuation and space problems automatically


	
translate.filters.autocorrect.correct(source, target)

	Runs a set of easy and automatic corrections


	Current corrections include:

	
	Ellipses - align target to use source form of ellipses (either three dots or the Unicode ellipses characters)

	Missing whitespace and start or end of the target

	Missing punction (.:?) at the end of the target














checks

This is a set of validation checks that can be performed on translation
units.

Derivatives of UnitChecker (like StandardUnitChecker) check translation units,
and derivatives of TranslationChecker (like StandardChecker) check
(source, target) translation pairs.

When adding a new test here, please document and explain their behaviour on the
pofilter tests page.


	
class translate.filters.checks.CheckerConfig(targetlanguage=None, accelmarkers=None, varmatches=None, notranslatewords=None, musttranslatewords=None, validchars=None, punctuation=None, endpunctuation=None, ignoretags=None, canchangetags=None, criticaltests=None, credit_sources=None)

	Object representing the configuration of a checker.


	
update(otherconfig)

	Combines the info in otherconfig into this config object.






	
updatetargetlanguage(langcode)

	Updates the target language in the config to the given target
language.






	
updatevalidchars(validchars)

	Updates the map that eliminates valid characters.










	
exception translate.filters.checks.FilterFailure(messages)

	This exception signals that a Filter didn’t pass, and gives an
explanation or a comment.






	
exception translate.filters.checks.SeriousFilterFailure(messages)

	This exception signals that a Filter didn’t pass, and the bad translation
might break an application (so the string will be marked fuzzy)






	
class translate.filters.checks.StandardChecker(checkerconfig=None, excludefilters=None, limitfilters=None, errorhandler=None)

	The basic test suite for source -> target translations.


	
accelerators(*args, **kwargs)

	Checks whether accelerators are consistent between the
two strings.






	
acronyms(*args, **kwargs)

	Checks that acronyms that appear are unchanged.






	
blank(*args, **kwargs)

	Checks whether a translation only contains spaces.






	
brackets(*args, **kwargs)

	Checks that the number of brackets in both strings match.






	
compendiumconflicts(*args, **kwargs)

	Checks for Gettext compendium conflicts (#-#-#-#-#).






	
credits(*args, **kwargs)

	Checks for messages containing translation credits instead of
normal translations.






	
doublequoting(*args, **kwargs)

	Checks whether doublequoting is consistent between the
two strings.






	
doublespacing(*args, **kwargs)

	Checks for bad double-spaces by comparing to original.






	
doublewords(*args, **kwargs)

	Checks for repeated words in the translation.






	
emails(*args, **kwargs)

	Checks that emails are not translated.






	
endpunc(*args, **kwargs)

	Checks whether punctuation at the end of the strings match.






	
endwhitespace(*args, **kwargs)

	Checks whether whitespace at the end of the strings matches.






	
escapes(*args, **kwargs)

	Checks whether escaping is consistent between the two strings.






	
filepaths(*args, **kwargs)

	Checks that file paths have not been translated.






	
filteraccelerators_by_list(str1, acceptlist=None)

	Filter out accelerators from str1.






	
functions(*args, **kwargs)

	Checks that function names are not translated.






	
getfilters(excludefilters=None, limitfilters=None)

	Returns dictionary of available filters, including/excluding those
in the given lists.






	
kdecomments(*args, **kwargs)

	Checks to ensure that no KDE style comments appear in the
translation.






	
long(*args, **kwargs)

	Checks whether a translation is much longer than the original
string.






	
musttranslatewords(*args, **kwargs)

	Checks that words configured as definitely translatable don’t appear
in the translation.






	
newlines(*args, **kwargs)

	Checks whether newlines are consistent between the two strings.






	
notranslatewords(*args, **kwargs)

	Checks that words configured as untranslatable appear in the
translation too.






	
numbers(*args, **kwargs)

	Checks whether numbers of various forms are consistent between the
two strings.






	
options(*args, **kwargs)

	Checks that options are not translated.






	
printf(*args, **kwargs)

	Checks whether printf format strings match.






	
puncspacing(*args, **kwargs)

	Checks for bad spacing after punctuation.






	
purepunc(*args, **kwargs)

	Checks that strings that are purely punctuation are not changed.






	
run_filters(unit, categorised=False)

	Do some optimisation by caching some data of the unit for the
benefit of run_test().






	
run_test(test, unit)

	Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal
operation.






	
sentencecount(*args, **kwargs)

	Checks that the number of sentences in both strings match.






	
setconfig(config)

	Sets the accelerator list.






	
setsuggestionstore(store)

	Sets the filename that a checker should use for evaluating
suggestions.






	
short(*args, **kwargs)

	Checks whether a translation is much shorter than the original
string.






	
simplecaps(*args, **kwargs)

	Checks the capitalisation of two strings isn’t wildly different.






	
simpleplurals(*args, **kwargs)

	Checks for English style plural(s) for you to review.






	
singlequoting(*args, **kwargs)

	Checks whether singlequoting is consistent between the two strings.






	
spellcheck(*args, **kwargs)

	Checks words that don’t pass a spell check.






	
startcaps(*args, **kwargs)

	Checks that the message starts with the correct capitalisation.






	
startpunc(*args, **kwargs)

	Checks whether punctuation at the beginning of the strings match.






	
startwhitespace(*args, **kwargs)

	Checks whether whitespace at the beginning of the strings
matches.






	
tabs(*args, **kwargs)

	Checks whether tabs are consistent between the two strings.






	
unchanged(*args, **kwargs)

	Checks whether a translation is basically identical to the original
string.






	
untranslated(*args, **kwargs)

	Checks whether a string has been translated at all.






	
urls(*args, **kwargs)

	Checks that URLs are not translated.






	
validchars(*args, **kwargs)

	Checks that only characters specified as valid appear in the
translation.






	
variables(*args, **kwargs)

	Checks whether variables of various forms are consistent between the
two strings.






	
xmltags(*args, **kwargs)

	Checks that XML/HTML tags have not been translated.










	
class translate.filters.checks.StandardUnitChecker(checkerconfig=None, excludefilters=None, limitfilters=None, errorhandler=None)

	The standard checks for common checks on translation units.


	
filteraccelerators_by_list(str1, acceptlist=None)

	Filter out accelerators from str1.






	
getfilters(excludefilters=None, limitfilters=None)

	Returns dictionary of available filters, including/excluding those
in the given lists.






	
hassuggestion(*args, **kwargs)

	Checks if there is at least one suggested translation for this
unit.






	
isfuzzy(*args, **kwargs)

	Check if the unit has been marked fuzzy.






	
isreview(*args, **kwargs)

	Check if the unit has been marked review.






	
nplurals(*args, **kwargs)

	Checks for the correct number of noun forms for plural
translations.






	
run_filters(unit, categorised=False)

	Run all the tests in this suite.





	Return type:	Dictionary


	Returns:	Content of the dictionary is as follows:{'testname': { 'message': message_or_exception, 'category': failure_category } }
















	
run_test(test, unit)

	Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.






	
setconfig(config)

	Sets the accelerator list.






	
setsuggestionstore(store)

	Sets the filename that a checker should use for evaluating
suggestions.










	
class translate.filters.checks.TeeChecker(checkerconfig=None, excludefilters=None, limitfilters=None, checkerclasses=None, errorhandler=None, languagecode=None)

	A Checker that controls multiple checkers.


	
categories = {}

	Categories where each checking function falls into
Function names are used as keys, categories are the values






	
getfilters(excludefilters=None, limitfilters=None)

	Returns a dictionary of available filters, including/excluding
those in the given lists.






	
run_filters(unit, categorised=False)

	Run all the tests in the checker’s suites.






	
setsuggestionstore(store)

	Sets the filename that a checker should use for evaluating
suggestions.










	
class translate.filters.checks.TranslationChecker(checkerconfig=None, excludefilters=None, limitfilters=None, errorhandler=None)

	A checker that passes source and target strings to the checks, not the
whole unit.

This provides some speedup and simplifies testing.


	
filteraccelerators_by_list(str1, acceptlist=None)

	Filter out accelerators from str1.






	
getfilters(excludefilters=None, limitfilters=None)

	Returns dictionary of available filters, including/excluding those
in the given lists.






	
run_filters(unit, categorised=False)

	Do some optimisation by caching some data of the unit for the
benefit of run_test().






	
run_test(test, unit)

	Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal
operation.






	
setconfig(config)

	Sets the accelerator list.






	
setsuggestionstore(store)

	Sets the filename that a checker should use for evaluating
suggestions.










	
class translate.filters.checks.UnitChecker(checkerconfig=None, excludefilters=None, limitfilters=None, errorhandler=None)

	Parent Checker class which does the checking based on functions available
in derived classes.


	
categories = {}

	Categories where each checking function falls into
Function names are used as keys, categories are the values






	
filteraccelerators_by_list(str1, acceptlist=None)

	Filter out accelerators from str1.






	
getfilters(excludefilters=None, limitfilters=None)

	Returns dictionary of available filters, including/excluding those
in the given lists.






	
run_filters(unit, categorised=False)

	Run all the tests in this suite.





	Return type:	Dictionary


	Returns:	Content of the dictionary is as follows:{'testname': { 'message': message_or_exception, 'category': failure_category } }
















	
run_test(test, unit)

	Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.






	
setconfig(config)

	Sets the accelerator list.






	
setsuggestionstore(store)

	Sets the filename that a checker should use for evaluating
suggestions.










	
translate.filters.checks.batchruntests(pairs)

	Runs test on a batch of string pairs.






	
translate.filters.checks.intuplelist(pair, list)

	Tests to see if pair == (a,b,c) is in list, but handles None entries in
list as wildcards (only allowed in positions “a” and “c”). We take a
shortcut by only considering “c” if “b” has already matched.






	
translate.filters.checks.runtests(str1, str2, ignorelist=())

	Verifies that the tests pass for a pair of strings.






	
translate.filters.checks.tagname(string)

	Returns the name of the XML/HTML tag in string






	
translate.filters.checks.tagproperties(strings, ignore)

	Returns all the properties in the XML/HTML tag string as
(tagname, propertyname, propertyvalue), but ignore those combinations
specified in ignore.








decoration

functions to get decorative/informative text out of strings...


	
translate.filters.decoration.countaccelerators(accelmarker, acceptlist=None)

	returns a function that counts the number of accelerators marked
with the given marker






	
translate.filters.decoration.findaccelerators(str1, accelmarker, acceptlist=None)

	returns all the accelerators and locations in str1 marked with a
given marker






	
translate.filters.decoration.findmarkedvariables(str1, startmarker, endmarker, ignorelist=[])

	returns all the variables and locations in str1 marked with a given
marker






	
translate.filters.decoration.getaccelerators(accelmarker, acceptlist=None)

	returns a function that gets a list of accelerators marked using
accelmarker






	
translate.filters.decoration.getemails(str1)

	returns the email addresses that are in a string






	
translate.filters.decoration.getfunctions(str1)

	returns the functions() that are in a string, while ignoring the
trailing punctuation in the given parameter






	
translate.filters.decoration.getnumbers(str1)

	returns any numbers that are in the string






	
translate.filters.decoration.geturls(str1)

	returns the URIs in a string






	
translate.filters.decoration.getvariables(startmarker, endmarker)

	returns a function that gets a list of variables marked using
startmarker and endmarker






	
translate.filters.decoration.ispurepunctuation(str1)

	checks whether the string is entirely punctuation






	
translate.filters.decoration.isvalidaccelerator(accelerator, acceptlist=None)

	returns whether the given accelerator character is valid





	Parameters:	
	accelerator (character) – A character to be checked for accelerator validity

	acceptlist (String) – A list of characters that are permissible as
accelerators






	Return type:	Boolean




	Returns:	True if the supplied character is an acceptable accelerator












	
translate.filters.decoration.puncend(str1, punctuation)

	returns all the punctuation from the end of the string






	
translate.filters.decoration.puncstart(str1, punctuation)

	returns all the punctuation from the start of the string






	
translate.filters.decoration.spaceend(str1)

	returns all the whitespace from the end of the string






	
translate.filters.decoration.spacestart(str1)

	returns all the whitespace from the start of the string








helpers

a set of helper functions for filters...


	
translate.filters.helpers.countmatch(str1, str2, countstr)

	checks whether countstr occurs the same number of times in str1 and str2






	
translate.filters.helpers.countsmatch(str1, str2, countlist)

	checks whether each element in countlist occurs the same number of times in str1 and str2






	
translate.filters.helpers.filtercount(str1, func)

	returns the number of characters in str1 that pass func






	
translate.filters.helpers.filtertestmethod(testmethod, strfilter)

	returns a version of the testmethod that operates on filtered strings using strfilter






	
translate.filters.helpers.funcmatch(str1, str2, func, *args)

	returns whether the result of func is the same for str1 and str2






	
translate.filters.helpers.funcsmatch(str1, str2, funclist)

	checks whether the results of each func in funclist match for str1 and str2






	
translate.filters.helpers.multifilter(str1, strfilters, *args)

	passes str1 through a list of filters






	
translate.filters.helpers.multifiltertestmethod(testmethod, strfilters)

	returns a version of the testmethod that operates on filtered strings using strfilter








pofilter

Perform quality checks on Gettext PO, XLIFF and TMX localization files.

Snippet files are created whenever a test fails.  These can be examined,
corrected and merged back into the originals using pomerge.

See:
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html
for examples and usage instructions and
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html
for full descriptions of all tests.


	
class translate.filters.pofilter.FilterOptionParser(formats)

	A specialized Option Parser for filter tools...


	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
parse_args(args=None, values=None)

	Parses the command line options, handling implicit input/output
args.






	
parse_noinput(option, opt, value, parser, *args, **kwargs)

	This sets an option to True, but also sets input to -
to prevent an error.






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)

	Process an individual file.






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	Recurse through directories and process files.






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run()

	Parses the arguments, and runs recursiveprocess with the
resulting options.






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for
each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setprogressoptions()

	Sets the progress options.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.










	
translate.filters.pofilter.build_checkerconfig(options)

	Prepare the checker config from the given options.  This is mainly
factored out for the sake of unit tests.






	
translate.filters.pofilter.runfilter(inputfile, outputfile, templatefile, checkfilter=None)

	Reads in inputfile, filters using checkfilter, writes to outputfile.








prefilters

Filters that strings can be passed through before certain tests.


	
translate.filters.prefilters.filteraccelerators(accelmarker)

	Returns a function that filters accelerators marked using accelmarker
from a strings.





	Parameters:	accelmarker (string [https://docs.python.org/2.7/library/string.html#module-string]) – Accelerator marker character


	Return type:	Function


	Returns:	fn(str1, acceplist=None)










	
translate.filters.prefilters.filtervariables(startmarker, endmarker, varfilter)

	Returns a function that filters variables marked using startmarker and
endmarker from a string.





	Parameters:	
	startmarker (string [https://docs.python.org/2.7/library/string.html#module-string]) – Start of variable marker

	endmarker (string [https://docs.python.org/2.7/library/string.html#module-string]) – End of variable marker

	varfilter (Function) – fn(variable, startmarker, endmarker)






	Return type:	Function




	Returns:	fn(str1)












	
translate.filters.prefilters.filterwordswithpunctuation(str1)

	Goes through a list of known words that have punctuation and removes the
punctuation from them.






	
translate.filters.prefilters.removekdecomments(str1)

	Remove KDE-style PO comments.

KDE comments start with _:[space] and end with a literal \n.
Example:

"_: comment\n"










	
translate.filters.prefilters.varname(variable, startmarker, endmarker)

	Variable filter that returns the variable name without the marking
punctuation.


Note

Currently this function simply returns variable unchanged, no
matter what *marker’s are set to.







	Return type:	String


	Returns:	Variable name with the supplied startmarker and endmarker
removed.










	
translate.filters.prefilters.varnone(variable, startmarker, endmarker)

	Variable filter that returns an empty string.





	Return type:	String


	Returns:	Empty string












spelling

An API to provide spell checking for use in checks or elsewhere.







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
lang

Classes that represent languages and provides language-specific information.

All classes inherit from the parent class called common.

The type of data includes:


	Language codes

	Language name

	Plurals

	Punctuation transformation

	etc.




af

This module represents the Afrikaans language.


See also

http://en.wikipedia.org/wiki/Afrikaans_language




	
class translate.lang.af.af

	This class represents Afrikaans.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Modify this for the indefinite article (‘n).






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.










	
translate.lang.af.cyr2lat = {u'\u0401': 'Jo', u'\u0429': 'Sjtsj', u'\u0411': 'B', u'\u0410': 'A', u'\u0413': 'G', u'\u0412': 'W', u'\u0415': 'Je', u'\u0414': 'D', u'\u0417': 'Z', u'\u0416': 'Zj', u'\u0419': 'J', u'\u0418': 'I', u'\u041b': 'L', u'\u041a': 'K', u'\u041d': 'N', u'\u041c': 'M', u'\u041f': 'P', u'\u041e': 'O', u'\u0421': 'S', u'\u0420': 'R', u'\u0423': 'Oe', u'\u0422': 'T', u'\u0425': 'Ch', u'\u0424': 'F', u'\u0427': 'Tj', u'\u0426': 'Ts', u'\u0414\u0416': 'Dj', u'\u0428': 'Sj', u'\u042b': 'I', u'\u042a': '', u'\u042d': 'E', u'\u042c': '', u'\u042f': 'Ja', u'\u042e': 'Joe', u'\u0431': 'b', u'\u0430': 'a', u'\u0433': 'g', u'\u0432': 'w', u'\u0435': 'je', u'\u0434': 'd', u'\u0437': 'z', u'\u0436': 'zj', u'\u0439': 'j', u'\u0438': 'i', u'\u043b': 'l', u'\u043a': 'k', u'\u043d': 'n', u'\u043c': 'm', u'\u043f': 'p', u'\u043e': 'o', u'\u0441': 's', u'\u0440': 'r', u'\u0443': 'oe', u'\u0442': 't', u'\u0445': 'ch', u'\u0444': 'f', u'\u0447': 'tj', u'\u0446': 'ts', u'\u0449': 'sjtsj', u'\u0448': 'sj', u'\u044b': 'i', u'\u044a': '', u'\u044d': 'e', u'\u044c': '', u'\u044f': 'ja', u'\u044e': 'joe', u'\u0451': 'jo', u'\u0435\u0439': 'ei', u'\u0415\u0419': 'Ei', u'\u0434\u0436': 'dj'}

	Mapping of Cyrillic to Latin letters for transliteration in Afrikaans






	
translate.lang.af.tranliterate_cyrillic(text)

	Convert Cyrillic text to Latin according to the AWS transliteration rules.








am

This module represents the Amharic language.


See also

http://en.wikipedia.org/wiki/Amharic_language




	
class translate.lang.am.am

	This class represents Amharic.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ar

This module represents the Arabic language.


See also

http://en.wikipedia.org/wiki/Arabic_language




	
class translate.lang.ar.ar

	This class represents Arabic.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












bn

This module represents the Bengali language.


See also

http://en.wikipedia.org/wiki/Bengali_language




	
class translate.lang.bn.bn

	This class represents Bengali.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












code_or

This module represents the Oriya language.


See also

http://en.wikipedia.org/wiki/Oriya_language




	
class translate.lang.code_or.code_or

	This class represents Oriya.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












common

This module contains all the common features for languages.

Supported features:


	language code (km, af)

	language name (Khmer, Afrikaans)

	Plurals
	Number of plurals (nplurals)

	Plural equation





	pofilter tests to ignore



Segmentation:


	characters

	words

	sentences



Punctuation:


	End of sentence

	Start of sentence

	Middle of sentence

	Quotes
	single

	double





	Valid characters

	Accelerator characters

	Special characters

	Direction (rtl or ltr)



TODOs and Ideas for possible features:


	Language-Team information

	Segmentation
	phrases








	
class translate.lang.common.Common

	This class is the common parent class for all language classes.


	
CJKpunc = u'\u3002\u3001\uff0c\uff1b\uff01\uff1f\u300c\u300d\u300e\u300f\u3010\u3011'

	These punctuation marks are used in certain circumstances with CJK
languages.






	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
checker = None

	A language specific checker (see filters.checks).

This doesn’t need to be supplied, but will be used if it exists.






	
code = ''

	The ISO 639 language code, possibly with a country specifier or other
modifier.

Examples:

km
pt_BR
sr_YU@Latn










	
commonpunc = u'.,;:!?-@#$%^*_()[]{}/\\\'`"<>'

	These punctuation marks are common in English and most languages that
use latin script.






	
ethiopicpunc = u'\u1362\u1364\u1363'

	These punctuation marks are used by several Ethiopic languages.






	
fullname = ''

	The full (English) name of this language.

Dialect codes should have the form of:


	Khmer

	Portugese (Brazil)

	TODO: sr_YU@Latn?








	
ignoretests = []

	List of pofilter tests for this language that must be ignored.






	
indicpunc = u'\u0964\u0965\u0970'

	These punctuation marks are used by several Indic languages.






	
invertedpunc = u'\xbf\xa1'

	Inverted punctuation sometimes used at the beginning of sentences in
Spanish, Asturian, Galician, and Catalan.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
listseperator = u', '

	This string is used to separate lists of textual elements. Most
languages probably can stick with the default comma, but Arabic and some
Asian languages might want to override this.






	
miscpunc = u'\u2026\xb1\xb0\xb9\xb2\xb3\xb7\xa9\xae\xd7\xa3\xa5\u20ac'

	The middle dot (·) is used by Greek and Georgian.






	
mozilla_pluralequation = '0'

	This of languages that has different plural formula in Mozilla than the
standard one in Gettext.






	
nplurals = 0

	The number of plural forms of this language.

0 is not a valid value - it must be overridden.
Any positive integer is valid (it should probably be between 1 and 6)


See also

translate.lang.data








	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
pluralequation = '0'

	The plural equation for selection of plural forms.

This is used for PO files to fill into the header.


See also

Gettext manual [http://www.gnu.org/software/gettext/manual/html_node/gettext_150.html#Plural-forms], translate.lang.data








	
puncdict = {}

	A dictionary of punctuation transformation rules that can be used by
punctranslate().






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
punctuation = u'.,;:!?-@#$%^*_()[]{}/\\\'`"<>\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2032\u2033\u2034\u2035\u2036\u2037\u2039\u203a\xab\xbb\xbf\xa1\u060c\u061f\u061b\xf7\u3002\u3001\uff0c\uff1b\uff01\uff1f\u300c\u300d\u300e\u300f\u3010\u3011\u0964\u0965\u0970\u1362\u1364\u1363\u2026\xb1\xb0\xb9\xb2\xb3\xb7\xa9\xae\xd7\xa3\xa5\u20ac'

	We include many types of punctuation here, simply since this is only
meant to determine if something is punctuation. Hopefully we catch some
languages which might not be represented with modules. Most languages won’t
need to override this.






	
quotes = u'\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2032\u2033\u2034\u2035\u2036\u2037\u2039\u203a\xab\xbb'

	These are different quotation marks used by various languages.






	
rtlpunc = u'\u060c\u061f\u061b\xf7'

	These punctuation marks are used by Arabic and Persian, for example.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
sentenceend = u'.!?\u2026\u0589\u061f\u0964\u3002\uff01\uff1f\u1362\u06d4'

	These marks can indicate a sentence end. Once again we try to account
for many languages. Most langauges won’t need to override this.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
specialchars = u''

	Characters used by the language that might not be easy to input with
common keyboard layouts






	
validaccel = None

	Characters that can be used as accelerators (access keys) i.e. Alt+X
where X is the accelerator.  These can include combining diacritics as
long as they are accessible from the users keyboard in a single keystroke,
but normally they would be at least precomposed characters. All characters,
lower and upper, are included in the list.






	
validdoublewords = []

	Some languages allow double words in certain cases.  This is a dictionary
of such words.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












data

This module stores information and functionality that relates to plurals.


	
translate.lang.data.expansion_factors = {'fr': 0.28, 'ar': -0.09, 'it': 0.2, 'es': 0.21, 'af': 0.1}

	Source to target string length expansion factors.






	
translate.lang.data.forceunicode(string)

	Ensures that the string is in unicode.





	Parameters:	string (Unicode, String) – A text string


	Returns:	String converted to Unicode and normalized as needed.


	Return type:	Unicode










	
translate.lang.data.gettext_country(langcode=None)

	Returns a gettext function to translate country names into the given
language, or the system language if no language is specified.






	
translate.lang.data.gettext_lang(langcode=None)

	Returns a gettext function to translate language names into the given
language, or the system language if no language is specified.






	
translate.lang.data.iso3166 = {}

	ISO 3166 country codes






	
translate.lang.data.iso639 = {}

	ISO 639 language codes






	
translate.lang.data.languagematch(languagecode, otherlanguagecode)

	matches a languagecode to another, ignoring regions in the second






	
translate.lang.data.languages = {'son': (u'Songhai languages', 2, '(n != 1)'), 'gu': (u'Gujarati', 2, '(n != 1)'), 'ff': (u'Fulah', 2, '(n != 1)'), 'nqo': (u"N'Ko", 2, '(n > 1)'), 'nso': (u'Pedi; Sepedi; Northern Sotho', 2, '(n != 1)'), 'ca': (u'Catalan; Valencian', 2, '(n != 1)'), 'sco': (u'Scots', 2, '(n != 1)'), 'gun': (u'Gun', 2, '(n > 1)'), 'ca@valencia': (u'Catalan; Valencian (Valencia)', 2, '(n != 1)'), 'gd': (u'Gaelic; Scottish Gaelic', 4, '(n==1 || n==11) ? 0 : (n==2 || n==12) ? 1 : (n > 2 && n < 20) ? 2 : 3'), 'ga': (u'Irish', 5, 'n==1 ? 0 : n==2 ? 1 : n<7 ? 2 : n<11 ? 3 : 4'), 'cs': (u'Czech', 3, '(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2'), 'gl': (u'Galician', 2, '(n != 1)'), 'mfe': (u'Morisyen', 2, '(n > 1)'), 'ps': (u'Pushto; Pashto', 2, '(n != 1)'), 'lb': (u'Luxembourgish; Letzeburgesch', 2, '(n != 1)'), 'pt': (u'Portuguese', 2, '(n != 1)'), 'ln': (u'Lingala', 2, '(n > 1)'), 'lo': (u'Lao', 1, '0'), 'tt': (u'Tatar', 1, '0'), 'pms': (u'Piemontese', 2, '(n != 1)'), 'tr': (u'Turkish', 1, '0'), 'uk': (u'Ukrainian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'lv': (u'Latvian', 3, '(n%10==1 && n%100!=11 ? 0 : n != 0 ? 1 : 2)'), 'lt': (u'Lithuanian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'pa': (u'Panjabi; Punjabi', 2, '(n != 1)'), 'sw': (u'Swahili', 2, '(n != 1)'), 'tg': (u'Tajik', 2, '(n != 1)'), 'th': (u'Thai', 1, '0'), 'ti': (u'Tigrinya', 2, '(n > 1)'), 'su': (u'Sundanese', 1, '0'), 'te': (u'Telugu', 2, '(n != 1)'), 'is': (u'Icelandic', 2, '(n != 1)'), 'en_GB': (u'English (United Kingdom)', 2, '(n != 1)'), 'ta': (u'Tamil', 2, '(n != 1)'), 'hy': (u'Armenian', 1, '0'), 'pt_BR': (u'Portuguese (Brazil)', 2, '(n != 1)'), 'hr': (u'Croatian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'de': (u'German', 2, '(n != 1)'), 'ht': (u'Haitian; Haitian Creole', 2, '(n != 1)'), 'da': (u'Danish', 2, '(n != 1)'), 'hi': (u'Hindi', 2, '(n != 1)'), 'dz': (u'Dzongkha', 1, '0'), 'st': (u'Sotho, Southern', 2, '(n != 1)'), 'ha': (u'Hausa', 2, '(n != 1)'), 'he': (u'Hebrew', 2, '(n != 1)'), 'mg': (u'Malagasy', 2, '(n > 1)'), 'fur': (u'Friulian', 2, '(n != 1)'), 'zh_CN': (u'Chinese (China)', 1, '0'), 'ml': (u'Malayalam', 2, '(n != 1)'), 'mn': (u'Mongolian', 2, '(n != 1)'), 'mi': (u'Maori', 2, '(n > 1)'), 'cy': (u'Welsh', 2, '(n==2) ? 1 : 0'), 'en_ZA': (u'English (South Africa)', 2, '(n != 1)'), 'zh_HK': (u'Chinese (Hong Kong)', 1, '0'), 'mt': (u'Maltese', 4, '(n==1 ? 0 : n==0 || ( n%100>1 && n%100<11) ? 1 : (n%100>10 && n%100<20 ) ? 2 : 3)'), 'fil': (u'Filipino; Pilipino', 2, '(n > 1)'), 'ms': (u'Malay', 1, '0'), 'mr': (u'Marathi', 2, '(n != 1)'), 'ug': (u'Uighur; Uyghur', 1, '0'), 'el': (u'Greek, Modern (1453-)', 2, '(n != 1)'), 'eo': (u'Esperanto', 2, '(n != 1)'), 'en': (u'English', 2, '(n != 1)'), 'tk': (u'Turkmen', 2, '(n != 1)'), 'af': (u'Afrikaans', 2, '(n != 1)'), 've': (u'Venda', 2, '(n != 1)'), 'oc': (u'Occitan (post 1500)', 2, '(n > 1)'), 'ak': (u'Akan', 2, 'n > 1'), 'am': (u'Amharic', 2, 'n > 1'), 'it': (u'Italian', 2, '(n != 1)'), 'an': (u'Aragonese', 2, '(n != 1)'), 'ia': (u'Interlingua (International Auxiliary Language Association)', 2, '(n != 1)'), 'ar': (u'Arabic', 6, 'n==0 ? 0 : n==1 ? 1 : n==2 ? 2 : n%100>=3 && n%100<=10 ? 3 : n%100>=11 ? 4 : 5'), 'mk': (u'Macedonian', 2, 'n==1 || n%10==1 ? 0 : 1'), 'zu': (u'Zulu', 2, '(n != 1)'), 'eu': (u'Basque', 2, '(n != 1)'), 'et': (u'Estonian', 2, '(n != 1)'), 'az': (u'Azerbaijani', 2, '(n != 1)'), 'id': (u'Indonesian', 1, '0'), 'arn': (u'Mapudungun; Mapuche', 2, 'n > 1'), 'bn_IN': (u'Bengali (India)', 2, '(n != 1)'), 'pap': (u'Papiamento', 2, '(n != 1)'), 'ru': (u'Russian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'nl': (u'Dutch; Flemish', 2, '(n != 1)'), 'yo': (u'Yoruba', 2, '(n != 1)'), 'nn': (u'Norwegian Nynorsk; Nynorsk, Norwegian', 2, '(n != 1)'), 'nah': (u'Nahuatl languages', 2, '(n != 1)'), 'ne': (u'Nepali', 2, '(n != 1)'), 'csb': (u'Kashubian', 3, 'n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'wo': (u'Wolof', 2, '(n != 1)'), 'nap': (u'Neapolitan', 2, '(n != 1)'), 'es': (u'Spanish; Castilian', 2, '(n != 1)'), 'rm': (u'Romansh', 2, '(n != 1)'), 'zh_TW': (u'Chinese (Taiwan)', 1, '0'), 'ro': (u'Romanian', 3, '(n==1 ? 0 : (n==0 || (n%100 > 0 && n%100 < 20)) ? 1 : 2);'), 'sah': (u'Yakut', 1, '0'), 'jv': (u'Javanese', 2, '(n != 1)'), 'be': (u'Belarusian', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'fr': (u'French', 2, '(n > 1)'), 'bg': (u'Bulgarian', 2, '(n != 1)'), 'sv': (u'Swedish', 2, '(n != 1)'), 'wa': (u'Walloon', 2, '(n > 1)'), 'ast': (u'Asturian; Bable; Leonese; Asturleonese', 2, '(n != 1)'), 'vi': (u'Vietnamese', 1, '0'), 'fy': (u'Frisian', 2, '(n != 1)'), 'bn': (u'Bengali', 2, '(n != 1)'), 'bo': (u'Tibetan', 1, '0'), 'fa': (u'Persian', 1, '0'), 'br': (u'Breton', 2, 'n > 1'), 'bs': (u'Bosnian', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'mai': (u'Maithili', 2, '(n != 1)'), 'fi': (u'Finnish', 2, '(n != 1)'), 'hu': (u'Hungarian', 2, '(n != 1)'), 'ja': (u'Japanese', 1, '0'), 'fo': (u'Faroese', 2, '(n != 1)'), 'ka': (u'Georgian', 1, '0'), 'so': (u'Somali', 2, '(n != 1)'), 'kk': (u'Kazakh', 1, '0'), 'sr': (u'Serbian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'sq': (u'Albanian', 2, '(n != 1)'), 'ko': (u'Korean', 1, '0'), 'kn': (u'Kannada', 2, '(n != 1)'), 'km': (u'Central Khmer', 1, '0'), 'or': (u'Oriya', 2, '(n != 1)'), 'sk': (u'Slovak', 3, '(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2'), 'si': (u'Sinhala; Sinhalese', 2, '(n != 1)'), 'pl': (u'Polish', 3, '(n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'kw': (u'Cornish', 4, '(n==1) ? 0 : (n==2) ? 1 : (n == 3) ? 2 : 3'), 'ku': (u'Kurdish', 2, '(n != 1)'), 'sl': (u'Slovenian', 4, '(n%100==1 ? 0 : n%100==2 ? 1 : n%100==3 || n%100==4 ? 2 : 3)'), 'ky': (u'Kirghiz; Kyrgyz', 1, '0'), 'nb': (u'Bokm\xe5l, Norwegian; Norwegian Bokm\xe5l', 2, '(n != 1)')}

	Dictionary of language data.
The language code is the dictionary key (which may contain country codes
and modifiers).  The value is a tuple: (Full name in English from iso-codes,
nplurals, plural equation).

Note that the English names should not be used in user facing places - it
should always be passed through the function returned from tr_lang(), or at
least passed through _fix_language_name().






	
translate.lang.data.normalize(string, normal_form='NFC')

	Return a unicode string in its normalized form





	Parameters:	
	string – The string to be normalized

	normal_form – NFC (default), NFD, NFKC, NFKD






	Returns:	Normalized string












	
translate.lang.data.normalized_unicode(string)

	Forces the string to unicode and does normalization.






	
translate.lang.data.simplercode(code)

	This attempts to simplify the given language code by ignoring country
codes, for example.


See also


	http://www.rfc-editor.org/rfc/bcp/bcp47.txt

	http://www.rfc-editor.org/rfc/rfc4646.txt

	http://www.rfc-editor.org/rfc/rfc4647.txt

	http://www.w3.org/International/articles/language-tags/










	
translate.lang.data.simplify_to_common(language_code, languages={'son': (u'Songhai languages', 2, '(n != 1)'), 'gu': (u'Gujarati', 2, '(n != 1)'), 'ff': (u'Fulah', 2, '(n != 1)'), 'nqo': (u"N'Ko", 2, '(n > 1)'), 'nso': (u'Pedi; Sepedi; Northern Sotho', 2, '(n != 1)'), 'ca': (u'Catalan; Valencian', 2, '(n != 1)'), 'sco': (u'Scots', 2, '(n != 1)'), 'gun': (u'Gun', 2, '(n > 1)'), 'ca@valencia': (u'Catalan; Valencian (Valencia)', 2, '(n != 1)'), 'gd': (u'Gaelic; Scottish Gaelic', 4, '(n==1 || n==11) ? 0 : (n==2 || n==12) ? 1 : (n > 2 && n < 20) ? 2 : 3'), 'ga': (u'Irish', 5, 'n==1 ? 0 : n==2 ? 1 : n<7 ? 2 : n<11 ? 3 : 4'), 'cs': (u'Czech', 3, '(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2'), 'gl': (u'Galician', 2, '(n != 1)'), 'mfe': (u'Morisyen', 2, '(n > 1)'), 'ps': (u'Pushto; Pashto', 2, '(n != 1)'), 'lb': (u'Luxembourgish; Letzeburgesch', 2, '(n != 1)'), 'pt': (u'Portuguese', 2, '(n != 1)'), 'ln': (u'Lingala', 2, '(n > 1)'), 'lo': (u'Lao', 1, '0'), 'tt': (u'Tatar', 1, '0'), 'pms': (u'Piemontese', 2, '(n != 1)'), 'tr': (u'Turkish', 1, '0'), 'uk': (u'Ukrainian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'lv': (u'Latvian', 3, '(n%10==1 && n%100!=11 ? 0 : n != 0 ? 1 : 2)'), 'lt': (u'Lithuanian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'pa': (u'Panjabi; Punjabi', 2, '(n != 1)'), 'sw': (u'Swahili', 2, '(n != 1)'), 'tg': (u'Tajik', 2, '(n != 1)'), 'th': (u'Thai', 1, '0'), 'ti': (u'Tigrinya', 2, '(n > 1)'), 'su': (u'Sundanese', 1, '0'), 'te': (u'Telugu', 2, '(n != 1)'), 'is': (u'Icelandic', 2, '(n != 1)'), 'en_GB': (u'English (United Kingdom)', 2, '(n != 1)'), 'ta': (u'Tamil', 2, '(n != 1)'), 'hy': (u'Armenian', 1, '0'), 'pt_BR': (u'Portuguese (Brazil)', 2, '(n != 1)'), 'hr': (u'Croatian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'de': (u'German', 2, '(n != 1)'), 'ht': (u'Haitian; Haitian Creole', 2, '(n != 1)'), 'da': (u'Danish', 2, '(n != 1)'), 'hi': (u'Hindi', 2, '(n != 1)'), 'dz': (u'Dzongkha', 1, '0'), 'st': (u'Sotho, Southern', 2, '(n != 1)'), 'ha': (u'Hausa', 2, '(n != 1)'), 'he': (u'Hebrew', 2, '(n != 1)'), 'mg': (u'Malagasy', 2, '(n > 1)'), 'fur': (u'Friulian', 2, '(n != 1)'), 'zh_CN': (u'Chinese (China)', 1, '0'), 'ml': (u'Malayalam', 2, '(n != 1)'), 'mn': (u'Mongolian', 2, '(n != 1)'), 'mi': (u'Maori', 2, '(n > 1)'), 'cy': (u'Welsh', 2, '(n==2) ? 1 : 0'), 'en_ZA': (u'English (South Africa)', 2, '(n != 1)'), 'zh_HK': (u'Chinese (Hong Kong)', 1, '0'), 'mt': (u'Maltese', 4, '(n==1 ? 0 : n==0 || ( n%100>1 && n%100<11) ? 1 : (n%100>10 && n%100<20 ) ? 2 : 3)'), 'fil': (u'Filipino; Pilipino', 2, '(n > 1)'), 'ms': (u'Malay', 1, '0'), 'mr': (u'Marathi', 2, '(n != 1)'), 'ug': (u'Uighur; Uyghur', 1, '0'), 'el': (u'Greek, Modern (1453-)', 2, '(n != 1)'), 'eo': (u'Esperanto', 2, '(n != 1)'), 'en': (u'English', 2, '(n != 1)'), 'tk': (u'Turkmen', 2, '(n != 1)'), 'af': (u'Afrikaans', 2, '(n != 1)'), 've': (u'Venda', 2, '(n != 1)'), 'oc': (u'Occitan (post 1500)', 2, '(n > 1)'), 'ak': (u'Akan', 2, 'n > 1'), 'am': (u'Amharic', 2, 'n > 1'), 'it': (u'Italian', 2, '(n != 1)'), 'an': (u'Aragonese', 2, '(n != 1)'), 'ia': (u'Interlingua (International Auxiliary Language Association)', 2, '(n != 1)'), 'ar': (u'Arabic', 6, 'n==0 ? 0 : n==1 ? 1 : n==2 ? 2 : n%100>=3 && n%100<=10 ? 3 : n%100>=11 ? 4 : 5'), 'mk': (u'Macedonian', 2, 'n==1 || n%10==1 ? 0 : 1'), 'zu': (u'Zulu', 2, '(n != 1)'), 'eu': (u'Basque', 2, '(n != 1)'), 'et': (u'Estonian', 2, '(n != 1)'), 'az': (u'Azerbaijani', 2, '(n != 1)'), 'id': (u'Indonesian', 1, '0'), 'arn': (u'Mapudungun; Mapuche', 2, 'n > 1'), 'bn_IN': (u'Bengali (India)', 2, '(n != 1)'), 'pap': (u'Papiamento', 2, '(n != 1)'), 'ru': (u'Russian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'nl': (u'Dutch; Flemish', 2, '(n != 1)'), 'yo': (u'Yoruba', 2, '(n != 1)'), 'nn': (u'Norwegian Nynorsk; Nynorsk, Norwegian', 2, '(n != 1)'), 'nah': (u'Nahuatl languages', 2, '(n != 1)'), 'ne': (u'Nepali', 2, '(n != 1)'), 'csb': (u'Kashubian', 3, 'n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'wo': (u'Wolof', 2, '(n != 1)'), 'nap': (u'Neapolitan', 2, '(n != 1)'), 'es': (u'Spanish; Castilian', 2, '(n != 1)'), 'rm': (u'Romansh', 2, '(n != 1)'), 'zh_TW': (u'Chinese (Taiwan)', 1, '0'), 'ro': (u'Romanian', 3, '(n==1 ? 0 : (n==0 || (n%100 > 0 && n%100 < 20)) ? 1 : 2);'), 'sah': (u'Yakut', 1, '0'), 'jv': (u'Javanese', 2, '(n != 1)'), 'be': (u'Belarusian', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'fr': (u'French', 2, '(n > 1)'), 'bg': (u'Bulgarian', 2, '(n != 1)'), 'sv': (u'Swedish', 2, '(n != 1)'), 'wa': (u'Walloon', 2, '(n > 1)'), 'ast': (u'Asturian; Bable; Leonese; Asturleonese', 2, '(n != 1)'), 'vi': (u'Vietnamese', 1, '0'), 'fy': (u'Frisian', 2, '(n != 1)'), 'bn': (u'Bengali', 2, '(n != 1)'), 'bo': (u'Tibetan', 1, '0'), 'fa': (u'Persian', 1, '0'), 'br': (u'Breton', 2, 'n > 1'), 'bs': (u'Bosnian', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'mai': (u'Maithili', 2, '(n != 1)'), 'fi': (u'Finnish', 2, '(n != 1)'), 'hu': (u'Hungarian', 2, '(n != 1)'), 'ja': (u'Japanese', 1, '0'), 'fo': (u'Faroese', 2, '(n != 1)'), 'ka': (u'Georgian', 1, '0'), 'so': (u'Somali', 2, '(n != 1)'), 'kk': (u'Kazakh', 1, '0'), 'sr': (u'Serbian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'sq': (u'Albanian', 2, '(n != 1)'), 'ko': (u'Korean', 1, '0'), 'kn': (u'Kannada', 2, '(n != 1)'), 'km': (u'Central Khmer', 1, '0'), 'or': (u'Oriya', 2, '(n != 1)'), 'sk': (u'Slovak', 3, '(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2'), 'si': (u'Sinhala; Sinhalese', 2, '(n != 1)'), 'pl': (u'Polish', 3, '(n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'kw': (u'Cornish', 4, '(n==1) ? 0 : (n==2) ? 1 : (n == 3) ? 2 : 3'), 'ku': (u'Kurdish', 2, '(n != 1)'), 'sl': (u'Slovenian', 4, '(n%100==1 ? 0 : n%100==2 ? 1 : n%100==3 || n%100==4 ? 2 : 3)'), 'ky': (u'Kirghiz; Kyrgyz', 1, '0'), 'nb': (u'Bokm\xe5l, Norwegian; Norwegian Bokm\xe5l', 2, '(n != 1)')})

	Simplify language code to the most commonly used form for the
language, stripping country information for languages that tend
not to be localized differently for different countries






	
translate.lang.data.tr_lang(langcode=None)

	Gives a function that can translate a language name, even in the
form "language (country)", into the language with iso code langcode,
or the system language if no language is specified.








de

This module represents the German language.


See also

http://en.wikipedia.org/wiki/German_language




	
class translate.lang.de.de

	This class represents German.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












el

This module represents the Greek language.


See also

http://en.wikipedia.org/wiki/Greek_language




	
class translate.lang.el.el

	This class represents Greek.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












es

This module represents the Spanish language.


Note

As it only has special case code for initial inverted punctuation,
it could also be used for Asturian, Galician, or Catalan.




	
class translate.lang.es.es

	This class represents Spanish.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Implement some extra features for inverted punctuation.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












factory

This module provides a factory to instantiate language classes.


	
translate.lang.factory.getlanguage(code)

	This returns a language class.





	Parameters:	code – The ISO 639 language code












fa

This module represents the Persian language.


See also

http://en.wikipedia.org/wiki/Persian_language




	
class translate.lang.fa.fa

	This class represents Persian.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Implement “French” quotation marks.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












fi

This module represents the Finnish language.


	
class translate.lang.fi.fi

	This class represents Finnish.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












fr

This module represents the French language.


See also

http://en.wikipedia.org/wiki/French_language




	
class translate.lang.fr.fr

	This class represents French.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Implement some extra features for quotation marks.


	Known shortcomings:

	
	% and $ are not touched yet for fear of variables

	Double spaces might be introduced












	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












gu

This module represents the Gujarati language.


See also

http://en.wikipedia.org/wiki/Gujarati_language




	
class translate.lang.gu.gu

	This class represents Gujarati.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












he

This module represents the Hebrew language.


See also

http://en.wikipedia.org/wiki/Hebrew_language




	
class translate.lang.he.he

	This class represents Hebrew.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












hi

This module represents the Hindi language.


See also

http://en.wikipedia.org/wiki/Hindi_language




	
class translate.lang.hi.hi

	This class represents Hindi.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












hy

This module represents the Armenian language.


See also

http://en.wikipedia.org/wiki/Armenian_language




	
class translate.lang.hy.hy

	This class represents Armenian.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












identify

This module contains functions for identifying languages based on language
models.




ja

This module represents the Japanese language.


See also

http://en.wikipedia.org/wiki/Japanese_language




	
class translate.lang.ja.ja

	This class represents Japanese.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












km

This module represents the Khmer language.


See also

http://en.wikipedia.org/wiki/Khmer_language




	
class translate.lang.km.km

	This class represents Khmer.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
khmerpunc = u'\u17d4\u17d5\u17d6\u17d8'

	These marks are only used for Khmer.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












kn

This module represents the Kannada language.


See also

http://en.wikipedia.org/wiki/Kannada_language




	
class translate.lang.kn.kn

	This class represents Kannada.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ko

This module represents the Korean language.


See also

http://en.wikipedia.org/wiki/Korean_language




	
class translate.lang.ko.ko

	This class represents Korean.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ml

This module represents the Malayalam language.


See also

http://en.wikipedia.org/wiki/Malayalam_language




	
class translate.lang.ml.ml

	This class represents Malayalam.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












mr

This module represents the Marathi language.


See also

http://en.wikipedia.org/wiki/Marathi_language




	
class translate.lang.mr.mr

	This class represents Marathi.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ne

This module represents the Nepali language.


See also

http://en.wikipedia.org/wiki/Nepali_language




	
class translate.lang.ne.ne

	This class represents Nepali.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ngram

Ngram models for language guessing.


Note

Orignal code from http://thomas.mangin.me.uk/data/source/ngram.py






pa

This module represents the Punjabi language.


See also

http://en.wikipedia.org/wiki/Punjabi_language




	
class translate.lang.pa.pa

	This class represents Punjabi.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












poedit

Functions to manage Poedit’s language features.


Note

The ISO 639 maps are from Poedit’s
isocode.cpp [https://github.com/vslavik/poedit/blob/v1.4.2/src/isocodes.cpp#L36-227]
(v1.4.2) to ensure that we match currently released versions of Poedit.




	
translate.lang.poedit.dialects = {'Portuguese': {'BRAZIL': 'pt_BR', 'None': 'pt', 'PORTUGAL': 'pt'}, 'Chinese': {'TAIWAN': 'zh_TW', 'CHINA': 'zh_CN', 'None': 'zh_CN'}, 'English': {'UNITED KINGDOM': 'en_GB', 'None': 'en', 'SOUTH AFRICA': 'en_ZA'}}

	Language dialects based on ISO 3166 country names, ‘None’ is the
default fallback






	
translate.lang.poedit.isocode(language, country=None)

	Returns a language code for the given Poedit language name.

Poedit uses language and country names in the PO header entries:


	X-Poedit-Language

	X-Poedit-Country



This function converts the supplied language name into the required ISO 639
code. If needed, in the case of dialects, the country name is used
to create an xx_YY style dialect code.





	Parameters:	
	language (String) – Language name

	country (String) – Country name






	Returns:	ISO 639 language code




	Return type:	String












	
translate.lang.poedit.lang_codes = {'vi': 'Vietnamese', 'gu': 'Gujarati', 'ch': 'Chamorro', 'co': 'Corsican', 'ca': 'Catalan', 'xh': 'Xhosa', 'ce': 'Chechen', 'ts': 'Tsonga', 'sm': 'Samoan', 'cy': 'Welsh', 'en': 'English', 'ga': 'Irish', 'cs': 'Czech', 'gn': 'Guarani', 'gl': 'Galician', 'cv': 'Chuvash', 'cu': 'Church Slavic', 'ps': 'Pashto, Pushto', 'lb': 'Letzeburgesch', 'pt': 'Portuguese', 'la': 'Latin', 'ln': 'Lingala', 'lo': 'Lao', 'tt': 'Tatar', 'tr': 'Turkish', 'tl': 'Tagalog', 'uk': 'Ukrainian', 'lv': 'Latvian', 'to': 'Tonga', 'lt': 'Lithuanian', 'pa': 'Panjabi', 'sw': 'Swahili', 'tk': 'Turkmen', 'jw': 'Javanese', 'ti': 'Tigrinya', 'tg': 'Tajik', 'pi': 'Pali', 'ia': 'Interlingua', 'pl': 'Polish', 'ta': 'Tamil', 'hz': 'Herero', 'zh': 'Chinese', 'hy': 'Armenian', 'th': 'Thai', 'yo': 'Yoruba', 'hr': 'Croatian', 'iu': 'Inuktitut', 'de': 'German', 'om': '(Afan) Oromo', 'da': 'Danish', 'za': 'Zhuang', 'hi': 'Hindi', 'dz': 'Dzongkha', 'ho': 'Hiri Motu', 'st': 'Sesotho', 'qu': 'Quechua', 'ha': 'Hausa', 'rn': 'Rundi', 'he': 'Hebrew', 'mg': 'Malagasy', 'te': 'Telugu', 'fur': 'Friulian', 'uz': 'Uzbek', 'sa': 'Sanskrit', 'ml': 'Malayalam', 'mo': 'Moldavian', 'mn': 'Mongolian', 'mi': 'Maori', 'ik': 'Inupiaq', 'mk': 'Macedonian', 'ur': 'Urdu', 'mt': 'Maltese', 'sr': 'Serbian', 'gd': 'Gaelic', 'sk': 'Slovak', 'ms': 'Malay', 'mr': 'Marathi', 'ug': 'Uighur', 'tw': 'Twi', 'my': 'Burmese', 'sq': 'Albanian', 'aa': 'Afar', 'el': 'Greek', 'eo': 'Esperanto', 'ab': 'Abkhazian', 'ae': 'Avestan', 'ss': 'Siswati', 'af': 'Afrikaans', 'tn': 'Setswana', 'oc': 'Occitan', 'is': 'Icelandic', 'am': 'Amharic', 'it': 'Italian', 'mh': 'Marshall', 'eu': 'Basque', 'as': 'Assamese', 'ar': 'Arabic', 'sg': 'Sangro', 'su': 'Sundanese', 'zu': 'Zulu', 'ay': 'Aymara', 'et': 'Estonian', 'az': 'Azerbaijani', 'ie': 'Interlingue', 'id': 'Indonesian', 'es': 'Spanish', 'ru': 'Russian', 'rw': 'Kinyarwanda', 'nl': 'Dutch', 'nn': 'Norwegian Nynorsk', 'na': 'Nauru', 'nb': 'Norwegian Bokmal', 'ne': 'Nepali', 'ng': 'Ndonga', 'ny': 'Chichewa; Nyanja', 'vo': 'Volapuk', 'rm': 'Rhaeto-Romance', 'nr': 'Ndebele, South', 'ro': 'Romanian', 'yi': 'Yiddish', 'nv': 'Navajo', 'sn': 'Shona', 'be': 'Belarusian', 'fr': 'French', 'bg': 'Bulgarian', 'sv': 'Swedish', 'ba': 'Bashkir', 'wa': 'Walloon', 'wo': 'Wolof', 'fy': 'Frisian', 'bn': 'Bengali', 'bo': 'Tibetan', 'bh': 'Bihari', 'bi': 'Bislama', 'fa': 'Persian', 'br': 'Breton', 'bs': 'Bosnian', 'fi': 'Finnish', 'fj': 'Fijian', 'hu': 'Hungarian', 'ja': 'Japanese', 'fo': 'Faroese', 'ka': 'Georgian', 'so': 'Somali', 'kk': 'Kazakh', 'kj': 'Kuanyama', 'ki': 'Kikuyu', 'ty': 'Tahitian', 'ko': 'Korean', 'kn': 'Kannada', 'km': 'Khmer', 'kl': 'Kalaallisut', 'ks': 'Kashmiri', 'si': 'Sinhalese', 'sh': 'Serbo-Croatian', 'kw': 'Cornish', 'kv': 'Komi', 'ku': 'Kurdish', 'sl': 'Slovenian', 'sc': 'Sardinian', 'ky': 'Kyrgyz', 'os': 'Ossetian; Ossetic', 'or': 'Oriya', 'se': 'Northern Sami', 'sd': 'Sindhi'}

	ISO369 codes and names as used by Poedit.
Mostly these are identical to ISO 639, but there are some differences.






	
translate.lang.poedit.lang_names = {'Estonian': 'et', 'Telugu': 'te', 'Kyrgyz': 'ky', 'Cornish': 'kw', 'Bulgarian': 'bg', 'Yoruba': 'yo', 'French': 'fr', 'Fijian': 'fj', 'Armenian': 'hy', 'Tsonga': 'ts', 'Tamil': 'ta', 'Kalaallisut': 'kl', 'Ossetian; Ossetic': 'os', 'Twi': 'tw', 'Nepali': 'ne', 'Finnish': 'fi', 'Sundanese': 'su', 'Albanian': 'sq', 'Walloon': 'wa', 'Tagalog': 'tl', 'Serbian': 'sr', 'Malayalam': 'ml', 'Church Slavic': 'cu', 'Italian': 'it', 'Navajo': 'nv', 'Chamorro': 'ch', 'Bislama': 'bi', 'Galician': 'gl', 'German': 'de', 'Slovak': 'sk', 'Yiddish': 'yi', 'Urdu': 'ur', 'Polish': 'pl', 'Occitan': 'oc', 'Xhosa': 'xh', 'Swedish': 'sv', 'Norwegian Bokmal': 'nb', 'Marathi': 'mr', 'Slovenian': 'sl', 'Uighur': 'ug', 'Azerbaijani': 'az', 'Faroese': 'fo', 'Nauru': 'na', 'Danish': 'da', 'Indonesian': 'id', 'Latin': 'la', 'Zulu': 'zu', 'Norwegian Nynorsk': 'nn', 'Georgian': 'ka', 'Zhuang': 'za', 'Tigrinya': 'ti', 'Sinhalese': 'si', 'Komi': 'kv', 'Tajik': 'tg', 'Thai': 'th', 'Afrikaans': 'af', 'Tibetan': 'bo', 'Turkmen': 'tk', 'Chichewa; Nyanja': 'ny', 'Tonga': 'to', 'Kikuyu': 'ki', 'Guarani': 'gn', '(Afan) Oromo': 'om', 'Uzbek': 'uz', 'Serbo-Croatian': 'sh', 'Herero': 'hz', 'Sangro': 'sg', 'Gaelic': 'gd', 'Burmese': 'my', 'Chuvash': 'cv', 'Latvian': 'lv', 'English': 'en', 'Croatian': 'hr', 'Chinese': 'zh', 'Greek': 'el', 'Inuktitut': 'iu', 'Tatar': 'tt', 'Pali': 'pi', 'Rhaeto-Romance': 'rm', 'Friulian': 'fur', 'Spanish': 'es', 'Arabic': 'ar', 'Breton': 'br', 'Swahili': 'sw', 'Icelandic': 'is', 'Turkish': 'tr', 'Samoan': 'sm', 'Inupiaq': 'ik', 'Gujarati': 'gu', 'Hindi': 'hi', 'Sindhi': 'sd', 'Korean': 'ko', 'Malagasy': 'mg', 'Khmer': 'km', 'Maori': 'mi', 'Hungarian': 'hu', 'Wolof': 'wo', 'Bosnian': 'bs', 'Lithuanian': 'lt', 'Malay': 'ms', 'Catalan': 'ca', 'Russian': 'ru', 'Pashto, Pushto': 'ps', 'Lingala': 'ln', 'Kazakh': 'kk', 'Bengali': 'bn', 'Kashmiri': 'ks', 'Siswati': 'ss', 'Hiri Motu': 'ho', 'Frisian': 'fy', 'Amharic': 'am', 'Panjabi': 'pa', 'Javanese': 'jw', 'Oriya': 'or', 'Afar': 'aa', 'Sesotho': 'st', 'Hausa': 'ha', 'Irish': 'ga', 'Moldavian': 'mo', 'Czech': 'cs', 'Marshall': 'mh', 'Belarusian': 'be', 'Kannada': 'kn', 'Macedonian': 'mk', 'Persian': 'fa', 'Mongolian': 'mn', 'Dzongkha': 'dz', 'Basque': 'eu', 'Aymara': 'ay', 'Northern Sami': 'se', 'Ndonga': 'ng', 'Setswana': 'tn', 'Vietnamese': 'vi', 'Romanian': 'ro', 'Shona': 'sn', 'Somali': 'so', 'Sardinian': 'sc', 'Corsican': 'co', 'Chechen': 'ce', 'Dutch': 'nl', 'Sanskrit': 'sa', 'Lao': 'lo', 'Bihari': 'bh', 'Ukrainian': 'uk', 'Welsh': 'cy', 'Tahitian': 'ty', 'Maltese': 'mt', 'Assamese': 'as', 'Ndebele, South': 'nr', 'Kurdish': 'ku', 'Bashkir': 'ba', 'Quechua': 'qu', 'Kuanyama': 'kj', 'Volapuk': 'vo', 'Letzeburgesch': 'lb', 'Rundi': 'rn', 'Portuguese': 'pt', 'Abkhazian': 'ab', 'Interlingua': 'ia', 'Japanese': 'ja', 'Kinyarwanda': 'rw', 'Interlingue': 'ie', 'Avestan': 'ae', 'Hebrew': 'he', 'Esperanto': 'eo'}

	Reversed lang_codes








si

This module represents the Sinhala language.


See also

http://en.wikipedia.org/wiki/Sinhala_language




	
class translate.lang.si.si

	This class represents Sinhala.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












st

This module represents the Southern Sotho language.


	
class translate.lang.st.st

	This class represents Southern Sotho.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












sv

This module represents the the Swedish language.


See also

http://en.wikipedia.org/wiki/Swedish_language




	
class translate.lang.sv.sv

	This class represents Swedish.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ta

This module represents the Tamil language.


See also

http://en.wikipedia.org/wiki/Tamil_language




	
class translate.lang.ta.ta

	This class represents Tamil.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












team

Module to guess the language ISO code based on the ‘Language-Team’ entry in
the header of a Gettext PO file.


	
translate.lang.team.LANG_TEAM_CONTACT_SNIPPETS = {'gu': ('indianoss-gujarati@lists.sourceforge.net',), 'ga': ('gaeilge-gnulinux@lists.sourceforge.net', 'gaeilge-a@listserv.heanet.ie'), 'gl': ('trasno@ceu.fi.udc.es', 'gnome@g11n.net', 'gpul-traduccion@ceu.fi.udc.es', 'proxecto@trasno.net', 'trasno@gpul.org'), 'la': ('gnome-latin-list@gnome.org',), 'tt': ('tatarish.l10n@gmail.com',), 'tr': ('debian-l10n-turkish@lists.debian.org', 'gnome-turk@gnome.org', 'gnu-tr-u12a@lists.sourceforge.net', 'turkce@pardus.org.tr'), 'li': ('li@gnome.org',), 'lv': ('lata-l10n@googlegroups.com', 'lata-i18n@groups.google.com', 'locale@laka.lv', 'll10nt@os.lv'), 'lt': ('gimp-lt@lists.akl.lt', 'gnome-lt@lists.akl.lt', 'gnome-lt@lists.gnome.org', 'komp_lt@konferencijos.lt'), 'tk': ('kakilikgroup@yahoo.com',), 'th': ('l10n@opentle.org', 'thai-l10n@googlegroup.com', 'thailang@buraphalinux.org', 'thai-l10n@googlegroups.com', 'l10n.opentle.org'), 'te': ('localisation@swecha.org', 'indlinux-telugu@lists.sourceforge.net'), 'ta': ('gnome-tamil-translation@googlegroups.com', 'tamilinix@yahoogroups.com', 'Ubuntu-l10n-tam@lists.ubuntu.com', 'tamil-DI@yahoogroups.com'), 'pt_BR': ('gnome-l10n-br@listas.cipsga.org.br', 'gnome-pt_br-list@gnome.org', 'fedora-docs-br@redhat.com', 'fedora-trans-pt-br@redhat.com', 'ldp-br@bazar.conectiva.com.br', 'pgbr-dev@postgresql.org.br', 'pgbr-dev@listas.postgresql.org.br', 'debian-l10n-portuguese@lists.debian.org'), 'de': ('gnome-de@gnome.org', 'debian-l10n-german@lists.debian.org'), 'da': ('dansk@dansk-gruppen.dk', 'dansk@klid.dk', 'sslug-locale@sslug.dk'), 'dz': ('pgeyleg@dit.gov.bt', 'pgyeleg@dit.gov.bt'), 'crh': ('tilde-birlik-tercime@lists.sourceforge.net',), 'el': ('debian-l10n-greek@lists.debian.org', 'i18ngr@lists.hellug.gr', 'i18n@hellug.gr', 'nls@tux.hellug.gr', 'team@gnome.gr', 'team@lists.gnome.gr', 'users@el.openoffice.org'), 'eo': ('eo-tradukado@lists.tuxfamily.org', 'debian-l10n-esperanto@lists.debian.org', 'ubuntu-l10n-eo@lists.launchpad.net', 'eo-tradukado.tuxfamily.org'), 'be': ('i18n@mova.org', 'i18n@tut.by', 'mozilla_byx@poczta.fm'), 'eu': ('debian-l10n-basque@lists.debian.org', 'debian-l10n-eu@lists.debian.org', 'itzulpena@euskalgnu.org', 'gnome@euskalgnu.org', 'librezale@librezale.org', 'linux-eu@chanae.alphanet.ch'), 'et': ('gnome-et@linux.ee', 'kde-et@linux.ee', 'linux-ee@lists.eenet.ee', 'linux-et@lists.eenet.ee', 'et-gnome@linux.ee', 'linux-ee@eenet.ee'), 'es': ('pgsql-es-ayuda@postgresql.org', 'debian-l10n-spanish@lists.debian.org', 'gnome-es@gnome.org', 'traductores@es.gnome.org'), 'ru': ('pgsql-rus@yahoogroups.com', 'debian-l10n-russian@lists.debian.org', 'gnupg-ru@gnupg.org'), 'ro': ('fedora-ro@googlegroups.com', 'gnomero-list@lists.sourceforge.net', 'debian-l10n-romanian@lists.debian.org'), 'en_CA': ('adamw@gnome.org', 'adamw@freebsd.org'), 'bg': ('dict@fsa-bg.org', 'dict@linux.zonebg.com'), 'uk': ('linux@linux.org.ua',), 'wa': ('linux-wa@',), 'ast': ('@softastur.org', 'launchpad.net/~ubuntu-l10n-ast', 'softast-xeneral@lists.sourceforge.net', 'Softastur'), 'bn': ('gnome-translation@bengalinux.org', 'core@bengalinux.org', 'ankur-bd-l10n@googlegroups.com', 'redhat-translation@bengalinux.org'), 'br': ('drouizig@drouizig.org', 'brenux@free.fr', 'tradgnome@softcatala.net', 'fedora@softcatala.org'), 'bs': ('lokal@linux.org.ba', 'lokal@lugbih.org'), 'ja': ('debian-doc@debian.or.jp', 'debian-japanese@lists.debian.org', 'gnome-translation@gnome.gr.jp', 'translation@gnome.gr.jp', 'jpug-doc@ml.postgresql.jp'), 'nds': ('nds-lowgerman@lists.sourceforge.net',), 'or': ('oriya-group@lists.sarovar.org', 'oriya-it@googlegroups.com'), 'xh': ('xh-translate@ubuntu.com', 'xhosa@translate.org.za', 'xhosa@ubuntu.com'), 'nso': ('sepedi@translate.org.za',), 'az_IR': ('az-ir@lists.sharif.edu',), 'ca': ('@softcatala.org',), 'cy': ('gnome-cy@lists.linux.org.uk', 'gnome-cy@pengwyn.linux.org.uk', 'gnome-cy@www.linux.org', 'gnome-cy@www.linux.org.uk', 'cy@pengwyn.linux.org.uk'), 'cs': ('fedora-cs-list@redhat.com', 'cs-users@lists.fedoraproject.org', 'debian-l10n-czech@lists.debian.org', 'kde-czech-apps@lists.sourceforge.net', 'kde-czech-apps@lists.sf.net', 'translations.cs@gnupg.cz'), 'ps': ('pathanisation@googelgroups.com',), 'pt': ('fedora-trans-pt@redhat.org', 'gnome_pt@yahoogroups.com', 'traduz@debianpt.org', 'traduz@debian.pt'), 'en@shaw': ('ubuntu-l10n-en-shaw@launchpad.net', 'ubuntu-l10n-en-shaw@lists.launchpad.net'), 'tl': ('debian-tl@banwa.upm.edu.ph',), 'pa': ('punjabi-l10n@users.sf.net', 'fedora-pa-list@redhat.com', 'punjabi-users@lists.sf.net', 'punjabi-l10n@lists.sourceforge.net', 'punlinux-i18n@lists.sourceforge.net'), 'en_GB': ('kde-en-gb@kde.me.uk',), 'hr': ('translator-shop.org', 'lokalizacija@linux.hr'), 'zh_TW': ('zh-l10n@lists.linux.org.tw', 'chinese-l10n@googlegroups.com', 'community@linuxhall.org', 'zh-l10n@linux.org.tw'), 'hu': ('debian-l10n-hungarian@lists.debian.org', 'gnome@fsf.hu', 'gnome@gnome.hu', 'magyar@lists.linux.hu'), 'hi': ('indlinux-hindi-gnome@lists.sourceforge.net', 'indlinux-hindi@lists.sourceforge.net'), 'he': ('debian-hebrew-common@lists.alioth.debian.org', 'kde-il@yahoogroups.com', 'fedora-he-list@redhat.com', 'mdk-hebrew@iglu.org.il'), 'mg': ('i18n-malagasy-gnome@gnome.org',), 'be@latin': ('translation-team-be-latin@lists', 'be-latin.open-tran.eu'), 'zh_CN': ('i18n-translation@lists.linux.net.cn', 'i18n-zh@googlegroups.com', 'translation-team-zh-cn@lists.sourceforge.net', 'i18n-zh@googlegroup.com'), 'ml': ('smc-discuss@googlegroups.com',), 'mn': ('openmn-', 'openmn.org'), 'mi': ('maori@nzlinux.org.nz',), 'mk': ('gnomk-main@lists.sourceforge.net', 'lug@lists.linux.net.mk', 'mkde-l10n@lists.sourceforge.net', 'ossm-members@hedona.on.net.mk'), 'ur': ('l10n@urduweb.org', 'urdu.scs.gift@gmail.com'), 'pl': ('gnomepl@aviary.pl', 'debian-l10n-polish@lists.debian.org', 'gnome-l10n@lists.aviary.pl', 'translators@gnomepl.org'), 'ms': ('gabai-penyumbang@lists.sourceforge.net', 'gabai-penyumbang@lists.sf.net', 'kedidiemas@yahoogroups.com'), 'ug': ('gnome-uighur@yahoogroups.com',), 've': ('venda@translate.org.za',), 'af': ('i18n@af.org.za', 'Petri Jooste'), 'vi': ('gnomevi-list@lists.sourceforge.net', 'vi-VN@googlegroups.com'), 'is': ('gnome@techattack.nu', 'kde-isl@mmedia.is', 'kde-isl@molar.is'), 'am': ('@geez.org',), 'it': ('debian-l10n-italian@lists.debian.org', 'traduzioni@itpug.org', 'fedora-trans-it@redhat.com', 'tp@lists.linux.it'), 'sv': ('debian-l10n-swedish@lists.debian.org', 'tp-sv@listor.tp-sv.se'), 'as': ('assam@mm.assam-glug.org',), 'ar': ('arabeyes.org', 'Arabeyes'), 'io': ('gnome-ido@lists.mterry.name',), 'zu': ('zulu@translate.org.za',), 'az': ('linuxaz@azerimal.net', 'gnome@azitt.com', u'gnome@az\u0259tt.com'), 'id': ('@id.gnome.org', '@gnome.linux.or.id', 'mdk-id@yahoogroups.com', 'linux.or.id', 'gnome@i15n.org'), 'bn_IN': ('anubad@lists.ankur.org.in',), 'ks': ('ks-gnome-trans-commits@lists.code.indlinux.net',), 'nl': ('debian-l10n-dutch@lists.debian.org', 'vertaling@nl.gnome.org', 'vertaling@vrijschrift.org', 'nl@vrijschrift.org', 'vertaling@nl.linux.org', 'vertaling@nl.li.org'), 'nn': ('i18n-nn@lister.ping.uio.no',), 'nb': ('i18n-nb@lister.ping.uio.no',), 'ne': ('info@mpp.org.np',), 'en_AU': ('trans@six-by-nine.com.au',), 'fr': ('debian-l10n-french@lists.debian.org', 'gnomefr@traduc.org', 'kde-francophone@kde.org', 'traduc@traduc.org', 'pgsql-fr-generale@postgresql.org', 'rpm-fr@livna.org'), 'fa': ('farsi@lists.sharif.edu', 'Farsiweb.info'), 'mai': ('maithili.sf.net',), 'fi': ('debian-l10n-finnish@lists.debian.org', 'gnome-fi-laatu@lists.sourceforge.net', 'laatu@lokalisointi.org', 'lokalisointi-laatu@linux-aktivaattori.org', 'laatu@gnome.fi', 'yast-trans-fi@kotoistaminen.novell.fi'), 'ka': ('geognome@googlegroups.com', 'Ubuntu-Georgian-Translators@googlegroups.com'), 'kk': ('kk_KZ@googlegroups.com',), 'sr': ('@prevod.org', 'serbiangnome-lista@nongnu.org'), 'sq': ('gnome-albanian-perkthyesit@lists.sourceforge.net', 'debian-l10n-albanian@lists.debian.org'), 'ko': ('gnome-kr-hackers@list.kldp.net', 'gnome-kr-hackers@lists.kldp.net', 'gnome-kr-translation@lists.kldp.net', 'pgsql-kr@postgresql.or.kr', 'hangul-hackers@lists.kldp.net', 'debian-l10n-korean@lists.debian.org', 'gnome-kr-translation@lists.sourceforge.net'), 'kn': ('debian-l10n-kannada@lists.debian.org',), 'km': ('@khmeros.info',), 'sk': ('sk-i18n@lists.linux.sk', 'kde-sk@linux.sk'), 'ku': ('gnu-ku-wergerandin@lists.sourceforge.net',), 'sl': ('gnome-si@googlegroups.com',), 'ky': ('i18n-team-ky-kyrgyz@lists.sourceforge.net', 'ky-li@mail.ru')}

	Language codes with snippets of contact information that can be used to
uniquely identify the language






	
translate.lang.team.guess_language(team_string)

	Gueses the language of a PO file based on the Language-Team entry








te

This module represents the Telugu language.


See also

http://en.wikipedia.org/wiki/Telugu_language




	
class translate.lang.te.te

	This class represents Telugu.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












th

This module represents the Thai language.


See also

http://en.wikipedia.org/wiki/Thai_language




	
class translate.lang.th.th

	This class represents Thai.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ug

This module represents the Uyghur language.


See also

http://en.wikipedia.org/wiki/Uyghur_language




	
class translate.lang.ug.ug

	This class represents Uyghur.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












ur

This module represents the Urdu language.


See also

http://en.wikipedia.org/wiki/Urdu_language




	
class translate.lang.ur.ur

	This class represents Urdu.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












vi

This module represents the Vietnamese language.


See also

http://en.wikipedia.org/wiki/Vietnamese_language




	
class translate.lang.vi.vi

	This class represents Vietnamese.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod length_difference(length)

	Returns an estimate to a likely change in length relative to an
English string of length length.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Implement some extra features for quotation marks.


	Known shortcomings:

	
	% and $ are not touched yet for fear of variables

	Double spaces might be introduced












	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.












zh

This module represents the Chinese language (Both tradisional and simplified).


See also

http://en.wikipedia.org/wiki/Chinese_language




	
class translate.lang.zh.zh

	This class represents Chinese.


	
classmethod alter_length(text)

	Converts the given string by adding or removing characters as an
estimation of translation length (with English assumed as source
language).






	
classmethod capsstart(text)

	Determines whether the text starts with a capital letter.






	
classmethod character_iter(text)

	Returns an iterator over the characters in text.






	
classmethod characters(text)

	Returns a list of characters in text.






	
classmethod numstart(text)

	Determines whether the text starts with a numeric value.






	
classmethod punctranslate(text)

	Converts the punctuation in a string according to the rules of the
language.






	
classmethod sentence_iter(text, strip=True)

	Returns an iterator over the sentences in text.






	
classmethod sentences(text, strip=True)

	Returns a list of sentences in text.






	
classmethod word_iter(text)

	Returns an iterator over the words in text.






	
classmethod words(text)

	Returns a list of words in text.















          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
misc

Miscellaneous modules for translate - including modules for backward
compatibility with pre-2.3 versions of Python


autoencode

Supports a hybrid Unicode string that knows which encoding is preferable,
and uses this when converting to a string.




dictutils

Implements a case-insensitive (on keys) dictionary and
order-sensitive dictionary


	
class translate.misc.dictutils.ordereddict(*args)

	a dictionary which remembers its keys in the order in which they
were given


	
clear()  None.  Remove all items from D.

	




	
copy()  a shallow copy of D

	




	
static fromkeys(S[, v])  New dict with keys from S and values equal to v.

	v defaults to None.






	
get(k[, d])  D[k] if k in D, else d.  d defaults to None.

	




	
has_key(k)  True if D has a key k, else False

	




	
items()  list of D's (key, value) pairs, as 2-tuples

	




	
iteritems()  an iterator over the (key, value) items of D

	




	
iterkeys()  an iterator over the keys of D

	




	
itervalues()  an iterator over the values of D

	




	
keys()  list of D's keys

	




	
pop(key)

	remove entry from dict and internal list






	
popitem()  (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty






	
setdefault(k[, d])  D.get(k,d), also set D[k]=d if k not in D

	




	
update(E)  None.

	Update D from E: for k in E.keys(): D[k] = E[k]






	
values()  list of D's values

	




	
viewitems()  a set-like object providing a view on D's items

	




	
viewkeys()  a set-like object providing a view on D's keys

	




	
viewvalues()  an object providing a view on D's values

	










file_discovery


	
translate.misc.file_discovery.get_abs_data_filename(path_parts, basedirs=None)

	Get the absolute path to the given file- or directory name in the
current running application’s data directory.





	Parameters:	path_parts (list [https://docs.python.org/2.7/library/functions.html#list]) – The path parts that can be joined by os.path.join().












lru


	
class translate.misc.lru.LRUCachingDict(maxsize, cullsize=2, peakmult=10, aggressive_gc=True, *args, **kwargs)

	Caching dictionary like object that discards the least recently
used objects when number of cached items exceeds maxsize.

cullsize is the fraction of items that will be discarded when
maxsize is reached.


	
cull()

	free memory by deleting old items from cache






	
itervaluerefs()

	Return an iterator that yields the weak references to the values.

The references are not guaranteed to be ‘live’ at the time
they are used, so the result of calling the references needs
to be checked before being used.  This can be used to avoid
creating references that will cause the garbage collector to
keep the values around longer than needed.






	
valuerefs()

	Return a list of weak references to the values.

The references are not guaranteed to be ‘live’ at the time
they are used, so the result of calling the references needs
to be checked before being used.  This can be used to avoid
creating references that will cause the garbage collector to
keep the values around longer than needed.












multistring

Supports a hybrid Unicode string that can also have a list of alternate
strings in the strings attribute




optrecurse


	
class translate.misc.optrecurse.RecursiveOptionParser(formats, usetemplates=False, allowmissingtemplate=False, description=None)

	A specialized Option Parser for recursing through directories.


	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
parse_args(args=None, values=None)

	Parses the command line options, handling implicit input/output
args.






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)

	Process an individual file.






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	Recurse through directories and process files.






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run()

	Parses the arguments, and runs recursiveprocess with the resulting
options...






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for
each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setprogressoptions()

	Sets the progress options.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.












ourdom

module that provides modified DOM functionality for our needs

Note that users of ourdom should ensure that no code might still use classes
directly from minidom, like minidom.Element, minidom.Document or methods such
as minidom.parseString, since the functionality provided here will not be in
those objects.


	
translate.misc.ourdom.getElementsByTagName_helper(parent, name, dummy=None)

	A reimplementation of getElementsByTagName as an iterator.

Note that this is not compatible with getElementsByTagName that returns a
list, therefore, the class below exposes this through yieldElementsByTagName






	
translate.misc.ourdom.getnodetext(node)

	returns the node’s text by iterating through the child nodes






	
translate.misc.ourdom.parse(file, parser=None, bufsize=None)

	Parse a file into a DOM by filename or file object.






	
translate.misc.ourdom.parseString(string, parser=None)

	Parse a file into a DOM from a string.






	
translate.misc.ourdom.searchElementsByTagName_helper(parent, name, onlysearch)

	limits the search to within tags occuring in onlysearch






	
translate.misc.ourdom.writexml_helper(self, writer, indent='', addindent='', newl='')

	A replacement for writexml that formats it like typical XML files.
Nodes are intendented but text nodes, where whitespace can be
significant, are not indented.








progressbar

Progress bar utilities for reporting feedback on the progress of an
application.


	
class translate.misc.progressbar.DotsProgressBar

	An ultra-simple progress indicator that just writes a dot for each
action


	
show(verbosemessage)

	show a dot for progress :-)










	
class translate.misc.progressbar.HashProgressBar(*args, **kwargs)

	A ProgressBar which knows how to go back to the beginning of the
line.






	
class translate.misc.progressbar.MessageProgressBar(*args, **kwargs)

	A ProgressBar that just writes out the messages without any progress
display






	
class translate.misc.progressbar.NoProgressBar

	An invisible indicator that does nothing.


	
show(verbosemessage)

	show nothing for progress :-)










	
class translate.misc.progressbar.ProgressBar(minValue=0, maxValue=100, totalWidth=50)

	A plain progress bar that doesn’t know very much about output.


	
show(verbosemessage)

	displays the progress bar












quote

String processing utilities for extracting strings with various kinds
of delimiters


	
translate.misc.quote.entitydecode(source, name2codepoint)

	Decode source using entities from name2codepoint.





	Parameters:	
	source (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – Source string to decode

	name2codepoint (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping entity names (without the
the leading & or the trailing ;) to code points














	
translate.misc.quote.entityencode(source, codepoint2name)

	Encode source using entities from codepoint2name.





	Parameters:	
	source (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – Source string to encode

	codepoint2name (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping code points to entity names
(without the the leading & or the trailing ;)














	
translate.misc.quote.escapecontrols(source)

	escape control characters in the given string






	
translate.misc.quote.extract(source, startdelim, enddelim, escape=None, startinstring=False, allowreentry=True)

	Extracts a doublequote-delimited string from a string, allowing for
backslash-escaping returns tuple of (quoted string with quotes, still in
string at end).






	
translate.misc.quote.extractwithoutquotes(source, startdelim, enddelim, escape=None, startinstring=False, includeescapes=True, allowreentry=True)

	Extracts a doublequote-delimited string from a string, allowing for
backslash-escaping includeescapes can also be a function that takes the
whole escaped string and returns the replaced version.






	
translate.misc.quote.find_all(searchin, substr)

	Returns a list of locations where substr occurs in searchin
locations are not allowed to overlap






	
translate.misc.quote.htmlentitydecode(source)

	Decode source using HTML entities e.g. &copy; -> ©.





	Parameters:	source (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – Source string to decode










	
translate.misc.quote.htmlentityencode(source)

	Encode source using HTML entities e.g. © -> &copy;





	Parameters:	source (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – Source string to encode










	
translate.misc.quote.javapropertiesencode(source)

	Encodes source in the escaped-unicode encoding used by Java
.properties files






	
translate.misc.quote.mozillaescapemarginspaces(source)

	Escape leading and trailing spaces for Mozilla .properties files.






	
translate.misc.quote.mozillapropertiesencode(source)

	Encodes source in the escaped-unicode encoding used by Mozilla
.properties files.






	
translate.misc.quote.propertiesdecode(source)

	Decodes source from the escaped-unicode encoding used by .properties
files.

Java uses Latin1 by default, and Mozilla uses UTF-8 by default.

Since the .decode(“unicode-escape”) routine decodes everything, and we
don’t want to we reimplemented the algorithm from Python Objects/unicode.c
in Python and modify it to retain escaped control characters.








sparse

simple parser / string tokenizer
rather than returning a list of token types etc, we simple return a list
of tokens.  Each tokenizing function takes a string as input and returns
a list of tokens.


	
exception translate.misc.sparse.ParserError(parser, message, tokennum)

	Intelligent parser error






	
class translate.misc.sparse.SimpleParser(defaulttokenlist=None, whitespacechars=' trn', includewhitespacetokens=0)

	this is a simple parser


	
applytokenizer(inputlist, tokenizer)

	apply a tokenizer to a set of text, flattening the result






	
applytokenizers(inputlist, tokenizers)

	apply a set of tokenizers to a set of text, flattening each time






	
findtokenpos(tokennum)

	finds the position of the given token in the text






	
getlinepos(tokenpos)

	finds the line and character position of the given character






	
isstringtoken(text)

	checks whether a token is a string token






	
keeptogether(text)

	checks whether a token should be kept together






	
raiseerror(message, tokennum)

	raises a ParserError






	
removewhitespace(text)

	this removes whitespace but lets it separate things out into
separate tokens






	
separatetokens(text, tokenlist=None)

	this separates out tokens in tokenlist from whitespace etc






	
stringtokenize(text)

	makes strings in text into tokens...






	
tokenize(source, tokenizers=None)

	tokenize the text string with the standard tokenizers










	
translate.misc.sparse.stringeval(text)

	takes away repeated quotes (escapes) and returns the string
represented by the text






	
translate.misc.sparse.stringquote(text)

	escapes quotes as neccessary and returns a string representing
the text








stdiotell

A wrapper for sys.stdout etc that provides tell() for current position




wsgi

Wrapper to launch the bundled CherryPy server.


	
translate.misc.wsgi.launch_server(host, port, app, **kwargs)

	Use CherryPy’s WSGI server, a multithreaded scallable server.








wStringIO

A wrapper for cStringIO that provides more of the functions of
StringIO at the speed of cStringIO


	
class translate.misc.wStringIO.CatchStringOutput(onclose)

	catches the output before it is closed and sends it to an onclose
method


	
close()

	wrap the underlying close method, to pass the value to onclose
before it goes






	
slam()

	use this method to force the closing of the stream if it isn’t
closed yet












xml_helpers

Helper functions for working with XML.


	
translate.misc.xml_helpers.getText(node, xml_space='preserve')

	Extracts the plain text content out of the given node.

This method checks the xml:space attribute of the given node, and takes
an optional default to use in case nothing is specified in this node.






	
translate.misc.xml_helpers.getXMLlang(node)

	Gets the xml:lang attribute on node






	
translate.misc.xml_helpers.getXMLspace(node, default=None)

	Gets the xml:space attribute on node






	
translate.misc.xml_helpers.namespaced(namespace, name)

	Returns name in Clark notation within the given namespace.


	For example namespaced(“source”) in an XLIFF document might return::

	{urn:oasis:names:tc:xliff:document:1.1}source



This is needed throughout lxml.






	
translate.misc.xml_helpers.normalize_space(text)

	Normalize the given text for implementation of
xml:space="default".






	
translate.misc.xml_helpers.normalize_xml_space(node, xml_space, remove_start=False)

	normalize spaces following the nodes xml:space, or alternatively the
given xml_space parameter.






	
translate.misc.xml_helpers.setXMLlang(node, lang)

	Sets the xml:lang attribute on node






	
translate.misc.xml_helpers.setXMLspace(node, value)

	Sets the xml:space attribute on node






	
translate.misc.xml_helpers.string_xpath = string()

	Return a non-normalized string in the node subtree






	
translate.misc.xml_helpers.string_xpath_normalized = normalize-space()

	Return a (space) normalized string in the node subtree






	
translate.misc.xml_helpers.xml_preserve_ancestors = ancestor-or-self::*[attribute::xml:space='preserve']

	All ancestors with xml:space=’preserve’






	
translate.misc.xml_helpers.xml_space_ancestors = ancestor-or-self::*/attribute::xml:space

	All xml:space attributes in the ancestors











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
search

Services for searching and matching of text.


indexing

Interface for differrent indexing engines for the Translate Toolkit.


CommonIndexer

base class for interfaces to indexing engines for pootle


	
class translate.search.indexing.CommonIndexer.CommonDatabase(basedir, analyzer=None, create_allowed=True)

	Base class for indexing support.

Any real implementation must override most methods of this class.


	
ANALYZER_DEFAULT = 6

	the default analyzer to be used if nothing is configured






	
ANALYZER_EXACT = 0

	exact matching: the query string must equal the whole term string






	
ANALYZER_PARTIAL = 2

	partial matching: a document matches, even if the query string only
matches the beginning of the term value.






	
ANALYZER_TOKENIZE = 4

	tokenize terms and queries automatically






	
INDEX_DIRECTORY_NAME = None

	override this with a string to be used as the name of the indexing
directory/file in the filesystem






	
QUERY_TYPE = None

	override this with the query class of the implementation






	
begin_transaction()

	begin a transaction

You can group multiple modifications of a database as a transaction.
This prevents time-consuming database flushing and helps, if you want
that a changeset is committed either completely or not at all.
No changes will be written to disk until ‘commit_transaction’.
‘cancel_transaction’ can be used to revert an ongoing transaction.

Database types that do not support transactions may silently ignore it.






	
cancel_transaction()

	cancel an ongoing transaction

See ‘start_transaction’ for details.






	
commit_transaction()

	Submit the currently ongoing transaction and write changes to disk.

See ‘start_transaction’ for details.






	
delete_doc(ident)

	Delete the documents returned by a query.





	Parameters:	ident (int | list of tuples | dict | list of dicts |
query (e.g. xapian.Query) | list of queries) – [list of] document IDs | dict describing a query | query










	
delete_document_by_id(docid)

	Delete a specified document.





	Parameters:	docid (int [https://docs.python.org/2.7/library/functions.html#int]) – the document ID to be deleted










	
field_analyzers = {}

	mapping of field names and analyzers - see
set_field_analyzers()






	
flush(optimize=False)

	Flush the content of the database - to force changes to be written
to disk.

Some databases also support index optimization.





	Parameters:	optimize (bool [https://docs.python.org/2.7/library/functions.html#bool]) – should the index be optimized if possible?










	
get_field_analyzers(fieldnames=None)

	Return the analyzer that was mapped to a specific field.

See set_field_analyzers() for details.





	Parameters:	fieldnames (str | list of str | None) – the analyzer of this field (or all/multiple fields)
is requested; leave empty (or None) to
request all fields.


	Returns:	The analyzer setting of the field - see
CommonDatabase.ANALYZER_??? or a dict of field names
and analyzers


	Return type:	int | dict










	
get_query_result(query)

	return an object containing the results of a query





	Parameters:	query (a query object of the real implementation) – a pre-compiled query


	Returns:	an object that allows access to the results


	Return type:	subclass of CommonEnquire










	
index_document(data)

	Add the given data to the database.





	Parameters:	data (dict | list of str) – the data to be indexed.
A dictionary will be treated as fieldname:value
combinations.
If the fieldname is None then the value will be
interpreted as a plain term or as a list of plain terms.
Lists of terms are indexed separately.
Lists of strings are treated as plain terms.










	
make_query(args, require_all=True, analyzer=None)

	Create simple queries (strings or field searches) or
combine multiple queries (AND/OR).

To specifiy rules for field searches, you may want to take a look at
set_field_analyzers(). The parameter
‘match_text_partial’ can override the previously defined
default setting.





	Parameters:	
	args (list of queries | single query | str | dict) – queries or search string or description of field query
examples:

[xapian.Query("foo"), xapian.Query("bar")]
xapian.Query("foo")
"bar"
{"foo": "bar", "foobar": "foo"}







	require_all (boolean) – boolean operator
(True -> AND (default) / False -> OR)

	analyzer (int [https://docs.python.org/2.7/library/functions.html#int]) – (only applicable for ‘dict’ or ‘str’)
Define query options (partial matching, exact
matching, tokenizing, ...) as bitwise
combinations of CommonIndexer.ANALYZER_???.

This can override previously defined field
analyzer settings.

If analyzer is None (default), then the
configured analyzer for the field is used.








	Returns:	the combined query




	Return type:	query type of the specific implementation












	
search(query, fieldnames)

	Return a list of the contents of specified fields for all
matches of a query.





	Parameters:	
	query (a query object of the real implementation) – the query to be issued

	fieldnames (string | list of strings) – the name(s) of a field of the document content






	Returns:	a list of dicts containing the specified field(s)




	Return type:	list of dicts












	
set_field_analyzers(field_analyzers)

	Set the analyzers for different fields of the database documents.

All bitwise combinations of CommonIndexer.ANALYZER_??? are possible.





	Parameters:	field_analyzers (dict containing field names and analyzers) – mapping of field names and analyzers


	Raises TypeError:

		invalid values in field_analyzers














	
class translate.search.indexing.CommonIndexer.CommonEnquire(enquire)

	An enquire object contains the information about the result of a request.


	
get_matches(start, number)

	Return a specified number of qualified matches of a previous query.





	Parameters:	
	start (int [https://docs.python.org/2.7/library/functions.html#int]) – index of the first match to return (starting from zero)

	number (int [https://docs.python.org/2.7/library/functions.html#int]) – the number of matching entries to return






	Returns:	a set of matching entries and some statistics




	Return type:	tuple of (returned number, available number, matches)
“matches” is a dictionary of:

["rank", "percent", "document", "docid"]


















	
get_matches_count()

	Return the estimated number of matches.

Use translate.search.indexing.CommonIndexer.search()
to retrieve the exact number of matches





	Returns:	The estimated number of matches


	Return type:	int














	
translate.search.indexing.CommonIndexer.is_available()

	Check if this indexing engine interface is usable.

This function must exist in every module that contains indexing engine
interfaces.





	Returns:	is this interface usable?


	Return type:	bool












PyLuceneIndexer1

interface for the pylucene (v1.x) indexing engine

take a look at PyLuceneIndexer.py for PyLucene v2.x support


	
class translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase(basedir, analyzer=None, create_allowed=True)

	manage and use a pylucene indexing database


	
begin_transaction()

	PyLucene does not support transactions

Thus this function just opens the database for write access.
Call “cancel_transaction” or “commit_transaction” to close write
access in order to remove the exclusive lock from the database
directory.






	
cancel_transaction()

	PyLucene does not support transactions

Thus this function just closes the database write access and removes
the exclusive lock.

See ‘start_transaction’ for details.






	
commit_transaction()

	PyLucene does not support transactions

Thus this function just closes the database write access and removes
the exclusive lock.

See ‘start_transaction’ for details.






	
delete_document_by_id(docid)

	delete a specified document





	Parameters:	docid (int [https://docs.python.org/2.7/library/functions.html#int]) – the document ID to be deleted










	
flush(optimize=False)

	flush the content of the database - to force changes to be written
to disk

some databases also support index optimization





	Parameters:	optimize (bool [https://docs.python.org/2.7/library/functions.html#bool]) – should the index be optimized if possible?










	
get_field_analyzers(fieldnames=None)

	Return the analyzer that was mapped to a specific field.

See set_field_analyzers() for details.





	Parameters:	fieldnames (str | list of str | None) – the analyzer of this field (or all/multiple fields)
is requested; leave empty (or None) to
request all fields.


	Returns:	The analyzer setting of the field - see
CommonDatabase.ANALYZER_??? or a dict of field names
and analyzers


	Return type:	int | dict










	
get_query_result(query)

	return an object containing the results of a query





	Parameters:	query (a query object of the real implementation) – a pre-compiled query


	Returns:	an object that allows access to the results


	Return type:	subclass of CommonEnquire










	
index_document(data)

	Add the given data to the database.





	Parameters:	data (dict | list of str) – the data to be indexed.
A dictionary will be treated as fieldname:value
combinations.
If the fieldname is None then the value will be
interpreted as a plain term or as a list of plain terms.
Lists of terms are indexed separately.
Lists of strings are treated as plain terms.










	
search(query, fieldnames)

	return a list of the contents of specified fields for all matches of
a query





	Parameters:	
	query (a query object of the real implementation) – the query to be issued

	fieldnames (string | list of strings) – the name(s) of a field of the document content






	Returns:	a list of dicts containing the specified field(s)




	Return type:	list of dicts












	
set_field_analyzers(field_analyzers)

	Set the analyzers for different fields of the database documents.

All bitwise combinations of CommonIndexer.ANALYZER_??? are possible.





	Parameters:	field_analyzers (dict containing field names and analyzers) – mapping of field names and analyzers


	Raises TypeError:

		invalid values in field_analyzers
















PyLuceneIndexer

interface for the PyLucene (v2.x) indexing engine

take a look at PyLuceneIndexer1.py for the PyLucene v1.x interface


	
class translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase(basedir, analyzer=None, create_allowed=True)

	Manage and use a pylucene indexing database.


	
begin_transaction()

	PyLucene does not support transactions

Thus this function just opens the database for write access.
Call “cancel_transaction” or “commit_transaction” to close write
access in order to remove the exclusive lock from the database
directory.






	
cancel_transaction()

	PyLucene does not support transactions

Thus this function just closes the database write access and removes
the exclusive lock.

See ‘start_transaction’ for details.






	
commit_transaction()

	PyLucene does not support transactions

Thus this function just closes the database write access and removes
the exclusive lock.

See ‘start_transaction’ for details.






	
delete_document_by_id(docid)

	delete a specified document





	Parameters:	docid (int [https://docs.python.org/2.7/library/functions.html#int]) – the document ID to be deleted










	
flush(optimize=False)

	flush the content of the database - to force changes to be written
to disk

some databases also support index optimization





	Parameters:	optimize (bool [https://docs.python.org/2.7/library/functions.html#bool]) – should the index be optimized if possible?










	
get_field_analyzers(fieldnames=None)

	Return the analyzer that was mapped to a specific field.

See set_field_analyzers() for details.





	Parameters:	fieldnames (str | list of str | None) – the analyzer of this field (or all/multiple fields)
is requested; leave empty (or None) to
request all fields.


	Returns:	The analyzer setting of the field - see
CommonDatabase.ANALYZER_??? or a dict of field names
and analyzers


	Return type:	int | dict










	
get_query_result(query)

	return an object containing the results of a query





	Parameters:	query (a query object of the real implementation) – a pre-compiled query


	Returns:	an object that allows access to the results


	Return type:	subclass of CommonEnquire










	
index_document(data)

	Add the given data to the database.





	Parameters:	data (dict | list of str) – the data to be indexed.
A dictionary will be treated as fieldname:value
combinations.
If the fieldname is None then the value will be
interpreted as a plain term or as a list of plain terms.
Lists of terms are indexed separately.
Lists of strings are treated as plain terms.










	
search(query, fieldnames)

	Return a list of the contents of specified fields for all matches of
a query.





	Parameters:	
	query (a query object of the real implementation) – the query to be issued

	fieldnames (string | list of strings) – the name(s) of a field of the document content






	Returns:	a list of dicts containing the specified field(s)




	Return type:	list of dicts












	
set_field_analyzers(field_analyzers)

	Set the analyzers for different fields of the database documents.

All bitwise combinations of CommonIndexer.ANALYZER_??? are possible.





	Parameters:	field_analyzers (dict containing field names and analyzers) – mapping of field names and analyzers


	Raises TypeError:

		invalid values in field_analyzers














	
class translate.search.indexing.PyLuceneIndexer.PyLuceneHits(enquire)

	an enquire object contains the information about the result of a request


	
get_matches(start, number)

	return a specified number of qualified matches of a previous query





	Parameters:	
	start (int [https://docs.python.org/2.7/library/functions.html#int]) – index of the first match to return (starting from zero)

	number (int [https://docs.python.org/2.7/library/functions.html#int]) – the number of matching entries to return






	Returns:	a set of matching entries and some statistics




	Return type:	tuple of (returned number, available number, matches)
“matches” is a dictionary of:

["rank", "percent", "document", "docid"]


















	
get_matches_count()

	Return the estimated number of matches.

Use translate.search.indexing.CommonIndexer.search()
to retrieve the exact number of matches





	Returns:	The estimated number of matches


	Return type:	int
















XapianIndexer

Interface to the Xapian indexing engine for the Translate Toolkit

Xapian v1.0 or higher is supported.

If you are interested in writing an interface for Xapian 0.x, then
you should checkout the following:

svn export -r 7235 https://translate.svn.sourceforge.net/svnroot/translate/src/branches/translate-search-indexer-generic-merging/translate/search/indexer/





It is not completely working, but it should give you a good start.


	
class translate.search.indexing.XapianIndexer.XapianDatabase(basedir, analyzer=None, create_allowed=True)

	Interface to the Xapian indexer [http://xapian.org].


	
begin_transaction()

	Begin a transaction.

Xapian supports transactions to group multiple database modifications.
This avoids intermediate flushing and therefore increases performance.






	
cancel_transaction()

	cancel an ongoing transaction

no changes since the last execution of ‘begin_transcation’ are written






	
commit_transaction()

	Submit the changes of an ongoing transaction.

All changes since the last execution of ‘begin_transaction’
are written.






	
delete_doc(ident)

	Delete the documents returned by a query.





	Parameters:	ident (int | list of tuples | dict | list of dicts |
query (e.g. xapian.Query) | list of queries) – [list of] document IDs | dict describing a query | query










	
delete_document_by_id(docid)

	Delete a specified document.





	Parameters:	docid (int [https://docs.python.org/2.7/library/functions.html#int]) – the document ID to be deleted










	
flush(optimize=False)

	force to write the current changes to disk immediately





	Parameters:	optimize (bool [https://docs.python.org/2.7/library/functions.html#bool]) – ignored for xapian










	
get_field_analyzers(fieldnames=None)

	Return the analyzer that was mapped to a specific field.

See set_field_analyzers() for details.





	Parameters:	fieldnames (str | list of str | None) – the analyzer of this field (or all/multiple fields)
is requested; leave empty (or None) to
request all fields.


	Returns:	The analyzer setting of the field - see
CommonDatabase.ANALYZER_??? or a dict of field names
and analyzers


	Return type:	int | dict










	
get_query_result(query)

	Return an object containing the results of a query.





	Parameters:	query (xapian.Query) – a pre-compiled xapian query


	Returns:	an object that allows access to the results


	Return type:	XapianIndexer.CommonEnquire










	
index_document(data)

	Add the given data to the database.





	Parameters:	data (dict | list of str) – the data to be indexed.
A dictionary will be treated as fieldname:value
combinations.
If the fieldname is None then the value will be
interpreted as a plain term or as a list of plain terms.
Lists of terms are indexed separately.
Lists of strings are treated as plain terms.










	
search(query, fieldnames)

	Return a list of the contents of specified fields for all matches
of a query.





	Parameters:	
	query (xapian.Query) – the query to be issued

	fieldnames (string | list of strings) – the name(s) of a field of the document content






	Returns:	a list of dicts containing the specified field(s)




	Return type:	list of dicts












	
set_field_analyzers(field_analyzers)

	Set the analyzers for different fields of the database documents.

All bitwise combinations of CommonIndexer.ANALYZER_??? are possible.





	Parameters:	field_analyzers (dict containing field names and analyzers) – mapping of field names and analyzers


	Raises TypeError:

		invalid values in field_analyzers














	
class translate.search.indexing.XapianIndexer.XapianEnquire(enquire)

	interface to the xapian object for storing sets of matches


	
get_matches(start, number)

	Return a specified number of qualified matches of a previous query.





	Parameters:	
	start (int [https://docs.python.org/2.7/library/functions.html#int]) – index of the first match to return (starting from zero)

	number (int [https://docs.python.org/2.7/library/functions.html#int]) – the number of matching entries to return






	Returns:	a set of matching entries and some statistics




	Return type:	tuple of (returned number, available number, matches)
“matches” is a dictionary of:

["rank", "percent", "document", "docid"]


















	
get_matches_count()

	Return the estimated number of matches.

Use translate.search.indexing.CommonIndexer.search()
to retrieve the exact number of matches





	Returns:	The estimated number of matches


	Return type:	int


















lshtein

A class to calculate a similarity based on the Levenshtein
distance.

See http://en.wikipedia.org/wiki/Levenshtein_distance.

If available, the python-Levenshtein [https://pypi.python.org/pypi/python-Levenshtein] will be used which will
provide better performance as it is implemented natively.


	
translate.search.lshtein.distance(a, b, stopvalue=-1)

	Calculates the distance for use in similarity calculation. Python
version.






	
translate.search.lshtein.native_distance(a, b, stopvalue=0)

	Same as python_distance in functionality. This uses the fast C
version if we detected it earlier.

Note that this does not support arbitrary sequence types, but only
string types.






	
translate.search.lshtein.python_distance(a, b, stopvalue=-1)

	Calculates the distance for use in similarity calculation. Python
version.








match

Class to perform translation memory matching from a store of
translation units.


	
class translate.search.match.matcher(store, max_candidates=10, min_similarity=75, max_length=70, comparer=None, usefuzzy=False)

	A class that will do matching and store configuration for the
matching process.


	
buildunits(candidates)

	Builds a list of units conforming to base API, with the score
in the comment.






	
extendtm(units, store=None, sort=True)

	Extends the memory with extra unit(s).





	Parameters:	
	units – The units to add to the TM.

	store – Optional store from where some metadata can be retrieved
and associated with each unit.

	sort – Optional parameter that can be set to False to supress
sorting of the candidates list. This should probably
only be used in matcher.inittm().














	
getstartlength(min_similarity, text)

	Calculates the minimum length we are interested in.
The extra fat is because we don’t use plain character distance only.






	
getstoplength(min_similarity, text)

	Calculates a length beyond which we are not interested.
The extra fat is because we don’t use plain character distance only.






	
inittm(stores, reverse=False)

	Initialises the memory for later use. We use simple base units for
speedup.






	
matches(text)

	Returns a list of possible matches for given source text.





	Parameters:	text (String) – The text that will be search for in the translation memory


	Return type:	list


	Returns:	a list of units with the source and target strings from the
translation memory. If self.addpercentage is
True (default) the match quality is given as a
percentage in the notes.










	
setparameters(max_candidates=10, min_similarity=75, max_length=70)

	Sets the parameters without reinitialising the tm. If a parameter
is not specified, it is set to the default, not ignored






	
usable(unit)

	Returns whether this translation unit is usable for TM










	
translate.search.match.sourcelen(unit)

	Returns the length of the source string.






	
class translate.search.match.terminologymatcher(store, max_candidates=10, min_similarity=75, max_length=500, comparer=None)

	A matcher with settings specifically for terminology matching.


	
buildunits(candidates)

	Builds a list of units conforming to base API, with the score
in the comment.






	
extendtm(units, store=None, sort=True)

	Extends the memory with extra unit(s).





	Parameters:	
	units – The units to add to the TM.

	store – Optional store from where some metadata can be retrieved
and associated with each unit.

	sort – Optional parameter that can be set to False to supress
sorting of the candidates list. This should probably
only be used in matcher.inittm().














	
inittm(store)

	Normal initialisation, but convert all source strings to lower case






	
matches(text)

	Normal matching after converting text to lower case. Then replace
with the original unit to retain comments, etc.






	
setparameters(max_candidates=10, min_similarity=75, max_length=70)

	Sets the parameters without reinitialising the tm. If a parameter
is not specified, it is set to the default, not ignored






	
usable(unit)

	Returns whether this translation unit is usable for terminology.










	
translate.search.match.unit2dict(unit)

	converts a pounit to a simple dict structure for use over the web








segment

Module to deal with different types and uses of segmentation


	
translate.search.segment.character_iter(text)

	Returns an iterator over the characters in text.






	
translate.search.segment.characters(text)

	Returns a list of characters in text.






	
translate.search.segment.sentence_iter(text)

	Returns an iterator over the senteces in text.






	
translate.search.segment.sentences(text)

	Returns a list of senteces in text.






	
translate.search.segment.word_iter(text)

	Returns an iterator over the words in text.






	
translate.search.segment.words(text)

	Returns a list of words in text.








terminology

A class that does terminology matching







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
services

translate.services is part of the translate toolkit.
It provides network services for interacting with the toolkit


tmserver

A translation memory server using tmdb for storage, communicates
with clients using JSON over HTTP.


	
class translate.services.tmserver.TMServer(tmdbfile, tmfiles, max_candidates=3, min_similarity=75, max_length=1000, prefix='', source_lang=None, target_lang=None)

	A RESTful JSON TM server.











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
storage

Classes that represent various storage formats for localization.


base

Base classes for storage interfaces.


	
class translate.storage.base.TranslationStore(unitclass=None)

	Base class for stores for multiple translation units of type
UnitClass.


	
Extensions = None

	A list of file extentions associated with this store type






	
Mimetypes = None

	A list of MIME types associated with this store type






	
Name = 'Base translation store'

	The human usable name of this store type






	
UnitClass

	The class of units that will be instantiated and used by this class

alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(data)

	parser to process the given source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
suggestions_in_format = False

	Indicates if format can store suggestions and alternative translation
for a unit






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.base.TranslationUnit(source=None)

	Base class for translation units.

Our concept of a translation unit is influenced heavily by XLIFF [http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html].

As such most of the method- and variable names borrows from XLIFF
terminology.

A translation unit consists of the following:


	A source string. This is the original translatable text.

	A target string. This is the translation of the source.

	Zero or more notes on the unit. Notes would typically be some comments
from a translator on the unit, or some comments originating from the
source code.

	Zero or more locations. Locations indicate where in the original source
code this unit came from.

	Zero or more errors. Some tools (eg.
pofilter) can run checks on translations and
produce error messages.




	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
rich_parsers = []

	A list of functions to use for parsing a string into a rich string
tree.






	
rich_source

	
See also

rich_to_multistring(), multistring_to_rich()








	
rich_target

	
See also

rich_to_multistring(), multistring_to_rich()








	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.base.force_override(method, baseclass)

	Forces derived classes to override method.








benchmark


	
class translate.storage.benchmark.TranslateBenchmarker(test_dir, storeclass)

	class to aid in benchmarking Translate Toolkit stores


	
clear_test_dir()

	removes the given directory






	
create_sample_files(num_dirs, files_per_dir, strings_per_file, source_words_per_string, target_words_per_string)

	creates sample files for benchmarking






	
parse_files(file_dir=None)

	parses all the files in the test directory into memory






	
parse_placeables()

	parses placeables












bundleprojstore


	
class translate.storage.bundleprojstore.BundleProjectStore(fname)

	Represents a translate project bundle (zip archive).


	
append_file(afile, fname, ftype='trans', delete_orig=False)

	Append the given file to the project with the given filename, marked
to be of type ftype (‘src’, ‘trans’, ‘tgt’).





	Parameters:	delete_orig – If True, as set by
convert_forward(),
afile is deleted after appending, if
possible.






Note

For this implementation, the appended file will be deleted
from disk if delete_orig is True.








	
cleanup()

	Clean up our mess: remove temporary files.






	
get_file(fname)

	Retrieve a project file (source, translation or target file) from the
project archive.






	
get_filename_type(fname)

	Get the type of file (‘src’, ‘trans’, ‘tgt’) with the given name.






	
get_proj_filename(realfname)

	Try and find a project file name for the given real file name.






	
load(zipname)

	Load the bundle project from the zip file of the given name.






	
remove_file(fname, ftype=None)

	Remove the file with the given project name from the project.






	
save(filename=None)

	Save all project files to the bundle zip file.






	
sourcefiles

	Read-only access to self._sourcefiles.






	
targetfiles

	Read-only access to self._targetfiles.






	
transfiles

	Read-only access to self._transfiles.






	
update_file(pfname, infile)

	Updates the file with the given project file name with the contents
of infile.





	Returns:	the results from BundleProjStore.append_file().
















catkeys

Manage the Haiku catkeys translation format

The Haiku catkeys format is the translation format used for localisation of
the Haiku [http://www.haiku-os.org/] operating system.

It is a bilingual base class derived format with CatkeysFile and
CatkeysUnit providing file and unit level access.  The file format is
described here:
http://www.haiku-os.org/blog/pulkomandy/2009-09-24_haiku_locale_kit_translator_handbook


	Implementation

	The implementation covers the full requirements of a catkeys file. The
files are simple Tab Separated Value (TSV) files that can be read
by Microsoft Excel and other spreadsheet programs. They use the .txt
extension which does make it more difficult to automatically identify
such files.

The dialect of the TSV files is specified by CatkeysDialect.



	Encoding

	The files are UTF-8 encoded.

	Header

	CatkeysHeader provides header management support.

	Escaping

	catkeys seem to escape things like in C++ (strings are just extracted from
the source code unchanged, it seems.

Functions allow for _escape() and _unescape().






	
class translate.storage.catkeys.CatkeysDialect

	Describe the properties of a catkeys generated TAB-delimited file.






	
class translate.storage.catkeys.CatkeysFile(inputfile=None, unitclass=<class 'translate.storage.catkeys.CatkeysUnit'>)

	A catkeys translation memory file


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parsse the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.catkeys.CatkeysHeader(header=None)

	A catkeys translation memory header


	
settargetlanguage(newlang)

	Set a human readable target language










	
class translate.storage.catkeys.CatkeysUnit(source=None)

	A catkeys translation memory unit


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
dict

	Get the dictionary of values for a catkeys line






	
getdict()

	Get the dictionary of values for a catkeys line






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
makeobsolete()

	Make a unit obsolete






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setdict(newdict)

	Set the dictionary of values for a catkeys line





	Parameters:	newdict (Dict) – a new dictionary with catkeys line elements










	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.catkeys.FIELDNAMES = ['source', 'context', 'comment', 'target']

	Field names for a catkeys TU






	
translate.storage.catkeys.FIELDNAMES_HEADER = ['version', 'language', 'mimetype', 'checksum']

	Field names for the catkeys header






	
translate.storage.catkeys.FIELDNAMES_HEADER_DEFAULTS = {'mimetype': '', 'checksum': '', 'version': '1', 'language': ''}

	Default or minimum header entries for a catkeys file








cpo

Classes that hold units of .po files (pounit) or entire files (pofile).

Gettext-style .po (or .pot) files are used in translations for KDE, GNOME and
many other projects.

This uses libgettextpo from the gettext package. Any version before 0.17 will
at least cause some subtle bugs or may not work at all. Developers might want
to have a look at gettext-tools/libgettextpo/gettext-po.h from the gettext
package for the public API of the library.


	
translate.storage.cpo.get_libgettextpo_version()

	Returns the libgettextpo version





	Return type:	three-value tuple


	Returns:	libgettextpo version in the following format::
(major version, minor version, subminor version)










	
translate.storage.cpo.lsep = ' '

	Separator for #: entries








csvl10n

classes that hold units of comma-separated values (.csv) files (csvunit)
or entire files (csvfile) for use with localisation


	
class translate.storage.csvl10n.csvfile(inputfile=None, fieldnames=None, encoding='auto')

	This class represents a .csv file with various lines.
The default format contains three columns: location, source, target


	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
translate.storage.csvl10n.detect_header(sample, dialect, fieldnames)

	Test if file has a header or not, also returns number of columns in first row






	
translate.storage.csvl10n.valid_fieldnames(fieldnames)

	check if fieldnames are valid








directory

This module provides functionality to work with directories.


	
class translate.storage.directory.Directory(dir=None)

	This class represents a directory.


	
file_iter()

	Iterator over (dir, filename) for all files in this directory.






	
getfiles()

	Returns a list of (dir, filename) tuples for all the file names in
this directory.






	
getunits()

	List of all the units in all the files in this directory.






	
scanfiles()

	Populate the internal file data.






	
unit_iter()

	Iterator over all the units in all the files in this directory.












dtd

Classes that hold units of .dtd files (dtdunit) or entire files
(dtdfile).

These are specific .dtd files for localisation used by mozilla.


	Specifications

	The following information is provided by Mozilla:

Specification [http://www.w3.org/TR/REC-xml/#sec-entexpand]

There is a grammar for entity definitions, which isn’t really precise,
as the spec says.  There’s no formal specification for DTD files, it’s
just “whatever makes this work” basically. The whole piece is clearly not
the strongest point of the xml spec

XML elements are allowed in entity values. A number of things that are
allowed will just break the resulting document, Mozilla forbids these
in their DTD parser.



	Dialects

	There are two dialects:


	Regular DTD

	Android DTD



Both dialects are similar, but the Android DTD uses some particular escapes
that regular DTDs don’t have.



	Escaping in regular DTD

	In DTD usually there are characters escaped in the entities. In order to
ease the translation some of those escaped characters are unescaped when
reading from, or converting, the DTD, and that are escaped again when
saving, or converting to a DTD.

In regular DTD the following characters are usually or sometimes escaped:


	The % character is escaped using &#037; or &#37; or &#x25;

	The ” character is escaped using &quot;

	The ‘ character is escaped using &apos; (partial roundtrip)

	The & character is escaped using &amp;

	The < character is escaped using &lt; (not yet implemented)

	The > character is escaped using &gt; (not yet implemented)



Besides the previous ones there are a lot of escapes for a huge number of
characters. This escapes usually have the form of &#NUMBER; where NUMBER
represents the numerical code for the character.

There are a few particularities in DTD escaping. Some of the escapes are
not yet implemented since they are not really necessary, or because its
implementation is too hard.

A special case is the ‘ escaping using &apos; which doesn’t provide a full
roundtrip conversion in order to support some special Mozilla DTD files.

Also the ” character is never escaped in the case that the previous
character is = (the sequence =” is present on the string) in order to avoid
escaping the ” character indicating an attribute assignment, for example in
a href attribute for an a tag in HTML (anchor tag).



	Escaping in Android DTD

	It has the sames escapes as in regular DTD, plus this ones:


	The ‘ character is escaped using &apos; or ‘ or u0027

	The ” character is escaped using &quot;








	
translate.storage.dtd.accesskeysuffixes = ('.accesskey', '.accessKey', '.akey')

	Accesskey Suffixes: entries with this suffix may be combined with labels
ending in labelsuffixes into accelerator notation






	
class translate.storage.dtd.dtdfile(inputfile=None, android=False)

	A .dtd file made up of dtdunits.


	
UnitClass

	alias of dtdunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getoutput()

	convert the units back to source






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	makes self.id_index dictionary keyed on entities






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(dtdsrc)

	read the source code of a dtd file in and include them as dtdunits in self.units






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.dtd.dtdunit(source='', android=False)

	An entity definition from a DTD file (and any associated comments).


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Set the entity to the given “location”.






	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getlocations()

	Return the entity as location (identifier).






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
getoutput()

	convert the dtd entity back to string form






	
getsource()

	gets the unquoted source string






	
gettarget()

	gets the unquoted target string






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isnull()

	returns whether this dtdunit doesn’t actually have an entity definition






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
parse(dtdsrc)

	read the first dtd element from the source code into this object, return linesprocessed






	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setsource(source)

	Sets the definition to the quoted value of source






	
settarget(target)

	Sets the definition to the quoted value of target






	
source

	gets the unquoted source string






	
target

	gets the unquoted target string






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.dtd.labelsuffixes = ('.label', '.title')

	Label suffixes: entries with this suffix are able to be comibed with accesskeys
found in in entries ending with accesskeysuffixes






	
translate.storage.dtd.quoteforandroid(source)

	Escapes a line for Android DTD files.






	
translate.storage.dtd.quotefordtd(source)

	Quotes and escapes a line for regular DTD files.






	
translate.storage.dtd.removeinvalidamps(name, value)

	Find and remove ampersands that are not part of an entity definition.

A stray & in a DTD file can break an application’s ability to parse the
file. In Mozilla localisation this is very important and these can break the
parsing of files used in XUL and thus break interface rendering. Tracking
down the problem is very difficult, thus by removing potential broken
ampersand and warning the users we can ensure that the output DTD will
always be parsable.





	Parameters:	
	name (String) – Entity name

	value (String) – Entity text value






	Return type:	String




	Returns:	Entity value without bad ampersands












	
translate.storage.dtd.unquotefromandroid(source)

	Unquotes a quoted Android DTD definition.






	
translate.storage.dtd.unquotefromdtd(source)

	unquotes a quoted dtd definition








_factory_classes

Py2exe can’t find stuff that we import dynamically, so we have this file
just for the sake of the Windows installer to easily pick up all the stuff
that we need and ensure they make it into the installer.




factory

factory methods to build real storage objects that conform to base.py


	
translate.storage.factory.classes_str = {'lang': ('mozilla_lang', 'LangStore'), 'tbx': ('tbx', 'tbxfile'), 'qph': ('qph', 'QphFile'), 'xlf': ('xliff', 'xlifffile'), 'mo': ('mo', 'mofile'), '_trados_txt_tm': ('trados', 'TradosTxtTmFile'), 'tmx': ('tmx', 'tmxfile'), 'utf8': ('omegat', 'OmegaTFile'), 'pot': ('po', 'pofile'), 'ts': ('ts2', 'tsfile'), 'sdlxliff': ('xliff', 'xlifffile'), 'tab': ('omegat', 'OmegaTFileTab'), 'catkeys': ('catkeys', 'CatkeysFile'), 'xliff': ('xliff', 'xlifffile'), 'gmo': ('mo', 'mofile'), 'utx': ('utx', 'UtxFile'), 'csv': ('csvl10n', 'csvfile'), 'qm': ('qm', 'qmfile'), 'po': ('po', 'pofile'), '_wftm': ('wordfast', 'WordfastTMFile')}

	Dictionary of file extensions and the names of their associated class.

Used for dynamic lazy loading of modules.
_ext is a pseudo extension, that is their is no real extension by that name.






	
translate.storage.factory.getclass(storefile, ignore=None, classes=None, classes_str={'lang': ('mozilla_lang', 'LangStore'), 'tbx': ('tbx', 'tbxfile'), 'qph': ('qph', 'QphFile'), 'xlf': ('xliff', 'xlifffile'), 'mo': ('mo', 'mofile'), '_trados_txt_tm': ('trados', 'TradosTxtTmFile'), 'tmx': ('tmx', 'tmxfile'), 'utf8': ('omegat', 'OmegaTFile'), 'pot': ('po', 'pofile'), 'ts': ('ts2', 'tsfile'), 'sdlxliff': ('xliff', 'xlifffile'), 'tab': ('omegat', 'OmegaTFileTab'), 'catkeys': ('catkeys', 'CatkeysFile'), 'xliff': ('xliff', 'xlifffile'), 'gmo': ('mo', 'mofile'), 'utx': ('utx', 'UtxFile'), 'csv': ('csvl10n', 'csvfile'), 'qm': ('qm', 'qmfile'), 'po': ('po', 'pofile'), '_wftm': ('wordfast', 'WordfastTMFile')}, hiddenclasses={'txt': <function _examine_txt at 0x7f3abf2ab140>})

	Factory that returns the applicable class for the type of file presented.
Specify ignore to ignore some part at the back of the name (like .gz).






	
translate.storage.factory.getobject(storefile, ignore=None, classes=None, classes_str={'lang': ('mozilla_lang', 'LangStore'), 'tbx': ('tbx', 'tbxfile'), 'qph': ('qph', 'QphFile'), 'xlf': ('xliff', 'xlifffile'), 'mo': ('mo', 'mofile'), '_trados_txt_tm': ('trados', 'TradosTxtTmFile'), 'tmx': ('tmx', 'tmxfile'), 'utf8': ('omegat', 'OmegaTFile'), 'pot': ('po', 'pofile'), 'ts': ('ts2', 'tsfile'), 'sdlxliff': ('xliff', 'xlifffile'), 'tab': ('omegat', 'OmegaTFileTab'), 'catkeys': ('catkeys', 'CatkeysFile'), 'xliff': ('xliff', 'xlifffile'), 'gmo': ('mo', 'mofile'), 'utx': ('utx', 'UtxFile'), 'csv': ('csvl10n', 'csvfile'), 'qm': ('qm', 'qmfile'), 'po': ('po', 'pofile'), '_wftm': ('wordfast', 'WordfastTMFile')}, hiddenclasses={'txt': <function _examine_txt at 0x7f3abf2ab140>})

	Factory that returns a usable object for the type of file presented.





	Parameters:	storefile (file or str) – File object or file name.





Specify ignore to ignore some part at the back of the name (like .gz).






	
translate.storage.factory.supported_files()

	Returns data about all supported files





	Returns:	list of type that include (name, extensions, mimetypes)


	Return type:	list












fpo

Classes for the support of Gettext .po and .pot files.

This implementation assumes that cpo is working. This should not be used
directly, but can be used once cpo has been established to work.


	
translate.storage.fpo.lsep = ' '

	Separator for #: entries






	
class translate.storage.fpo.pofile(inputfile=None, encoding=None)

	A .po file containing various units


	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
changeencoding(newencoding)

	Deprecated: changes the encoding on the file.






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getheaderplural()

	Returns the nplural and plural values from the header.






	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Return the project based on information in the header.


	The project is determined in the following sequence:

	
	Use the ‘X-Project-Style’ entry in the header.

	Use ‘Report-Msgid-Bug-To’ entry

	Use the ‘X-Accelerator’ entry

	Use the Project ID

	Analyse the file itself (not yet implemented)












	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Return the target language based on information in the header.


	The target language is determined in the following sequence:

	
	Use the ‘Language’ entry in the header.

	Poedit’s custom headers.

	Analysing the ‘Language-Team’ entry.












	
getunits()

	Return a list of all units in this store.






	
header()

	Returns the header element, or None. Only the first element is allowed
to be a header. Note that this could still return an empty header element,
if present.






	
init_headers(charset='UTF-8', encoding='8bit', **kwargs)

	sets default values for po headers






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeheader(**kwargs)

	Create a header for the given filename.

Check .makeheaderdict() for information on parameters.






	
makeheaderdict(charset='CHARSET', encoding='ENCODING', project_id_version=None, pot_creation_date=None, po_revision_date=None, last_translator=None, language_team=None, mime_version=None, plural_forms=None, report_msgid_bugs_to=None, **kwargs)

	Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string)
po_revision_date can be None (form), False (=pot_creation_date), True (=now),
or a value (datetime or string)





	Returns:	Dictionary with the header items


	Return type:	dict










	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.






	
mergeheaders(otherstore)

	Merges another header with this header.

This header is assumed to be the template.













	
parse(input)

	Parses the given file or file source string.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
parseheader()

	Parses the PO header and returns the interpreted values as a
dictionary.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
removeduplicates(duplicatestyle='merge')

	Make sure each msgid is unique ; merge comments etc from duplicates into original






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project in the header.





	Parameters:	project_style (str [https://docs.python.org/2.7/library/functions.html#str]) – the new project










	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(lang)

	Set the target language in the header.

This removes any custom Poedit headers if they exist.





	Parameters:	lang (str [https://docs.python.org/2.7/library/functions.html#str]) – the new target language code










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.






	
updatecontributor(name, email=None)

	Add contribution comments if necessary.






	
updateheader(add=False, **kwargs)

	Updates the fields in the PO style header.

This will create a header if add == True.






	
updateheaderplural(nplurals, plural)

	Update the Plural-Form PO header.












html

module for parsing html files for translation


	
class translate.storage.html.htmlunit(source=None)

	A unit of translatable/localisable HTML content


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.html.normalize_html(text)

	Remove double spaces from HTML snippets






	
translate.storage.html.safe_escape(html)

	Escape &, < and >






	
translate.storage.html.strip_html(text)

	Strip unnecessary html from the text.

HTML tags are deemed unnecessary if it fully encloses the translatable
text, eg. ‘<a href=”index.html”>Home Page</a>’.

HTML tags that occurs within the normal flow of text will not be removed,
eg. ‘This is a link to the <a href=”index.html”>Home Page</a>.’








ical

Class that manages iCalender files for translation.

iCalendar files follow the RFC2445 [http://tools.ietf.org/html/rfc2445]
specification.

The iCalendar specification uses the following naming conventions:


	Component: an event, journal entry, timezone, etc

	Property: a property of a component: summary, description, start time, etc

	Attribute: an attribute of a property, e.g. language



The following are localisable in this implementation:


	VEVENT component: SUMMARY, DESCRIPTION, COMMENT and LOCATION properties



While other items could be localised this is not seen as important until use
cases arise.  In such a case simply adjusting the component.name and
property.name lists to include these will allow expanded localisation.


	LANGUAGE Attribute

	While the iCalendar format allows items to have a language attribute this is
not used. The reason being that for most of the items that we localise they
are only allowed to occur zero or once.  Thus ‘summary’ would ideally
be present in multiple languages in one file, the format does not allow
such multiple entries.  This is unfortunate as it prevents the creation
of a single multilingual iCalendar file.

	Future Format Support

	As this format used vobject [http://vobject.skyhouseconsulting.com/]
which supports various formats including
vCard [http://en.wikipedia.org/wiki/VCard] it is possible to expand
this format to understand those if needed.




	
class translate.storage.ical.icalfile(inputfile=None, unitclass=<class 'translate.storage.ical.icalunit'>)

	An ical file


	
UnitClass

	alias of icalunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parse the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.ical.icalunit(source=None, encoding='UTF-8')

	An ical entry that is translatable


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.












ini

Class that manages .ini files for translation

# a comment
; a comment

[Section]
a = a string
b : a string


	
class translate.storage.ini.Dialect

	Base class for differentiating dialect options and functions






	
class translate.storage.ini.inifile(inputfile=None, unitclass=<class 'translate.storage.ini.iniunit'>, dialect='default')

	An INI file


	
UnitClass

	alias of iniunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	Parse the given file or file source string.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.ini.iniunit(source=None, encoding='UTF-8')

	A INI file entry


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.ini.register_dialect(dialect)

	Decorator that registers the dialect.








jsonl10n

Class that manages JSON data files for translation

JSON is an acronym for JavaScript Object Notation, it is an open standard
designed for human-readable data interchange.

JSON basic types:


	Number (integer or real)

	String (double-quoted Unicode with backslash escaping)

	Boolean (true or false)

	Array (an ordered sequence of values, comma-separated and enclosed in square
brackets)

	Object (a collection of key:value pairs, comma-separated and enclosed in
curly braces)

	null



Example:

{
     "firstName": "John",
     "lastName": "Smith",
     "age": 25,
     "address": {
         "streetAddress": "21 2nd Street",
         "city": "New York",
         "state": "NY",
         "postalCode": "10021"
     },
     "phoneNumber": [
         {
           "type": "home",
           "number": "212 555-1234"
         },
         {
           "type": "fax",
           "number": "646 555-4567"
         }
     ]
}





TODO:


	Handle \u and other escapes in Unicode

	Manage data type storage and conversion. True –> “True” –> True

	Sort the extracted data to the order of the JSON file




	
class translate.storage.jsonl10n.JsonFile(inputfile=None, unitclass=<class 'translate.storage.jsonl10n.JsonUnit'>, filter=None)

	A JSON file


	
UnitClass

	alias of JsonUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parse the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.jsonl10n.JsonUnit(source=None, ref=None, item=None, encoding='UTF-8')

	A JSON entry


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
unit_iter()

	Iterator that only returns this unit.












lisa

Parent class for LISA standards (TMX, TBX, XLIFF)


	
class translate.storage.lisa.LISAfile(inputfile=None, sourcelanguage='en', targetlanguage=None, unitclass=None)

	A class representing a file store for one of the LISA file formats.


	
UnitClass

	alias of LISAunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addheader()

	Method to be overridden to initialise headers, etc.






	
addsourceunit(source)

	Adds and returns a new unit with the given string as first entry.






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
initbody()

	Initialises self.body so it never needs to be retrieved from the
XML again.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.lisa.LISAunit(source, empty=False, **kwargs)

	A single unit in the file.  Provisional work is done to make several
languages possible.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createlanguageNode(lang, text, purpose=None)

	Returns a xml Element setup with given parameters to represent a
single language entry. Has to be overridden.






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	Returns a list of all nodes that contain per language information.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettarget(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
settarget(text, lang='xx', append=False)

	Sets the “target” string (second language), or alternatively
appends to the list






	
target

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
unit_iter()

	Iterator that only returns this unit.












mo

Module for parsing Gettext .mo files for translation.

The coding of .mo files was produced from Gettext documentation [http://www.gnu.org/software/gettext/manual/gettext.html#MO-Files],
Pythons msgfmt.py and by observing and testing existing .mo files in the wild.

The hash algorithm is implemented for MO files, this should result in
faster access of the MO file.  The hash is optional for Gettext
and is not needed for reading or writing MO files, in this implementation
it is always on and does produce sometimes different results to Gettext
in very small files.


	
class translate.storage.mo.mofile(inputfile=None, unitclass=<class 'translate.storage.mo.mounit'>)

	A class representing a .mo file.


	
UnitClass

	alias of mounit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getheaderplural()

	Returns the nplural and plural values from the header.






	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Return the project based on information in the header.


	The project is determined in the following sequence:

	
	Use the ‘X-Project-Style’ entry in the header.

	Use ‘Report-Msgid-Bug-To’ entry

	Use the ‘X-Accelerator’ entry

	Use the Project ID

	Analyse the file itself (not yet implemented)












	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Return the target language based on information in the header.


	The target language is determined in the following sequence:

	
	Use the ‘Language’ entry in the header.

	Poedit’s custom headers.

	Analysing the ‘Language-Team’ entry.












	
getunits()

	Return a list of all units in this store.






	
header()

	Returns the header element, or None. Only the first element is allowed
to be a header. Note that this could still return an empty header element,
if present.






	
init_headers(charset='UTF-8', encoding='8bit', **kwargs)

	sets default values for po headers






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeheader(**kwargs)

	Create a header for the given filename.

Check .makeheaderdict() for information on parameters.






	
makeheaderdict(charset='CHARSET', encoding='ENCODING', project_id_version=None, pot_creation_date=None, po_revision_date=None, last_translator=None, language_team=None, mime_version=None, plural_forms=None, report_msgid_bugs_to=None, **kwargs)

	Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string)
po_revision_date can be None (form), False (=pot_creation_date), True (=now),
or a value (datetime or string)





	Returns:	Dictionary with the header items


	Return type:	dict










	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
mergeheaders(otherstore)

	Merges another header with this header.

This header is assumed to be the template.













	
parse(input)

	parses the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
parseheader()

	Parses the PO header and returns the interpreted values as a
dictionary.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project in the header.





	Parameters:	project_style (str [https://docs.python.org/2.7/library/functions.html#str]) – the new project










	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(lang)

	Set the target language in the header.

This removes any custom Poedit headers if they exist.





	Parameters:	lang (str [https://docs.python.org/2.7/library/functions.html#str]) – the new target language code










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.






	
updatecontributor(name, email=None)

	Add contribution comments if necessary.






	
updateheader(add=False, **kwargs)

	Updates the fields in the PO style header.

This will create a header if add == True.






	
updateheaderplural(nplurals, plural)

	Update the Plural-Form PO header.










	
class translate.storage.mo.mounit(source=None, encoding=None)

	A class representing a .mo translation message.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Is this a header entry?






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Is this message translateable?






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.mo.mounpack(filename='messages.mo')

	Helper to unpack Gettext MO files into a Python string








mozilla_lang

A class to manage Mozilla .lang files.


	
class translate.storage.mozilla_lang.LangStore(inputfile=None, flavour=None, encoding='utf-8', mark_active=False)

	We extend TxtFile, since that has a lot of useful stuff for encoding


	
UnitClass

	alias of LangUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getoutput()

	Convert the units back to blocks






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.mozilla_lang.LangUnit(source=None)

	This is just a normal unit with a weird string output


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.












odf_io




odf_shared




omegat

Manage the OmegaT glossary format

OmegaT glossary format is used by the
OmegaT [http://www.omegat.org/en/omegat.html] computer aided
translation tool.

It is a bilingual base class derived format with OmegaTFile
and OmegaTUnit providing file and unit level access.


	Format Implementation

	The OmegaT glossary format is a simple Tab Separated Value (TSV) file
with the columns: source, target, comment.

The dialect of the TSV files is specified by OmegaTDialect.



	Encoding

	The files are either UTF-8 or encoded using the system default.  UTF-8
encoded files use the .utf8 extension while system encoded files use
the .tab extension.




	
translate.storage.omegat.OMEGAT_FIELDNAMES = ['source', 'target', 'comment']

	Field names for an OmegaT glossary unit






	
class translate.storage.omegat.OmegaTDialect

	Describe the properties of an OmegaT generated TAB-delimited glossary
file.






	
class translate.storage.omegat.OmegaTFile(inputfile=None, unitclass=<class 'translate.storage.omegat.OmegaTUnit'>)

	An OmegaT glossary file


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parsese the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.omegat.OmegaTFileTab(inputfile=None, unitclass=<class 'translate.storage.omegat.OmegaTUnit'>)

	An OmegaT glossary file in the default system encoding


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parsese the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.omegat.OmegaTUnit(source=None)

	An OmegaT glossary unit


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
dict

	Get the dictionary of values for a OmegaT line






	
getcontext()

	Get the message context.






	
getdict()

	Get the dictionary of values for a OmegaT line






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setdict(newdict)

	Set the dictionary of values for a OmegaT line





	Parameters:	newdict (Dict) – a new dictionary with OmegaT line elements










	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
unit_iter()

	Iterator that only returns this unit.












oo

Classes that hold units of .oo files (oounit) or entire files (oofile).

These are specific .oo files for localisation exported by OpenOffice.org - SDF
format (previously knows as GSI files).

The behaviour in terms of escaping is explained in detail in the programming
comments.


	
translate.storage.oo.encode_if_needed_utf8(text)

	Encode a Unicode string the the specified encoding






	
translate.storage.oo.escape_help_text(text)

	Escapes the help text as it would be in an SDF file.

<, >, ” are only escaped in <[[:lower:]]> tags. Some HTML tags make it in in
lowercase so those are dealt with. Some OpenOffice.org help tags are not
escaped.






	
translate.storage.oo.escape_text(text)

	Escapes SDF text to be suitable for unit consumption.






	
translate.storage.oo.makekey(ookey, long_keys)

	converts an oo key tuple into a unique identifier





	Parameters:	
	ookey (tuple [https://docs.python.org/2.7/library/functions.html#tuple]) – an oo key

	long_keys (Boolean) – Use long keys






	Return type:	str




	Returns:	unique ascii identifier












	
translate.storage.oo.normalizefilename(filename)

	converts any non-alphanumeric (standard roman) characters to _






	
class translate.storage.oo.oofile(input=None)

	this represents an entire .oo file


	
UnitClass

	alias of oounit






	
addline(thisline)

	adds a parsed line to the file






	
getoutput(skip_source=False, fallback_lang=None)

	converts all the lines back to tab-delimited form






	
parse(input)

	parses lines and adds them to the file










	
class translate.storage.oo.ooline(parts=None)

	this represents one line, one translation in an .oo file


	
getkey()

	get the key that identifies the resource






	
getoutput()

	return a line in tab-delimited form






	
getparts()

	return a list of parts in this line






	
gettext()

	Obtains the text column and handle escaping.






	
setparts(parts)

	create a line from its tab-delimited parts






	
settext(text)

	Sets the text column and handle escaping.






	
text

	Obtains the text column and handle escaping.










	
class translate.storage.oo.oomultifile(filename, mode=None, multifilestyle='single')

	this takes a huge GSI file and represents it as multiple smaller files...


	
createsubfileindex()

	reads in all the lines and works out the subfiles






	
getoofile(subfile)

	returns an oofile built up from the given subfile’s lines






	
getsubfilename(line)

	looks up the subfile name for the line






	
getsubfilesrc(subfile)

	returns the list of lines matching the subfile






	
listsubfiles()

	returns a list of subfiles in the file






	
openinputfile(subfile)

	returns a pseudo-file object for the given subfile






	
openoutputfile(subfile)

	returns a pseudo-file object for the given subfile










	
class translate.storage.oo.oounit

	this represents a number of translations of a resource


	
addline(line)

	add a line to the oounit






	
getoutput(skip_source=False, fallback_lang=None)

	return the lines in tab-delimited form










	
translate.storage.oo.unescape_help_text(text)

	Unescapes normal text to be suitable for writing to the SDF file.






	
translate.storage.oo.unescape_text(text)

	Unescapes SDF text to be suitable for unit consumption.








placeables

This module implements basic functionality to support placeables.


	A placeable is used to represent things like:

	
	Substitutions

For example, in ODF, footnotes appear in the ODF XML
where they are defined; so if we extract a paragraph with some
footnotes, the translator will have a lot of additional XML to with;
so we separate the footnotes out into separate translation units and
mark their positions in the original text with placeables.



	Hiding of inline formatting data

The translator doesn’t want to have to deal with all the weird
formatting conventions of wherever the text came from.



	Marking variables

This is an old issue - translators translate variable names which
should remain untranslated. We can wrap placeables around variable
names to avoid this.









The placeables model follows the XLIFF standard’s list of placeables.
Please refer to the XLIFF specification to get a better understanding.


base

Contains base placeable classes with names based on XLIFF placeables. See the
XLIFF standard for more information about what the names mean.




general

Contains general placeable implementations. That is placeables that does not
fit into any other sub-category.


	
class translate.storage.placeables.general.AltAttrPlaceable(sub=None, id=None, rid=None, xid=None, **kwargs)

	Placeable for the “alt=...” attributes inside XML tags.


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
classmethod parse(pstr)

	A parser method to extract placeables from a string based on a regular
expression. Use this function as the @parse() method of a placeable
class.






	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
translate()

	Transform the sub-tree according to some class-specific needs.
This method should be either overridden in implementing sub-classes
or dynamically replaced by specific applications.





	Returns:	The transformed Unicode string representing the sub-tree.














	
class translate.storage.placeables.general.XMLEntityPlaceable(sub=None, id=None, rid=None, xid=None, **kwargs)

	Placeable handling XML entities (&xxxxx;-style entities).


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
classmethod parse(pstr)

	A parser method to extract placeables from a string based on a regular
expression. Use this function as the @parse() method of a placeable
class.






	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
translate()

	Transform the sub-tree according to some class-specific needs.
This method should be either overridden in implementing sub-classes
or dynamically replaced by specific applications.





	Returns:	The transformed Unicode string representing the sub-tree.














	
class translate.storage.placeables.general.XMLTagPlaceable(sub=None, id=None, rid=None, xid=None, **kwargs)

	Placeable handling XML tags.


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
classmethod parse(pstr)

	A parser method to extract placeables from a string based on a regular
expression. Use this function as the @parse() method of a placeable
class.






	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
translate()

	Transform the sub-tree according to some class-specific needs.
This method should be either overridden in implementing sub-classes
or dynamically replaced by specific applications.





	Returns:	The transformed Unicode string representing the sub-tree.
















interfaces


	This file contains abstract (semantic) interfaces for placeable

	implementations.




	
class translate.storage.placeables.interfaces.BasePlaceable(sub=None, id=None, rid=None, xid=None, **kwargs)

	Base class for all placeables.


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
translate()

	Transform the sub-tree according to some class-specific needs.
This method should be either overridden in implementing sub-classes
or dynamically replaced by specific applications.





	Returns:	The transformed Unicode string representing the sub-tree.
















lisa




parse

Contains the parse function that parses normal strings into StringElem-
based “rich” string element trees.


	
translate.storage.placeables.parse.parse(tree, parse_funcs)

	Parse placeables from the given string or sub-tree by using the
parsing functions provided.

The output of this function is heavily dependent on the order of the
parsing functions. This is because of the algorithm used.

An over-simplification of the algorithm: the leaves in the StringElem
tree are expanded to the output of the first parsing function in
parse_funcs. The next level of recursion is then started on the new
set of leaves with the used parsing function removed from
parse_funcs.





	Parameters:	tree (unicode|StringElem) – The string or string element sub-tree to parse.












strelem

Contains the base StringElem class that represents a node in a
parsed rich-string tree. It is the base class of all placeables.


	
class translate.storage.placeables.strelem.StringElem(sub=None, id=None, rid=None, xid=None, **kwargs)

	This class represents a sub-tree of a string parsed into a rich structure.
It is also the base class of all placeables.


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
has_content = True

	Whether this string can have sub-elements.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
iseditable = True

	Whether this string should be changable by the user. Not used at
the moment.






	
isfragile = False

	Whether this element should be deleted in its entirety when partially
deleted. Only checked when iseditable = False






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
istranslatable = True

	Whether this string is translatable into other languages.






	
isvisible = True

	Whether this string should be visible to the user. Not used at
the moment.






	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
classmethod parse(pstr)

	Parse an instance of this class from the start of the given string.
This method should be implemented by any sub-class that wants to
parseable by translate.storage.placeables.parse.





	Parameters:	pstr (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – The string to parse into an instance of this class.


	Returns:	An instance of the current class, or None if the
string not parseable by this class.










	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
renderer = None

	An optional function that returns the Unicode representation of
the string.






	
sub = []

	The sub-elements that make up this this string.






	
translate()

	Transform the sub-tree according to some class-specific needs.
This method should be either overridden in implementing sub-classes
or dynamically replaced by specific applications.





	Returns:	The transformed Unicode string representing the sub-tree.
















terminology

Contains the placeable that represents a terminology term.


	
class translate.storage.placeables.terminology.TerminologyPlaceable(*args, **kwargs)

	Terminology distinguished from the rest of a string by being
a placeable.


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
matchers = []

	A list of matcher objects to use to identify terminology.






	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
translations = []

	The available translations for this placeable.












xliff

Contains XLIFF-specific placeables.


	
class translate.storage.placeables.xliff.UnknownXML(sub=None, id=None, rid=None, xid=None, xml_node=None, **kwargs)

	Placeable for unrecognized or umimplemented XML nodes. It’s main
purpose is to preserve all associated XML data.


	
apply_to_strings(f)

	Apply f to all actual strings in the tree.





	Parameters:	f – Must take one (str or unicode) argument and return a
string or unicode.










	
copy()

	Returns a copy of the sub-tree.  This should be overridden in
sub-classes with more data.


Note

self.renderer is not copied.








	
delete_range(start_index, end_index)

	Delete the text in the range given by the string-indexes
start_index and end_index.

Partial nodes will only be removed if they are editable.





	Returns:	A StringElem representing the removed sub-string, the
parent node from which it was deleted as well as the offset at
which it was deleted from. None is returned for the parent
value if the root was deleted. If the parent and offset values
are not None, parent.insert(offset, deleted)
effectively undoes the delete.










	
depth_first(filter=None)

	Returns a list of the nodes in the tree in depth-first order.






	
elem_at_offset(offset)

	Get the StringElem in the tree that contains the string rendered
at the given offset.






	
elem_offset(elem)

	Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even
less so if the rendering function renders the string differently
upon different calls. In Virtaal the StringElemGUI.index() method
is used as replacement for this one.





	Returns:	The string index where element e starts, or -1 if e
was not found.










	
encode(encoding='ascii')

	More unicode class emulation.






	
find(x)

	Find sub-string x in this string tree and return the position
at which it starts.






	
find_elems_with(x)

	Find all elements in the current sub-tree containing x.






	
flatten(filter=None)

	Flatten the tree by returning a depth-first search over the
tree’s leaves.






	
get_index_data(index)

	Get info about the specified range in the tree.





	Returns:	A dictionary with the following items:
	elem: The element in which index resides.

	index: Copy of the index parameter

	offset: The offset of index into 'elem'.














	
get_parent_elem(child)

	Searches the current sub-tree for and returns the parent of the
child element.






	
insert(offset, text, preferred_parent=None)

	Insert the given text at the specified offset of this string-tree’s
string (Unicode) representation.






	
insert_between(left, right, text)

	Insert the given text between the two parameter StringElems.






	
isleaf()

	Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and
contains only sub-elements of type str or unicode.





	Return type:	bool










	
iter_depth_first(filter=None)

	Iterate through the nodes in the tree in dept-first order.






	
map(f, filter=None)

	Apply f to all nodes for which filter returned True
(optional).






	
classmethod parse(pstr)

	Parse an instance of this class from the start of the given string.
This method should be implemented by any sub-class that wants to
parseable by translate.storage.placeables.parse.





	Parameters:	pstr (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – The string to parse into an instance of this class.


	Returns:	An instance of the current class, or None if the
string not parseable by this class.










	
print_tree(indent=0, verbose=False)

	Print the tree from the current instance’s point in an indented
manner.






	
prune()

	Remove unnecessary nodes to make the tree optimal.






	
remove_type(ptype)

	Replace nodes with type ptype with base StringElems,
containing the same sub-elements. This is only applicable to
elements below the element tree root node.






	
translate()

	Transform the sub-tree according to some class-specific needs.
This method should be either overridden in implementing sub-classes
or dynamically replaced by specific applications.





	Returns:	The transformed Unicode string representing the sub-tree.


















php

Classes that hold units of PHP localisation files phpunit or
entire files phpfile. These files are used in translating many
PHP based applications.

Only PHP files written with these conventions are supported:

<?php
$lang['item'] = "vale";  # Array of values
$some_entity = "value";  # Named variables
define("ENTITY", "value");
$lang = array(
   'item1' => 'value1'    ,   #Supports space before comma
   'item2' => 'value2',
);
$lang = array(    # Nested arrays
   'item1' => 'value1',
   'item2' => array(
      'key' => 'value'    ,   #Supports space before comma
      'key2' => 'value2',
   ),
);





Nested arrays without key for nested array are not supported:

<?php
$lang = array(array('key' => 'value'));





The working of PHP strings and specifically the escaping conventions which
differ between single quote (‘) and double quote (”) characters are
implemented as outlined in the PHP documentation for the
String type [http://www.php.net/language.types.string].


	
translate.storage.php.phpdecode(text, quotechar="'")

	Convert PHP escaped string to a Python string.






	
translate.storage.php.phpencode(text, quotechar="'")

	Convert Python string to PHP escaping.

The encoding is implemented for
‘single quote’ [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single]
and “double quote” [http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double]
syntax.

heredoc and nowdoc are not implemented and it is not certain whether this
would ever be needed for PHP localisation needs.






	
class translate.storage.php.phpfile(inputfile=None, encoding='utf-8')

	This class represents a PHP file, made up of phpunits.


	
UnitClass

	alias of phpunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(phpsrc)

	Read the source of a PHP file in and include them as units.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.php.phpunit(source='')

	A unit of a PHP file: a name, a value, and any comments associated.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getoutput()

	Convert the unit back into formatted lines for a php file.






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Return whether this is a blank element, containing only comments.






	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source AND the target to be equal.






	
unit_iter()

	Iterator that only returns this unit.












pocommon


	
translate.storage.pocommon.encodingToUse(encoding)

	Tests whether the given encoding is known in the python runtime, or returns utf-8.
This function is used to ensure that a valid encoding is always used.






	
translate.storage.pocommon.extract_msgid_comment(text)

	The one definitive way to extract a msgid comment out of an unescaped
unicode string that might contain it.





	Return type:	unicode










	
translate.storage.pocommon.quote_plus(text)

	Quote the query fragment of a URL; replacing ‘ ‘ with ‘+’






	
translate.storage.pocommon.unquote_plus(text)

	unquote(‘%7e/abc+def’) -> ‘~/abc def’








poheader

class that handles all header functions for a header in a po file


	
translate.storage.poheader.parseheaderstring(input)

	Parses an input string with the definition of a PO header and returns
the interpreted values as a dictionary.






	
class translate.storage.poheader.poheader

	This class implements functionality for manipulation of po file headers.
This class is a mix-in class and useless on its own. It must be used from all
classes which represent a po file


	
getheaderplural()

	Returns the nplural and plural values from the header.






	
getprojectstyle()

	Return the project based on information in the header.


	The project is determined in the following sequence:

	
	Use the ‘X-Project-Style’ entry in the header.

	Use ‘Report-Msgid-Bug-To’ entry

	Use the ‘X-Accelerator’ entry

	Use the Project ID

	Analyse the file itself (not yet implemented)












	
gettargetlanguage()

	Return the target language based on information in the header.


	The target language is determined in the following sequence:

	
	Use the ‘Language’ entry in the header.

	Poedit’s custom headers.

	Analysing the ‘Language-Team’ entry.












	
header()

	Returns the header element, or None. Only the first element is allowed
to be a header. Note that this could still return an empty header element,
if present.






	
init_headers(charset='UTF-8', encoding='8bit', **kwargs)

	sets default values for po headers






	
makeheader(**kwargs)

	Create a header for the given filename.

Check .makeheaderdict() for information on parameters.






	
makeheaderdict(charset='CHARSET', encoding='ENCODING', project_id_version=None, pot_creation_date=None, po_revision_date=None, last_translator=None, language_team=None, mime_version=None, plural_forms=None, report_msgid_bugs_to=None, **kwargs)

	Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string)
po_revision_date can be None (form), False (=pot_creation_date), True (=now),
or a value (datetime or string)





	Returns:	Dictionary with the header items


	Return type:	dict










	
mergeheaders(otherstore)

	Merges another header with this header.

This header is assumed to be the template.













	
parseheader()

	Parses the PO header and returns the interpreted values as a
dictionary.






	
setprojectstyle(project_style)

	Set the project in the header.





	Parameters:	project_style (str [https://docs.python.org/2.7/library/functions.html#str]) – the new project










	
settargetlanguage(lang)

	Set the target language in the header.

This removes any custom Poedit headers if they exist.





	Parameters:	lang (str [https://docs.python.org/2.7/library/functions.html#str]) – the new target language code










	
updatecontributor(name, email=None)

	Add contribution comments if necessary.






	
updateheader(add=False, **kwargs)

	Updates the fields in the PO style header.

This will create a header if add == True.






	
updateheaderplural(nplurals, plural)

	Update the Plural-Form PO header.










	
translate.storage.poheader.tzstring()

	Returns the timezone as a string in the format [+-]0000, eg +0200.





	Return type:	str










	
translate.storage.poheader.update(existing, add=False, **kwargs)

	Update an existing header dictionary with the values in kwargs, adding new values
only if add is true.





	Returns:	Updated dictionary of header entries


	Return type:	dict












poparser


	
translate.storage.poparser.read_obsolete_lines(parse_state)

	Read all the lines belonging to the current unit if obsolete.






	
translate.storage.poparser.read_prevmsgid_lines(parse_state)

	Read all the lines belonging starting with #|. These lines contain
the previous msgid and msgctxt info. We strip away the leading ‘#| ‘
and read until we stop seeing #|.








po

A class loader that will load C or Python implementations of the PO class
depending on the USECPO variable.

Use the environment variable USECPO=2 (or 1) to choose the C implementation which
uses Gettext’s libgettextpo for high parsing speed.  Otherise the local
Python based parser is used (slower but very well tested).




poxliff

XLIFF classes specifically suited for handling the PO representation in
XLIFF.

This way the API supports plurals as if it was a PO file, for example.


	
class translate.storage.poxliff.PoXliffFile(*args, **kwargs)

	a file for the po variant of Xliff files


	
UnitClass

	alias of PoXliffUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addheader()

	Initialise the file header.






	
addplural(source, target, filename, createifmissing=False)

	This method should now be unnecessary, but is left for reference






	
addsourceunit(source, filename='NoName', createifmissing=False)

	adds the given trans-unit to the last used body node if the
filename has changed it uses the slow method instead (will
create the nodes required if asked). Returns success






	
creategroup(filename='NoName', createifmissing=False, restype=None)

	adds a group tag into the specified file






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getbodynode(filenode, createifmissing=False)

	finds the body node for the given filenode






	
getdatatype(filename=None)

	Returns the datatype of the stored file. If no filename is given,
the datatype of the first file is given.






	
getdate(filename=None)

	Returns the date attribute for the file.

If no filename is given, the date of the first file is given.
If the date attribute is not specified, None is returned.





	Returns:	Date attribute of file


	Return type:	Date or None










	
getfilename(filenode)

	returns the name of the given file






	
getfilenames()

	returns all filenames in this XLIFF file






	
getfilenode(filename, createifmissing=False)

	finds the filenode with the given name






	
getheadernode(filenode, createifmissing=False)

	finds the header node for the given filenode






	
getheaderplural()

	Returns the nplural and plural values from the header.






	
getprojectstyle()

	Get the project type for this store.






	
getunits()

	Return a list of all units in this store.






	
header()

	Returns the header element, or None. Only the first element is allowed
to be a header. Note that this could still return an empty header element,
if present.






	
init_headers(charset='UTF-8', encoding='8bit', **kwargs)

	sets default values for po headers






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeheader(**kwargs)

	Create a header for the given filename.

Check .makeheaderdict() for information on parameters.






	
makeheaderdict(charset='CHARSET', encoding='ENCODING', project_id_version=None, pot_creation_date=None, po_revision_date=None, last_translator=None, language_team=None, mime_version=None, plural_forms=None, report_msgid_bugs_to=None, **kwargs)

	Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string)
po_revision_date can be None (form), False (=pot_creation_date), True (=now),
or a value (datetime or string)





	Returns:	Dictionary with the header items


	Return type:	dict










	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
mergeheaders(otherstore)

	Merges another header with this header.

This header is assumed to be the template.













	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
parseheader()

	Parses the PO header and returns the interpreted values as a
dictionary.






	
classmethod parsestring(storestring)

	Parses the string to return the correct file object






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
removedefaultfile()

	We want to remove the default file-tag as soon as possible if we
know if still present and empty.






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setfilename(filenode, filename)

	set the name of the given file






	
setprojectstyle(project_style)

	Set the project type for this store.






	
switchfile(filename, createifmissing=False)

	Adds the given trans-unit (will create the nodes required if asked).





	Returns:	Success


	Return type:	Boolean










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.






	
updatecontributor(name, email=None)

	Add contribution comments if necessary.






	
updateheader(add=False, **kwargs)

	Updates the fields in the PO style header.

This will create a header if add == True.






	
updateheaderplural(nplurals, plural)

	Update the Plural-Form PO header.










	
class translate.storage.poxliff.PoXliffUnit(source=None, empty=False, encoding='UTF-8')

	A class to specifically handle the plural units created from a po file.


	
addalttrans(txt, origin=None, lang=None, sourcetxt=None, matchquality=None)

	Adds an alt-trans tag and alt-trans components to the unit.





	Parameters:	txt (String) – Alternative translation of the source text.










	
adderror(errorname, errortext)

	Adds an error message to this unit.






	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Add a note specifically in a “note” tag






	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
correctorigin(node, origin)

	Check against node tag’s origin (e.g note or alt-trans)






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createcontextgroup(name, contexts=None, purpose=None)

	Add the context group to the trans-unit with contexts a list with
(type, text) tuples describing each context.






	
createlanguageNode(lang, text, purpose)

	Returns an xml Element setup with given parameters.






	
delalttrans(alternative)

	Removes the supplied alternative from the list of alt-trans tags






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
get_rich_target(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
getalttrans(origin=None)

	Returns <alt-trans> for the given origin as a list of units. No
origin means all alternatives.






	
getautomaticcomments()

	Returns the automatic comments (x-po-autocomment), which corresponds
to the #. style po comments.






	
getcontext()

	Get the message context.






	
getcontextgroups(name)

	Returns the contexts in the context groups with the specified name






	
geterrors()

	Get all error messages.






	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	We override this to get source and target nodes.






	
getlocations()

	Returns all the references (source locations)






	
getrestype()

	returns the restype attribute in the trans-unit tag






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
gettranslatorcomments()

	Returns the translator comments (x-po-trancomment), which corresponds
to the # style po comments.






	
getunits()

	This unit in a list.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isapproved()

	States whether this unit is approved.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	States whether this unit needs to be reviewed






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markapproved(value=True)

	Mark this unit as approved.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.

Adds an optional explanation as a note.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes(origin='translator')

	Remove all the translator notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
unit_iter()

	Iterator that only returns this unit.












project


	
class translate.storage.project.Project(projstore=None)

	Manages a project store as well as the processes involved in a project
workflow.


	
add_source(srcfile, src_fname=None)

	Proxy for self.store.append_sourcefile().






	
add_source_convert(srcfile, src_fname=None, convert_options=None, extension=None)

	Convenience method that calls add_source() and
convert_forward() and returns the results from both.






	
close()

	Proxy for self.store.close().






	
convert_forward(input_fname, template=None, output_fname=None, **options)

	Convert the given input file to the next type in the process:

Source document (eg. ODT) -> Translation file (eg. XLIFF) ->
Translated document (eg. ODT).





	Parameters:	
	input_fname (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – The project name of the file to convert

	convert_options (dict (optional)) – Passed as-is to
translate.convert.factory.convert().






	Returns 2-tuple:

		the converted file object and its project name.












	
export_file(fname, destfname)

	Export the file with the specified filename to the given destination.
This method will raise
FileNotInProjectError
via the call to
get_file()
if fname is not found in the project.






	
get_file(fname)

	Proxy for self.store.get_file().






	
get_proj_filename(realfname)

	Proxy for self.store.get_proj_filename().






	
get_real_filename(projfname)

	Try and find a real file name for the given project file name.






	
remove_file(projfname, ftype=None)

	Proxy for self.store.remove_file().






	
save(filename=None)

	Proxy for self.store.save().






	
update_file(proj_fname, infile)

	Proxy for self.store.update_file().












projstore


	
class translate.storage.projstore.ProjectStore

	Basic project file container.


	
append_file(afile, fname, ftype='trans', delete_orig=False)

	Append the given file to the project with the given filename, marked
to be of type ftype (‘src’, ‘trans’, ‘tgt’).





	Parameters:	delete_orig (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether or not the original (given) file should
be deleted after being appended. This is set to
True by
convert_forward()
. Not used in this class.










	
get_file(fname, mode='rb')

	Retrieve the file with the given name from the project store.

The file is looked up in the self._files dictionary. The values
in this dictionary may be None, to indicate that the file is not
cacheable and needs to be retrieved in a special way. This special
way must be defined in this method of sub-classes. The value may
also be a string, which indicates that it is a real file accessible
via open.





	Parameters:	mode (str [https://docs.python.org/2.7/library/functions.html#str]) – The mode in which to re-open the file (if it is closed).










	
get_filename_type(fname)

	Get the type of file (‘src’, ‘trans’, ‘tgt’) with the given name.






	
get_proj_filename(realfname)

	Try and find a project file name for the given real file name.






	
load(*args, **kwargs)

	Load the project in some way. Undefined for this (base) class.






	
remove_file(fname, ftype=None)

	Remove the file with the given project name from the project.
If the file type (‘src’, ‘trans’ or ‘tgt’) is not given, it is
guessed.






	
save(filename=None, *args, **kwargs)

	Save the project in some way. Undefined for this (base) class.






	
sourcefiles

	Read-only access to self._sourcefiles.






	
targetfiles

	Read-only access to self._targetfiles.






	
transfiles

	Read-only access to self._transfiles.






	
update_file(pfname, infile)

	Remove the project file with name pfname and add the contents
from infile to the project under the same file name.





	Returns:	the results from ProjectStore.append_file().
















properties

Classes that hold units of .properties, and similar, files that are used in
translating Java, Mozilla, MacOS and other software.

The propfile class is a monolingual class with propunit
providing unit level access.

The .properties store has become a general key value pair class with
Dialect providing the ability to change the behaviour of the
parsing and handling of the various dialects.

Currently we support:


	Java .properties

	Mozilla .properties

	Adobe Flex files

	MacOS X .strings files

	Skype .lang files



The following provides references and descriptions of the various
dialects supported:


	Java

	Java .properties are supported completely except for the ability to drop
pairs that are not translated.

The following .properties file description [http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)]
gives a good references to the .properties specification.

Properties file may also hold Java MessageFormat [http://docs.oracle.com/javase/1.4.2/docs/api/java/text/MessageFormat.html]
messages.  No special handling is provided in this storage class for
MessageFormat, but this may be implemented in future.

All delimiter types, comments, line continuations and spaces handling in
delimeters are supported.



	Mozilla

	Mozilla files use ‘=’ as a delimiter, are UTF-8 encoded and thus don’t
need u escaping.  Any U values will be converted to correct Unicode
characters.

	Strings

	Mac OS X strings files are implemented using
these [https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html]
two [https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingResources/Strings/Strings.html]
articles as references.

	Flex

	Adobe Flex files seem to be normal .properties files but in UTF-8 just like
Mozilla files. This
page [http://livedocs.adobe.com/flex/3/html/help.html?content=l10n_3.html]
provides the information used to implement the dialect.

	Skype

	Skype .lang files seem to be UTF-16 encoded .properties files.



A simple summary of what is permissible follows.

Comments supported:

# a comment
! a comment
// a comment (only at the beginning of a line)
/* a comment (not across multiple lines) */





Name and Value pairs:

# Delimiters
key = value
key : value
key value

# Space in key and around value
\ key\ = \ value

# Note that the b and c are escaped for reST rendering
b = a string with escape sequences \t \n \r \\ \" \' \ (space) \u0123
c = a string with a continuation line \
    continuation line

# Special cases
# key with no value
key
# value no key (extractable in prop2po but not mergeable in po2prop)
=value

# .strings specific
"key" = "value";






	
class translate.storage.properties.Dialect

	Settings for the various behaviours in key=value files.


	
classmethod encode(string, encoding=None)

	Encode the string






	
classmethod find_delimiter(line)

	Find the delimiter






	
classmethod key_strip(key)

	Strip unneeded characters from the key






	
classmethod value_strip(value)

	Strip unneeded characters from the value










	
translate.storage.properties.accesskeysuffixes = ('.accesskey', '.accessKey', '.akey')

	Accesskey Suffixes: entries with this suffix may be combined with labels
ending in labelsuffixes into accelerator notation






	
translate.storage.properties.find_delimeter(*args, **kwargs)

	Misspelled function that is kept around in case someone relies on it.


Deprecated since version 1.7.0: Use find_delimiter() instead








	
translate.storage.properties.is_comment_end(line)

	Determine whether a line ends a new multi-line comment.





	Parameters:	line (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – A properties line


	Returns:	True if line ends a new multi-line comment


	Return type:	bool










	
translate.storage.properties.is_comment_one_line(line)

	Determine whether a line is a one-line comment.





	Parameters:	line (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – A properties line


	Returns:	True if line is a one-line comment


	Return type:	bool










	
translate.storage.properties.is_comment_start(line)

	Determine whether a line starts a new multi-line comment.





	Parameters:	line (unicode [https://docs.python.org/2.7/library/functions.html#unicode]) – A properties line


	Returns:	True if line starts a new multi-line comment


	Return type:	bool










	
translate.storage.properties.is_line_continuation(line)

	Determine whether line has a line continuation marker.

.properties files can be terminated with a backslash () indicating
that the ‘value’ continues on the next line.  Continuation is only
valid if there are an odd number of backslashses (an even number
would result in a set of N/2 slashes not an escape)





	Parameters:	line (str [https://docs.python.org/2.7/library/functions.html#str]) – A properties line


	Returns:	Does line end with a line continuation


	Return type:	Boolean










	
translate.storage.properties.labelsuffixes = ('.label', '.title')

	Label suffixes: entries with this suffix are able to be comibed with accesskeys
found in in entries ending with accesskeysuffixes






	
class translate.storage.properties.propfile(inputfile=None, personality='java', encoding=None)

	this class represents a .properties file, made up of propunits


	
UnitClass

	alias of propunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(propsrc)

	Read the source of a properties file in and include them
as units.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.properties.propunit(source='', personality='java')

	An element of a properties file i.e. a name and value, and any
comments associated.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getoutput()

	Convert the element back into formatted lines for a
.properties file






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	returns whether this is a blank element, containing only
comments.






	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.properties.register_dialect(dialect)

	Decorator that registers the dialect.








pypo

Classes that hold units of Gettext .po files (pounit) or entire
files (pofile).


	
translate.storage.pypo.escapeforpo(line)

	Escapes a line for po format. assumes no 
occurs in the line.






	param line:	unescaped text













	
translate.storage.pypo.extractpoline(*args, **kwargs)

	Remove quote and unescape line from po file.





	Parameters:	line – a quoted line from a po file (msgid or msgstr)






Deprecated since version 1.10: Replaced by unescape(). extractpoline() is kept to allow
tests of correctness, and in case of external users.








	
translate.storage.pypo.lsep = '\n#: '

	Separator for #: entries






	
class translate.storage.pypo.pofile(inputfile=None, encoding=None)

	A .po file containing various units


	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
decode(lines)

	decode any non-unicode strings in lines with self._encoding






	
encode(lines)

	encode any unicode strings in lines in self._encoding






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getheaderplural()

	Returns the nplural and plural values from the header.






	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Return the project based on information in the header.


	The project is determined in the following sequence:

	
	Use the ‘X-Project-Style’ entry in the header.

	Use ‘Report-Msgid-Bug-To’ entry

	Use the ‘X-Accelerator’ entry

	Use the Project ID

	Analyse the file itself (not yet implemented)












	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Return the target language based on information in the header.


	The target language is determined in the following sequence:

	
	Use the ‘Language’ entry in the header.

	Poedit’s custom headers.

	Analysing the ‘Language-Team’ entry.












	
getunits()

	Return a list of all units in this store.






	
header()

	Returns the header element, or None. Only the first element is allowed
to be a header. Note that this could still return an empty header element,
if present.






	
init_headers(charset='UTF-8', encoding='8bit', **kwargs)

	sets default values for po headers






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeheader(**kwargs)

	Create a header for the given filename.

Check .makeheaderdict() for information on parameters.






	
makeheaderdict(charset='CHARSET', encoding='ENCODING', project_id_version=None, pot_creation_date=None, po_revision_date=None, last_translator=None, language_team=None, mime_version=None, plural_forms=None, report_msgid_bugs_to=None, **kwargs)

	Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string)
po_revision_date can be None (form), False (=pot_creation_date), True (=now),
or a value (datetime or string)





	Returns:	Dictionary with the header items


	Return type:	dict










	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.






	
mergeheaders(otherstore)

	Merges another header with this header.

This header is assumed to be the template.













	
parse(input)

	Parses the given file or file source string.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
parseheader()

	Parses the PO header and returns the interpreted values as a
dictionary.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
removeduplicates(duplicatestyle='merge')

	Make sure each msgid is unique ; merge comments etc from
duplicates into original






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project in the header.





	Parameters:	project_style (str [https://docs.python.org/2.7/library/functions.html#str]) – the new project










	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(lang)

	Set the target language in the header.

This removes any custom Poedit headers if they exist.





	Parameters:	lang (str [https://docs.python.org/2.7/library/functions.html#str]) – the new target language code










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
updatecontributor(name, email=None)

	Add contribution comments if necessary.






	
updateheader(add=False, **kwargs)

	Updates the fields in the PO style header.

This will create a header if add == True.






	
updateheaderplural(nplurals, plural)

	Update the Plural-Form PO header.










	
translate.storage.pypo.quoteforpo(text)

	Quotes the given text for a PO file, returning quoted and
escaped lines






	
translate.storage.pypo.unescape(line)

	Unescape the given line.

Quotes on either side should already have been removed.








qm

Module for parsing Qt .qm files.


Note

Based on documentation from Gettext’s .qm implementation
(see write-qt.c) and on observation of the output of lrelease.




Note

Certain deprecated section tags are not implemented.  These will break
and print out the missing tag.  They are easy to implement and should
follow the structure in 03 (Translation).  We could find no examples
that use these so we’d rather leave it unimplemented until we
actually have test data.




Note

Many .qm files are unable to be parsed as they do not have the source
text.  We assume that since they use a hash table to lookup the
data there is actually no need for the source text.  It seems however
that in Qt4’s lrelease all data is included in the resultant .qm file.




Note

We can only parse, not create, a .qm file.  The main issue is that we
need to implement the hashing algorithm (which seems to be identical to the
Gettext hash algorithm).  Unlike Gettext it seems that the hash is
required, but that has not been validated.




Note

The code can parse files correctly.  But it could be cleaned up to be
more readable, especially the part that breaks the file into sections.



http://qt.gitorious.org/+kde-developers/qt/kde-qt/blobs/master/tools/linguist/shared/qm.cpp
Plural information [http://qt.gitorious.org/+kde-developers/qt/kde-qt/blobs/master/tools/linguist/shared/numerus.cpp]
QLocale languages [http://docs.huihoo.com/qt/4.5/qlocale.html#Language-enum]


	
class translate.storage.qm.qmfile(inputfile=None, unitclass=<class 'translate.storage.qm.qmunit'>)

	A class representing a .qm file.


	
UnitClass

	alias of qmunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	Parses the given file or file source string.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.qm.qmunit(source=None)

	A class representing a .qm translation message.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.










	
translate.storage.qm.qmunpack(file_='messages.qm')

	Helper to unpack Qt .qm files into a Python string








qph

Module for handling Qt Linguist Phrase Book (.qph) files.

Extract from the Qt Linguist Manual: Translators [http://doc.trolltech.com/4.3/linguist-translators.html]:
.qph Qt Phrase Book Files are human-readable XML files containing standard
phrases and their translations. These files are created and updated by Qt
Linguist and may be used by any number of projects and applications.

A DTD to define the format does not seem to exist, but the following code [http://qt.gitorious.org/qt/qt/blobs/4.7/tools/linguist/shared/qph.cpp]
provides the reference implementation for the Qt Linguist product.


	
class translate.storage.qph.QphFile(inputfile=None, sourcelanguage='en', targetlanguage=None, unitclass=None)

	Class representing a QPH file store.


	
UnitClass

	alias of QphUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addheader()

	Method to be overridden to initialise headers, etc.






	
addsourceunit(source)

	Adds and returns a new unit with the given string as first entry.






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this .qph file.

We don’t implement setsourcelanguage as users really shouldn’t be
altering the source language in .qph files, it should be set correctly
by the extraction tools.





	Returns:	ISO code e.g. af, fr, pt_BR


	Return type:	String










	
gettargetlanguage()

	Get the target language for this .qph file.





	Returns:	ISO code e.g. af, fr, pt_BR


	Return type:	String










	
getunits()

	Return a list of all units in this store.






	
initbody()

	Initialises self.body so it never needs to be retrieved from the
XML again.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this .qph file to targetlanguage.





	Parameters:	targetlanguage (String) – ISO code e.g. af, fr, pt_BR










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.qph.QphUnit(source, empty=False, **kwargs)

	A single term in the qph file.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Add a note specifically in a “definition” tag






	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createlanguageNode(lang, text, purpose)

	Returns an xml Element setup with given parameters.






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	We override this to get source and target nodes.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
gettarget(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes()

	Remove all the translator notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
settarget(text, lang='xx', append=False)

	Sets the “target” string (second language), or alternatively
appends to the list






	
target

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
unit_iter()

	Iterator that only returns this unit.












rc

Classes that hold units of .rc files (rcunit) or entire files
(rcfile) used in translating Windows Resources.


	
translate.storage.rc.escape_to_python(string)

	Escape a given .rc string into a valid Python string.






	
translate.storage.rc.escape_to_rc(string)

	Escape a given Python string into a valid .rc string.






	
class translate.storage.rc.rcfile(inputfile=None, lang=None, sublang=None, encoding='cp1252')

	This class represents a .rc file, made up of rcunits.


	
UnitClass

	alias of rcunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(rcsrc)

	Read the source of a .rc file in and include them as units.






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.rc.rcunit(source='', encoding='cp1252')

	A unit of an rc file


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getoutput()

	Convert the element back into formatted lines for a .rc file.






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Returns whether this is a blank element, containing only comments.






	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Sets the source AND the target to be equal






	
settarget(target)

	
Note

This also sets the .source attribute!








	
unit_iter()

	Iterator that only returns this unit.












statistics

Module to provide statistics and related functionality.


	
class translate.storage.statistics.Statistics(sourcelanguage='en', targetlanguage='en', checkerstyle=None)

	Manages statistics for storage objects.


	
classifyunit(unit)

	Returns a list of the classes that the unit belongs to.





	Parameters:	unit – the unit to classify










	
classifyunits()

	Makes a dictionary of which units fall into which classifications.

This method iterates over all units.






	
countwords()

	Counts the source and target words in each of the units.






	
fuzzy_unitcount()

	Returns the number of fuzzy units.






	
fuzzy_units()

	Return a list of fuzzy units.






	
get_source_text(units)

	Joins the unit source strings in a single string of text.






	
getunits()

	Returns a list of all units in this object.






	
reclassifyunit(item)

	Updates the classification of a unit in self.classification.





	Parameters:	item – an integer that is an index in .getunits().










	
source_wordcount()

	Returns the number of words in the source text.






	
translated_unitcount()

	Returns the number of translated units.






	
translated_units()

	Return a list of translated units.






	
translated_wordcount()

	Returns the number of translated words in this object.






	
untranslated_unitcount()

	Returns the number of untranslated units.






	
untranslated_units()

	Return a list of untranslated units.






	
untranslated_wordcount()

	Returns the number of untranslated words in this object.






	
wordcount(text)

	Returns the number of words in the given text.












statsdb

Module to provide a cache of statistics in a database.


	
class translate.storage.statsdb.StatsCache

	An object instantiated as a singleton for each statsfile that provides
access to the database cache from a pool of StatsCache objects.


	
con = None

	This cache’s connection






	
cur = None

	The current cursor






	
filechecks(filename, checker, store=None)

	Retrieves the error statistics for the given file if possible,
otherwise delegates to cachestorechecks().






	
filestatestats(filename, store=None, extended=False)

	Return a dictionary of unit stats mapping sets of unit
indices with those states






	
filestats(filename, checker, store=None, extended=False)

	Return a dictionary of property names mapping sets of unit
indices with those properties.






	
filetotals(filename, store=None, extended=False)

	Retrieves the statistics for the given file if possible, otherwise
delegates to cachestore().






	
unitstats(filename, _lang=None, store=None)

	Return a dictionary of property names mapping to arrays which
map unit indices to property values.

Please note that this is different from filestats, since filestats
supplies sets of unit indices with a given property, whereas this
method supplies arrays which map unit indices to given values.










	
translate.storage.statsdb.emptyfiletotals()

	Returns a dictionary with all statistics initalised to 0.






	
translate.storage.statsdb.statefordb(unit)

	Returns the numeric database state for the unit.






	
translate.storage.statsdb.transaction(f)

	Modifies f to commit database changes if it executes without exceptions.
Otherwise it rolls back the database.

ALL publicly accessible methods in StatsCache MUST be decorated with this
decorator.






	
translate.storage.statsdb.wordsinunit(unit)

	Counts the words in the unit’s source and target, taking plurals into
account. The target words are only counted if the unit is translated.








subtitles

Class that manages subtitle files for translation.

This class makes use of the subtitle functionality of gaupol.


See also

gaupol/agents/open.py::open_main



A patch to gaupol is required to open utf-8 files successfully.


	
class translate.storage.subtitles.AdvSubStationAlphaFile(*args, **kwargs)

	specialized class for SubRipFile’s only


	
UnitClass

	alias of SubtitleUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	parse the given file






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.subtitles.MicroDVDFile(*args, **kwargs)

	specialized class for SubRipFile’s only


	
UnitClass

	alias of SubtitleUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	parse the given file






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.subtitles.SubRipFile(*args, **kwargs)

	specialized class for SubRipFile’s only


	
UnitClass

	alias of SubtitleUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	parse the given file






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.subtitles.SubStationAlphaFile(*args, **kwargs)

	specialized class for SubRipFile’s only


	
UnitClass

	alias of SubtitleUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	parse the given file






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.subtitles.SubtitleFile(inputfile=None, unitclass=<class 'translate.storage.subtitles.SubtitleUnit'>)

	A subtitle file


	
UnitClass

	alias of SubtitleUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	parse the given file






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.subtitles.SubtitleUnit(source=None, encoding='utf_8')

	A subtitle entry that is translatable


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.












symbian




tbx

module for handling TBX glossary files


	
class translate.storage.tbx.tbxfile(inputfile=None, sourcelanguage='en', targetlanguage=None, unitclass=None)

	Class representing a TBX file store.


	
UnitClass

	alias of tbxunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addheader()

	Initialise headers with TBX specific things.






	
addsourceunit(source)

	Adds and returns a new unit with the given string as first entry.






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
initbody()

	Initialises self.body so it never needs to be retrieved from the
XML again.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.tbx.tbxunit(source, empty=False, **kwargs)

	A single term in the TBX file.
Provisional work is done to make several languages possible.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createlanguageNode(lang, text, purpose)

	returns a langset xml Element setup with given parameters






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	Returns a list of all nodes that contain per language information.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettarget(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
settarget(text, lang='xx', append=False)

	Sets the “target” string (second language), or alternatively
appends to the list






	
target

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
unit_iter()

	Iterator that only returns this unit.












tiki

Class that manages TikiWiki files for translation.  Tiki files are <strike>ugly and
inconsistent</strike> formatted as a single large PHP array with several special
sections identified by comments.  Example current as of 2008-12-01:

<?php
  // Many comments at the top
  $lang=Array(
  // ### Start of unused words
  "aaa" => "zzz",
  // ### end of unused words

  // ### start of untranslated words
  // "bbb" => "yyy",
  // ### end of untranslated words

  // ### start of possibly untranslated words
  "ccc" => "xxx",
  // ### end of possibly untranslated words

  "ddd" => "www",
  "###end###"=>"###end###");
?>





In addition there are several auto-generated //-style comments scattered through the
page and array, some of which matter when being parsed.

This has all been gleaned from the
TikiWiki source [http://tikiwiki.svn.sourceforge.net/viewvc/tikiwiki/trunk/get_strings.php?view=markup].
As far as I know no detailed documentation exists for the tiki language.php files.


	
class translate.storage.tiki.TikiStore(inputfile=None)

	Represents a tiki language.php file.


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	Parse the given input into source units.





	Parameters:	input – the source, either a string or filehandle










	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.tiki.TikiUnit(source=None, encoding='UTF-8')

	A tiki unit entry.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Location is defined by the comments in the file. This function will only
set valid locations.





	Parameters:	location – Where the string is located in the file.  Must be a valid location.










	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	Returns the a list of the location(s) of the string.






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Set the source string to the given value.






	
settarget(target)

	Set the target string to the given value.






	
unit_iter()

	Iterator that only returns this unit.












tmdb

Module to provide a translation memory database.




tmx

module for parsing TMX translation memeory files


	
class translate.storage.tmx.tmxfile(inputfile=None, sourcelanguage='en', targetlanguage=None, unitclass=None)

	Class representing a TMX file store.


	
UnitClass

	alias of tmxunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Adds and returns a new unit with the given string as first entry.






	
addtranslation(source, srclang, translation, translang, comment=None)

	addtranslation method for testing old unit tests






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
initbody()

	Initialises self.body so it never needs to be retrieved from the
XML again.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(sourcetext, sourcelang=None, targetlang=None)

	method to test old unit tests






	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.tmx.tmxunit(source, empty=False, **kwargs)

	A single unit in the TMX file.


	
adderror(errorname, errortext)

	Adds an error message to this unit.






	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Add a note specifically in a “note” tag.

The origin parameter is ignored






	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
copy()

	Make a copy of the translation unit.

We don’t want to make a deep copy - this could duplicate the whole XML
tree. For now we just serialise and reparse the unit’s XML.






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createlanguageNode(lang, text, purpose)

	returns a langset xml Element setup with given parameters






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.






	
getid()

	Returns the identifier for this unit. The optional tuid property is
used if available, otherwise we inherit .getid(). Note that the tuid
property is only mandated to be unique from TMX 2.0.






	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	Returns a list of all nodes that contain per language information.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
gettarget(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes()

	Remove all the translator notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
settarget(text, lang='xx', append=False)

	Sets the “target” string (second language), or alternatively
appends to the list






	
target

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
unit_iter()

	Iterator that only returns this unit.












trados

Manage the Trados .txt Translation Memory format

A Trados file looks like this:

<TrU>
<CrD>18012000, 13:18:35
<CrU>CAROL-ANN
<UsC>0
<Seg L=EN_GB>Association for Road Safety \endash  Conference
<Seg L=DE_DE>Tagung der Gesellschaft für Verkehrssicherheit
</TrU>
<TrU>
<CrD>18012000, 13:19:14
<CrU>CAROL-ANN
<UsC>0
<Seg L=EN_GB>Road Safety Education in our Schools
<Seg L=DE_DE>Verkehrserziehung an Schulen
</TrU>






	
translate.storage.trados.RTF_ESCAPES = {u'\\lquote': u'\u2018', u'\\ldblquote': u'\u201c', u'\\_': u'\u2011', u'\\rquote': u'\u2019', u'\\bullet': u'\u2022', u'\\rdblquote': u'\u201d', u'\\endash': u'\u2013', u'\\emspace': u'\u2003', u'\\~': u'\xa0', u'\\emdash': u'\u2014', u'\\enspace': u'\u2002', u'\\-': u'\xad'}

	RTF control to Unicode map. See
http://msdn.microsoft.com/en-us/library/aa140283(v=office.10).aspx






	
translate.storage.trados.TRADOS_TIMEFORMAT = '%d%m%Y, %H:%M:%S'

	Time format used by Trados .txt






	
class translate.storage.trados.TradosTxtDate(newtime=None)

	Manages the timestamps in the Trados .txt format of DDMMYYY, hh:mm:ss


	
get_time()

	Get the time_struct object






	
get_timestring()

	Get the time in the Trados time format






	
set_time(newtime)

	Set the time_struct object





	Parameters:	newtime (time.time_struct) – a new time object










	
set_timestring(timestring)

	Set the time_struct object using a Trados time formated string





	Parameters:	timestring (String) – A Trados time string (DDMMYYYY, hh:mm:ss)










	
time

	Get the time_struct object






	
timestring

	Get the time in the Trados time format










	
class translate.storage.trados.TradosTxtTmFile(inputfile=None, unitclass=<class 'translate.storage.trados.TradosUnit'>)

	A Trados translation memory file


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
translate.storage.trados.escape(text)

	Convert Unicode string to Trodas escapes






	
translate.storage.trados.unescape(text)

	Convert Trados text to normal Unicode string








ts2

Module for handling Qt linguist (.ts) files.

This will eventually replace the older ts.py which only supports the older
format. While converters haven’t been updated to use this module, we retain
both.

TS file format 4.3 [http://doc.qt.digia.com/4.3/linguist-ts-file-format.html],
4.8 [http://qt-project.org/doc/qt-4.8/linguist-ts-file-format.html],
5.0 [http://qt-project.org/doc/qt-5.0/qtlinguist/linguist-ts-file-format.html].
Example [http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt].

Specification of the valid variable entries [http://qt-project.org/doc/qt-5.0/qtcore/qstring.html#arg],
2 [http://qt-project.org/doc/qt-5.0/qtcore/qstring.html#arg-2]


	
class translate.storage.ts2.tsfile(*args, **kwargs)

	Class representing a TS file store.


	
UnitClass

	alias of tsunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addheader()

	Method to be overridden to initialise headers, etc.






	
addsourceunit(source)

	Adds and returns a new unit with the given string as first entry.






	
addunit(unit, new=True, contextname=None, createifmissing=True)

	Adds the given unit to the last used body node (current context).

If the contextname is specified, switch to that context (creating it
if allowed by createifmissing).






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this .ts file.

The ‘sourcelanguage’ attribute was only added to the TS format in
Qt v4.5. We return ‘en’ if there is no sourcelanguage set.

We don’t implement setsourcelanguage as users really shouldn’t be
altering the source language in .ts files, it should be set correctly
by the extraction tools.





	Returns:	ISO code e.g. af, fr, pt_BR


	Return type:	String










	
gettargetlanguage()

	Get the target language for this .ts file.





	Returns:	ISO code e.g. af, fr, pt_BR


	Return type:	String










	
getunits()

	Return a list of all units in this store.






	
initbody()

	Initialises self.body.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this .ts file to targetlanguage.





	Parameters:	targetlanguage (String) – ISO code e.g. af, fr, pt_BR










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.ts2.tsunit(source, empty=False, **kwargs)

	A single term in the TS file.


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Add a note specifically in the appropriate comment tag






	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createlanguageNode(lang, text, purpose)

	Returns an xml Element setup with given parameters.






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	We override this to get source and target nodes.






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isheader()

	Indicates whether this unit is a header.






	
isreview()

	States whether this unit needs to be reviewed






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes(origin=None)

	Remove all the translator notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
statemap = {'': 100, None: 100, 'obsolete': -100, 'unfinished': 30}

	This maps the unit “type” attribute to state.






	
unit_iter()

	Iterator that only returns this unit.












ts

Module for parsing Qt .ts files for translation.

Currently this module supports the old format of .ts files. Some applictaions
use the newer .ts format which are documented here:
TS file format 4.3 [http://doc.qt.digia.com/4.3/linguist-ts-file-format.html],
Example [http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt]

Specification of the valid variable entries [http://qt-project.org/doc/qt-5.0/qtcore/qstring.html#arg],
2 [http://qt-project.org/doc/qt-5.0/qtcore/qstring.html#arg-2]




txt

This class implements the functionality for handling plain text files, or
similar wiki type files.


	Supported formats are

	
	Plain text

	dokuwiki

	MediaWiki








	
class translate.storage.txt.TxtFile(inputfile=None, flavour=None, encoding='utf-8')

	This class represents a text file, made up of txtunits


	
UnitClass

	alias of TxtUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getoutput()

	Convert the units back to blocks






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(lines)

	Read in text lines and create txtunits from the blocks of text






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.txt.TxtUnit(source='', encoding='utf-8')

	This class represents a block of text from a text file


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
getcontext()

	Get the message context.






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
getsource()

	gets the unquoted source string






	
gettarget()

	gets the unquoted target string






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
setsource(source)

	Sets the definition to the quoted value of source






	
settarget(target)

	Sets the definition to the quoted value of target






	
source

	gets the unquoted source string






	
target

	gets the unquoted target string






	
unit_iter()

	Iterator that only returns this unit.












utx

Manage the Universal Terminology eXchange (UTX) format

UTX is a format for terminology exchange, designed it seems with Machine
Translation (MT) as it’s primary consumer.  The format is created by
the Asia-Pacific Association for Machine Translation (AAMT).

It is a bilingual base class derived format with UtxFile
and UtxUnit providing file and unit level access.

The format can manage monolingual dictionaries but these classes don’t
implement that.


	Specification

	The format is implemented according to UTX v1.0 (No longer available from
their website. The current UTX version [http://www.aamt.info/english/utx/#Download] may be downloaded instead).

	Format Implementation

	The UTX format is a Tab Seperated Value (TSV) file in UTF-8.  The
first two lines are headers with subsequent lines containing a
single source target definition.

	Encoding

	The files are UTF-8 encoded with no BOM and CR+LF line terminators.




	
class translate.storage.utx.UtxDialect

	Describe the properties of an UTX generated TAB-delimited dictionary
file.






	
class translate.storage.utx.UtxFile(inputfile=None, unitclass=<class 'translate.storage.utx.UtxUnit'>)

	A UTX dictionary file


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parsese the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.utx.UtxHeader

	A UTX header entry


	A UTX header is a single line that looks like this::

	#UTX-S <version>; < source language >/< target language>;
<date created>; <optional fields (creator, license, etc.)>

	Where::

	
	UTX-S version is currently 1.00.

	Source language/target language: ISO 639, 3166 formats.
In the case of monolingual dictionary, target language should be
omitted.

	Date created: ISO 8601 format

	Optional fields (creator, license, etc.)












	
class translate.storage.utx.UtxUnit(source=None)

	A UTX dictionary unit


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
dict

	Get the dictionary of values for a UTX line






	
getcontext()

	Get the message context.






	
getdict()

	Get the dictionary of values for a UTX line






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setdict(newdict)

	Set the dictionary of values for a UTX line





	Parameters:	newdict (Dict) – a new dictionary with UTX line elements










	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
unit_iter()

	Iterator that only returns this unit.












versioncontrol

This module manages interaction with version control systems.

To implement support for a new version control system, inherit from
GenericRevisionControlSystem.


	TODO:

	
	Add authentication handling

	commitdirectory() should do a single commit instead of one for
each file

	Maybe implement some caching for get_versioned_object() - check
profiler








	
translate.storage.versioncontrol.DEFAULT_RCS = ['svn', 'cvs', 'darcs', 'git', 'bzr', 'hg']

	the names of all supported revision control systems

modules of the same name containing a class with the same name are expected
to be defined below ‘translate.storage.versioncontrol’






	
class translate.storage.versioncontrol.GenericRevisionControlSystem(location, oldest_parent=None)

	Bases: object

The super class for all version control classes.

Always inherit from this class to implement another RC interface.

At least the two attributes RCS_METADIR and SCAN_PARENTS
must be overriden by all implementations that derive from this class.


	By default, all implementations can rely on the following attributes:

	
	root_dir: the parent of the metadata directory of the
working copy

	location_abs: the absolute path of the RCS object

	location_rel: the path of the RCS object relative
to root_dir








	
RCS_METADIR = None

	The name of the metadata directory of the RCS

e.g.: for Subversion -> ”.svn”






	
SCAN_PARENTS = None

	Whether to check the parent directories for the metadata directory of
the RCS working copy

Some revision control systems store their metadata directory only
in the base of the working copy (e.g. bzr, GIT and Darcs)
use True for these RCS

Other RCS store a metadata directory in every single directory of
the working copy (e.g. Subversion and CVS)
use False for these RCS






	
add(files, message=None, author=None)

	Dummy to be overridden by real implementations






	
commit(message=None, author=None)

	Dummy to be overridden by real implementations






	
getcleanfile(revision=None)

	Dummy to be overridden by real implementations






	
update(revision=None, needs_revert=True)

	Dummy to be overridden by real implementations










	
translate.storage.versioncontrol.commitdirectory(directory, message=None, author=None)

	Commit all files below the given directory.

Files that are just symlinked into the directory are supported, too






	
translate.storage.versioncontrol.get_available_version_control_systems()

	return the class objects of all locally available version control
systems






	
translate.storage.versioncontrol.get_versioned_object(location, versioning_systems=None, follow_symlinks=True, oldest_parent=None)

	return a versioned object for the given file






	
translate.storage.versioncontrol.get_versioned_objects_recursive(location, versioning_systems=None, follow_symlinks=True)

	return a list of objects, each pointing to a file below this directory






	
translate.storage.versioncontrol.run_command(command, cwd=None)

	Runs a command (array of program name and arguments) and returns the
exitcode, the output and the error as a tuple.





	Parameters:	
	command (list [https://docs.python.org/2.7/library/functions.html#list]) – list of arguments to be joined for a program call

	cwd (str [https://docs.python.org/2.7/library/functions.html#str]) – optional directory where the command should be executed














	
translate.storage.versioncontrol.updatedirectory(directory)

	Update all files below the given directory.

Files that are just symlinked into the directory are supported, too






bzr


	
class translate.storage.versioncontrol.bzr.bzr(location, oldest_parent=None)

	Class to manage items under revision control of bzr.


	
add(files, message=None, author=None)

	Add and commit files.






	
commit(message=None, author=None)

	Commits the file and supplies the given commit message if present






	
getcleanfile(revision=None)

	Get a clean version of a file from the bzr repository






	
update(revision=None, needs_revert=True)

	Does a clean update of the given path










	
translate.storage.versioncontrol.bzr.get_version()

	return a tuple of (major, minor) for the installed bazaar client






	
translate.storage.versioncontrol.bzr.is_available()

	check if bzr is installed








cvs


	
class translate.storage.versioncontrol.cvs.cvs(location, oldest_parent=None)

	Class to manage items under revision control of CVS.


	
add(files, message=None, author=None)

	Add and commit the new files.






	
commit(message=None, author=None)

	Commits the file and supplies the given commit message if present

the ‘author’ parameter is not suitable for CVS, thus it is ignored






	
getcleanfile(revision=None)

	Get the content of the file for the given revision






	
update(revision=None, needs_revert=True)

	Does a clean update of the given path










	
translate.storage.versioncontrol.cvs.is_available()

	check if cvs is installed








darcs


	
class translate.storage.versioncontrol.darcs.darcs(location, oldest_parent=None)

	Class to manage items under revision control of darcs.


	
add(files, message=None, author=None)

	Add and commit files.






	
commit(message=None, author=None)

	Commits the file and supplies the given commit message if present






	
getcleanfile(revision=None)

	Get a clean version of a file from the darcs repository





	Parameters:	revision – ignored for darcs










	
update(revision=None, needs_revert=True)

	Does a clean update of the given path





	Parameters:	revision – ignored for darcs














	
translate.storage.versioncontrol.darcs.is_available()

	check if darcs is installed








git


	
class translate.storage.versioncontrol.git.git(location, oldest_parent=None)

	Class to manage items under revision control of git.


	
add(files, message=None, author=None)

	Add and commit the new files.






	
commit(message=None, author=None, add=True)

	Commits the file and supplies the given commit message if present






	
getcleanfile(revision=None)

	Get a clean version of a file from the git repository






	
update(revision=None, needs_revert=True)

	Does a clean update of the given path










	
translate.storage.versioncontrol.git.is_available()

	check if git is installed








hg


	
translate.storage.versioncontrol.hg.get_version()

	Return a tuple of (major, minor) for the installed mercurial client.






	
class translate.storage.versioncontrol.hg.hg(location, oldest_parent=None)

	Class to manage items under revision control of mercurial.


	
add(files, message=None, author=None)

	Add and commit the new files.






	
commit(message=None, author=None)

	Commits the file and supplies the given commit message if present






	
getcleanfile(revision=None)

	Get a clean version of a file from the hg repository






	
update(revision=None, needs_revert=True)

	Does a clean update of the given path





	Parameters:	revision – ignored for hg














	
translate.storage.versioncontrol.hg.is_available()

	check if hg is installed








svn


	
translate.storage.versioncontrol.svn.get_version()

	return a tuple of (major, minor) for the installed subversion client






	
translate.storage.versioncontrol.svn.is_available()

	check if svn is installed






	
class translate.storage.versioncontrol.svn.svn(location, oldest_parent=None)

	Class to manage items under revision control of Subversion.


	
add(files, message=None, author=None)

	Add and commit the new files.






	
commit(message=None, author=None)

	commit the file and return the given message if present

the ‘author’ parameter is used for revision property ‘translate:author’






	
getcleanfile(revision=None)

	return the content of the ‘head’ revision of the file






	
update(revision=None, needs_revert=True)

	update the working copy - remove local modifications if necessary














wordfast

Manage the Wordfast Translation Memory format

Wordfast TM format is the Translation Memory format used by the
Wordfast [http://www.wordfast.net/] computer aided translation tool.

It is a bilingual base class derived format with WordfastTMFile
and WordfastUnit providing file and unit level access.

Wordfast is a computer aided translation tool.  It is an application
built on top of Microsoft Word and is implemented as a rather
sophisticated set of macros.  Understanding that helps us understand
many of the seemingly strange choices around this format including:
encoding, escaping and file naming.


	Implementation

	The implementation covers the full requirements of a Wordfast TM file.
The files are simple Tab Separated Value (TSV) files that can be read
by Microsoft Excel and other spreadsheet programs.  They use the .txt
extension which does make it more difficult to automatically identify
such files.

The dialect of the TSV files is specified by WordfastDialect.



	Encoding

	The files are UTF-16 or ISO-8859-1 (Latin1) encoded.  These choices
are most likely because Microsoft Word is the base editing tool for
Wordfast.

The format is tab separated so we are able to detect UTF-16 vs Latin-1
by searching for the occurance of a UTF-16 tab character and then
continuing with the parsing.



	Timestamps

	WordfastTime allows for the correct management of the Wordfast
YYYYMMDD~HHMMSS timestamps.  However, timestamps on individual units are
not updated when edited.

	Header

	WordfastHeader provides header management support.  The header
functionality is fully implemented through observing the behaviour of the
files in real use cases, input from the Wordfast programmers and
public documentation.

	Escaping

	Wordfast TM implements a form of escaping that covers two aspects:


	Placeable: bold, formating, etc.  These are left as is and ignored.  It
is up to the editor and future placeable implementation to manage these.

	Escapes: items that may confuse Excel or translators are escaped as
&'XX;. These are fully implemented and are converted to and from
Unicode.  By observing behaviour and reading documentation we where able
to observe all possible escapes. Unfortunately the escaping differs
slightly between Windows and Mac version.  This might cause errors in
future.  Functions allow for <_wf_to_char> and back to Wordfast
escape (<_char_to_wf>).





	Extended Attributes

	The last 4 columns allow users to define and manage extended attributes.
These are left as is and are not directly managed byour implemenation.




	
translate.storage.wordfast.TAB_UTF16 = '\x00\t'

	The tab t character as it would appear in UTF-16 encoding






	
translate.storage.wordfast.WF_ESCAPE_MAP = (("&'26;", u'&'), ("&'82;", u'\u201a'), ("&'85;", u'\u2026'), ("&'91;", u'\u2018'), ("&'92;", u'\u2019'), ("&'93;", u'\u201c'), ("&'94;", u'\u201d'), ("&'96;", u'\u2013'), ("&'97;", u'\u2014'), ("&'99;", u'\u2122'), ("&'A0;", u'\xa0'), ("&'A9;", u'\xa9'), ("&'AE;", u'\xae'), ("&'BC;", u'\xbc'), ("&'BD;", u'\xbd'), ("&'BE;", u'\xbe'), ("&'A8;", u'\xae'), ("&'AA;", u'\u2122'), ("&'C7;", u'\xab'), ("&'C8;", u'\xbb'), ("&'C9;", u'\u2026'), ("&'CA;", u'\xa0'), ("&'D0;", u'\u2013'), ("&'D1;", u'\u2014'), ("&'D2;", u'\u201c'), ("&'D3;", u'\u201d'), ("&'D4;", u'\u2018'), ("&'D5;", u'\u2019'), ("&'E2;", u'\u201a'), ("&'E3;", u'\u201e'))

	Mapping of Wordfast &’XX; escapes to correct Unicode characters






	
translate.storage.wordfast.WF_FIELDNAMES = ['date', 'user', 'reuse', 'src-lang', 'source', 'target-lang', 'target', 'attr1', 'attr2', 'attr3', 'attr4']

	Field names for a Wordfast TU






	
translate.storage.wordfast.WF_FIELDNAMES_HEADER = ['date', 'userlist', 'tucount', 'src-lang', 'version', 'target-lang', 'license', 'attr1list', 'attr2list', 'attr3list', 'attr4list', 'attr5list']

	Field names for the Wordfast header






	
translate.storage.wordfast.WF_FIELDNAMES_HEADER_DEFAULTS = {'date': '%19000101~121212', 'src-lang': '%EN-US', 'license': '%---00000001', 'attr3list': '', 'target-lang': '', 'attr1list': '', 'attr2list': '', 'userlist': '%User ID,TT,TT Translate-Toolkit', 'attr4list': '', 'version': '%Wordfast TM v.5.51w9/00', 'tucount': '%TU=00000001'}

	Default or minimum header entries for a Wordfast file






	
translate.storage.wordfast.WF_TIMEFORMAT = '%Y%m%d~%H%M%S'

	Time format used by Wordfast






	
class translate.storage.wordfast.WordfastDialect

	Describe the properties of a Wordfast generated TAB-delimited file.






	
class translate.storage.wordfast.WordfastHeader(header=None)

	A wordfast translation memory header


	
getheader()

	Get the header dictionary






	
header

	Get the header dictionary










	
class translate.storage.wordfast.WordfastTMFile(inputfile=None, unitclass=<class 'translate.storage.wordfast.WordfastUnit'>)

	A Wordfast translation memory file


	
UnitClass

	alias of TranslationUnit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addsourceunit(source)

	Add and returns a new unit with the given source string.





	Return type:	TranslationUnit










	
addunit(unit)

	Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the
list manually.





	Parameters:	unit (TranslationUnit) – The unit that will be added.










	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getids(filename=None)

	return a list of unit ids






	
getprojectstyle()

	Get the project type for this store.






	
getsourcelanguage()

	Get the source language for this store.






	
gettargetlanguage()

	Get the target language for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
parse(input)

	parsese the given file or file source string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Convert the string representation back to an object.






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setprojectstyle(project_style)

	Set the project type for this store.






	
setsourcelanguage(sourcelanguage)

	Set the source language for this store.






	
settargetlanguage(targetlanguage)

	Set the target language for this store.






	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.wordfast.WordfastTime(newtime=None)

	Manages time stamps in the Wordfast format of YYYYMMDD~hhmmss


	
get_time()

	Get the time_struct object






	
get_timestring()

	Get the time in the Wordfast time format






	
set_time(newtime)

	Set the time_struct object





	Parameters:	newtime (time.time_struct) – a new time object










	
set_timestring(timestring)

	Set the time_sturct object using a Wordfast time formated string





	Parameters:	timestring (String) – A Wordfast time string (YYYMMDD~hhmmss)










	
time

	Get the time_struct object






	
timestring

	Get the time in the Wordfast time format










	
class translate.storage.wordfast.WordfastUnit(source=None)

	A Wordfast translation memory unit


	
adderror(errorname, errortext)

	Adds an error message to this unit.





	Parameters:	
	errorname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A single word to id the error.

	errortext (string [https://docs.python.org/2.7/library/string.html#module-string]) – The text describing the error.














	
addlocation(location)

	Add one location to the list of locations.


Note

Shouldn’t be implemented if the format doesn’t support it.








	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Adds a note (comment).





	Parameters:	
	text (string [https://docs.python.org/2.7/library/string.html#module-string]) – Usually just a sentence or two.

	origin (string [https://docs.python.org/2.7/library/string.html#module-string]) – Specifies who/where the comment comes from.
Origin can be one of the following text strings:
- ‘translator’
- ‘developer’, ‘programmer’, ‘source code’ (synonyms)














	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
dict

	Get the dictionary of values for a Wordfast line






	
getcontext()

	Get the message context.






	
getdict()

	Get the dictionary of values for a Wordfast line






	
geterrors()

	Get all error messages.





	Return type:	Dictionary










	
getid()

	A unique identifier for this unit.





	Return type:	string


	Returns:	an identifier for this unit that is unique in the store





Derived classes should override this in a way that guarantees a unique
identifier for each unit in the store.






	
getlocations()

	A list of source code locations.





	Return type:	List






Note

Shouldn’t be implemented if the format doesn’t support it.








	
getnotes(origin=None)

	Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be
synthesised by the format.
It should not include location comments (see
getlocations()).






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isfuzzy()

	Indicates whether this unit is fuzzy.






	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	Indicates whether this unit needs review.






	
istranslatable()

	Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from
header, obsolete, binary or other blank units.






	
makeobsolete()

	Make a unit obsolete






	
markfuzzy(value=True)

	Marks the unit as fuzzy or not.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.





	Parameters:	
	needsreview – Defaults to True.

	explanation – Adds an optional explanation as a note.














	
merge(otherunit, overwrite=False, comments=True, authoritative=False)

	Do basic format agnostic merging.






	
multistring_to_rich(mulstring)

	Convert a multistring to a list of “rich” string trees:

>>> target = multistring([u'foo', u'bar', u'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem([u'foo'])>])>,
 <StringElem([<StringElem([u'bar'])>])>,
 <StringElem([<StringElem([u'baz'])>])>]










	
removenotes()

	Remove all the translator’s notes.






	
classmethod rich_to_multistring(elem_list)

	Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring(u'foo bar')










	
setcontext(context)

	Set the message context






	
setdict(newdict)

	Set the dictionary of values for a Wordfast line





	Parameters:	newdict (Dict) – a new dictionary with Wordfast line elements










	
setid(value)

	Sets the unique identified for this unit.

only implemented if format allows ids independant from other
unit properties like source or context






	
unit_iter()

	Iterator that only returns this unit.












workflow

A workflow is defined by a set of states that a translation unit can be in and
the (allowed) transitions between these states. A state is defined by a range
between -128 and 127, indicating its level of “completeness”. The range is
closed at the beginning and open at the end. That is, if a workflow contains
states A, B and C where A < B < C, a unit with state number n is in state A if
A <= n < B, state B if B <= n < C or state C if C <= n < MAX.

A value of 0 is typically the “empty” or “new” state with negative values
reserved for states like “obsolete” or “do not use”.

Format specific workflows should be defined in such a way that the numeric
state values correspond to similar states. For example state 0 should be
“untranslated” in PO and “new” or “empty” in XLIFF, state 100 should be
“translated” in PO and “final” in XLIFF. This allows formats to implicitly
define similar states.


	
class translate.storage.workflow.StateEnum

	Only contains the constants for default states.








xliff

Module for handling XLIFF files for translation.

The official recommendation is to use the extention .xlf for XLIFF files.


	
class translate.storage.xliff.xlifffile(*args, **kwargs)

	Class representing a XLIFF file store.


	
UnitClass

	alias of xliffunit






	
add_unit_to_index(unit)

	Add a unit to source and location idexes






	
addheader()

	Initialise the file header.






	
addsourceunit(source, filename='NoName', createifmissing=False)

	adds the given trans-unit to the last used body node if the
filename has changed it uses the slow method instead (will
create the nodes required if asked). Returns success






	
createfilenode(filename, sourcelanguage=None, targetlanguage=None, datatype='plaintext')

	creates a filenode with the given filename. All parameters
are needed for XLIFF compliance.






	
creategroup(filename='NoName', createifmissing=False, restype=None)

	adds a group tag into the specified file






	
findid(id)

	find unit with matching id by checking id_index






	
findunit(source)

	Find the unit with the given source string.





	Return type:	TranslationUnit or None










	
findunits(source)

	Find the units with the given source string.





	Return type:	TranslationUnit or None










	
getbodynode(filenode, createifmissing=False)

	finds the body node for the given filenode






	
getdatatype(filename=None)

	Returns the datatype of the stored file. If no filename is given,
the datatype of the first file is given.






	
getdate(filename=None)

	Returns the date attribute for the file.

If no filename is given, the date of the first file is given.
If the date attribute is not specified, None is returned.





	Returns:	Date attribute of file


	Return type:	Date or None










	
getfilename(filenode)

	returns the name of the given file






	
getfilenames()

	returns all filenames in this XLIFF file






	
getfilenode(filename, createifmissing=False)

	finds the filenode with the given name






	
getheadernode(filenode, createifmissing=False)

	finds the header node for the given filenode






	
getprojectstyle()

	Get the project type for this store.






	
getunits()

	Return a list of all units in this store.






	
isempty()

	Return True if the object doesn’t contain any translation units.






	
makeindex()

	Indexes the items in this store. At least .sourceindex should be
useful.






	
merge_on

	The matching criterion to use when merging on.





	Returns:	The default matching criterion for all the subclasses.


	Return type:	string










	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
parse(xml)

	Populates this object from the given xml string






	
classmethod parsefile(storefile)

	Reads the given file (or opens the given filename) and parses back
to an object.






	
classmethod parsestring(storestring)

	Parses the string to return the correct file object






	
remove_unit_from_index(unit)

	Remove a unit from source and locaton indexes






	
removedefaultfile()

	We want to remove the default file-tag as soon as possible if we
know if still present and empty.






	
require_index()

	make sure source index exists






	
save()

	Save to the file that data was originally read from, if
available.






	
savefile(storefile)

	Write the string representation to the given file (or filename).






	
setfilename(filenode, filename)

	set the name of the given file






	
setprojectstyle(project_style)

	Set the project type for this store.






	
suggestions_in_format = True

	xliff units have alttrans tags which can be used to store suggestions






	
switchfile(filename, createifmissing=False)

	Adds the given trans-unit (will create the nodes required if asked).





	Returns:	Success


	Return type:	Boolean










	
translate(source)

	Return the translated string for a given source string.





	Return type:	String or None










	
unit_iter()

	Iterator over all the units in this store.










	
class translate.storage.xliff.xliffunit(source, empty=False, **kwargs)

	A single term in the xliff file.


	
addalttrans(txt, origin=None, lang=None, sourcetxt=None, matchquality=None)

	Adds an alt-trans tag and alt-trans components to the unit.





	Parameters:	txt (String) – Alternative translation of the source text.










	
adderror(errorname, errortext)

	Adds an error message to this unit.






	
addlocations(location)

	Add a location or a list of locations.


Note

Most classes shouldn’t need to implement this, but should rather
implement TranslationUnit.addlocation().




Warning

This method might be removed in future.








	
addnote(text, origin=None, position='append')

	Add a note specifically in a “note” tag






	
classmethod buildfromunit(unit)

	Build a native unit from a foreign unit, preserving as much
information as possible.






	
correctorigin(node, origin)

	Check against node tag’s origin (e.g note or alt-trans)






	
createPHnodes(parent, text)

	Create the text node in parent containing all the ph tags






	
createcontextgroup(name, contexts=None, purpose=None)

	Add the context group to the trans-unit with contexts a list with
(type, text) tuples describing each context.






	
createlanguageNode(lang, text, purpose)

	Returns an xml Element setup with given parameters.






	
delalttrans(alternative)

	Removes the supplied alternative from the list of alt-trans tags






	
getNodeText(languageNode, xml_space='preserve')

	Retrieves the term from the given languageNode.






	
get_rich_target(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
getalttrans(origin=None)

	Returns <alt-trans> for the given origin as a list of units. No
origin means all alternatives.






	
getcontext()

	Get the message context.






	
getcontextgroups(name)

	Returns the contexts in the context groups with the specified name






	
geterrors()

	Get all error messages.






	
getlanguageNode(lang=None, index=None)

	Retrieves a languageNode either by language or by index.






	
getlanguageNodes()

	We override this to get source and target nodes.






	
getrestype()

	returns the restype attribute in the trans-unit tag






	
gettarget(lang=None)

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
gettargetlen()

	Returns the length of the target string.





	Return type:	Integer






Note

Plural forms might be combined.








	
getunits()

	This unit in a list.






	
hasplural()

	Tells whether or not this specific unit has plural strings.






	
infer_state()

	Empty method that should be overridden in sub-classes to infer the
current state(_n) of the unit from its current state.






	
isapproved()

	States whether this unit is approved.






	
isblank()

	Used to see if this unit has no source or target string.


Note

This is probably used more to find translatable units,
and we might want to move in that direction rather and
get rid of this.








	
isheader()

	Indicates whether this unit is a header.






	
isobsolete()

	indicate whether a unit is obsolete






	
isreview()

	States whether this unit needs to be reviewed






	
istranslated()

	Indicates whether this unit is translated.

This should be used rather than deducing it from .target,
to ensure that other classes can implement more functionality
(as XLIFF does).






	
makeobsolete()

	Make a unit obsolete






	
markapproved(value=True)

	Mark this unit as approved.






	
markreviewneeded(needsreview=True, explanation=None)

	Marks the unit to indicate whether it needs review.

Adds an optional explanation as a note.






	
classmethod multistring_to_rich(mstr)

	Override TranslationUnit.multistring_to_rich() which is used
by the rich_source and rich_target properties.






	
namespaced(name)

	Returns name in Clark notation.

For example namespaced("source") in an XLIFF document
might return:

{urn:oasis:names:tc:xliff:document:1.1}source





This is needed throughout lxml.






	
removenotes(origin='translator')

	Remove all the translator notes.






	
rich_target

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
classmethod rich_to_multistring(elem_list)

	Override TranslationUnit.rich_to_multistring() which is used
by the rich_source and rich_target properties.






	
setcontext(context)

	Set the message context






	
settarget(text, lang='xx', append=False)

	Sets the target string to the given value.






	
target

	retrieves the “target” text (second entry), or the entry in the
specified language, if it exists






	
unit_iter()

	Iterator that only returns this unit.












xml_extract


extract


	
class translate.storage.xml_extract.extract.ParseState(no_translate_content_elements, inline_elements={}, nsmap={})

	Maintain constants and variables used during the walking of a
DOM tree (via the function apply).






	
class translate.storage.xml_extract.extract.Translatable(placeable_name, xpath, dom_node, source)

	A node corresponds to a translatable element. A node may
have children, which correspond to placeables.






	
translate.storage.xml_extract.extract.build_store(odf_file, store, parse_state, store_adder=None)

	Utility function for loading xml_filename








generate


	
translate.storage.xml_extract.generate.find_dom_root(parent_dom_node, dom_node)

	
See also

find_placeable_dom_tree_roots()








	
translate.storage.xml_extract.generate.find_placeable_dom_tree_roots(unit_node)

	For an inline placeable, find the root DOM node for the placeable in its
parent.

Consider the diagram. In this pseudo-ODF example, there is an inline span
element. However, the span is contained in other tags (which we never process).
When splicing the template DOM tree (that is, the DOM which comes from
the XML document we’re using to generate a translated XML document), we’ll
need to move DOM sub-trees around and we need the roots of these sub-trees:

<p> This is text \/                <- Paragraph containing an inline placeable
                 <blah>            <- Inline placeable's root (which we want to find)
                 ...               <- Any number of intermediate DOM nodes
                 <span> bold text  <- The inline placeable's Translatable
                                      holds a reference to this DOM node










	
translate.storage.xml_extract.generate.replace_dom_text(make_parse_state)

	Return a function:

action: etree_Element x base.TranslationUnit -> None





which takes a dom_node and a translation unit. The dom_node is rearranged
according to rearrangement of placeables in unit.target (relative to their
positions in unit.source).








misc


	
translate.storage.xml_extract.misc.compose_mappings(left, right)

	Given two mappings left: A -> B and right: B -> C, create a
hash result_map: A -> C. Only values in left (i.e. things from B)
which have corresponding keys in right will have their keys mapped
to values in right.






	
translate.storage.xml_extract.misc.parse_tag(full_tag)

	>>> parse_tag('{urn:oasis:names:tc:opendocument:xmlns:office:1.0}document-content')
('urn:oasis:names:tc:opendocument:xmlns:office:1.0', 'document-content')










	
translate.storage.xml_extract.misc.reduce_tree(f, parent_unit_node, unit_node, get_children, *state)

	Enumerate a tree, applying f to in a pre-order fashion to each node.

parent_unit_node contains the parent of unit_node. For the root of the tree,
parent_unit_node == unit_node.

get_children is a single argument function applied to a unit_node to
get a list/iterator to its children.

state is used by f to modify state information relating to whatever f does
to the tree.








unit_tree


	
translate.storage.xml_extract.unit_tree.build_unit_tree(store)

	Enumerate a translation store and build a tree with XPath components as nodes
and where a node contains a unit if a path from the root of the tree to the node
containing the unit, is equal to the XPath of the unit.

The tree looks something like this:

root
   `- ('document-content', 1)
      `- ('body', 2)
         |- ('text', 1)
         |  `- ('p', 1)
         |     `- <reference to a unit>
         |- ('text', 2)
         |  `- ('p', 1)
         |     `- <reference to a unit>
         `- ('text', 3)
            `- ('p', 1)
               `- <reference to a unit>












xpath_breadcrumb


	
class translate.storage.xml_extract.xpath_breadcrumb.XPathBreadcrumb

	A class which is used to build XPath-like paths as a DOM tree is
walked. It keeps track of the number of times which it has seen
a certain tag, so that it will correctly create indices for tags.

Initially, the path is empty. Thus
>>> xb = XPathBreadcrumb()
>>> xb.xpath
“”

Suppose we walk down a DOM node for the tag <foo> and we want to
record this, we simply do
>>> xb.start_tag(‘foo’)

Now, the path is no longer empty. Thus
>>> xb.xpath
foo[0]

Now suppose there are two <bar> tags under the tag <foo> (that is
<foo><bar></bar><bar></bar><foo>), then the breadcrumb will keep
track of the number of times it sees <bar>. Thus

>>> xb.start_tag('bar')
>>> xb.xpath
foo[0]/bar[0]
>>> xb.end_tag()
>>> xb.xpath
foo[0]
>>> xb.start_tag('bar')
>>> xb.xpath
foo[0]/bar[1]














xml_name


	
class translate.storage.xml_name.XmlNamer(dom_node)

	Initialize me with a DOM node or a DOM document node (the
toplevel node you get when parsing an XML file). Then use me
to generate fully qualified XML names.

>>> xml = '<office:document-styles xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"></office>'
>>> from lxml import etree
>>> namer = XmlNamer(etree.fromstring(xml))
>>> namer.name('office', 'blah')
{urn:oasis:names:tc:opendocument:xmlns:office:1.0}blah
>>> namer.name('office:blah')
{urn:oasis:names:tc:opendocument:xmlns:office:1.0}blah





I can also give you XmlNamespace objects if you give me the abbreviated
namespace name. These are useful if you need to reference a namespace
continuously.

>>> office_ns = name.namespace('office')
>>> office_ns.name('foo')
{urn:oasis:names:tc:opendocument:xmlns:office:1.0}foo












zip

This module provides functionality to work with zip files.


	
class translate.storage.zip.ZIPFile(filename=None)

	This class represents a ZIP file like a directory.


	
file_iter()

	Iterator over (dir, filename) for all files in this directory.






	
getfiles()

	Returns a list of (dir, filename) tuples for all the file names in
this directory.






	
getunits()

	List of all the units in all the files in this directory.






	
scanfiles()

	Populate the internal file data.






	
unit_iter()

	Iterator over all the units in all the files in this zip file.















          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Translate Toolkit 1.12.0 documentation 

          	API 
 
      

    


    
      
          
            
  
tools

Code to perform various operations, mostly on po files.


build_tmdb

Import units from translations files into tmdb.




phppo2pypo

Convert PHP format .po files to Python format .po files.


	
translate.tools.phppo2pypo.convertphp2py(inputfile, outputfile, template=None)

	Converts from PHP .po format to Python .po format





	Parameters:	
	inputfile – file handle of the source

	outputfile – file handle to write to

	template – unused














	
translate.tools.phppo2pypo.main(argv=None)

	Converts PHP .po files to Python .po files.








poclean

Produces a clean file from an unclean file (Trados/Wordfast) by stripping
out the tw4win indicators.

This does not convert an RTF file to PO/XLIFF, but produces the target file
with only the target text in from a text version of the RTF.


	
translate.tools.poclean.cleanfile(thefile)

	cleans the given file






	
translate.tools.poclean.cleanunit(unit)

	cleans the targets in the given unit






	
translate.tools.poclean.runclean(inputfile, outputfile, templatefile)

	reads in inputfile, cleans, writes to outputfile








pocompile

Compile XLIFF and Gettext PO localization files into Gettext MO (Machine Object) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocompile.html
for examples and usage instructions.


	
translate.tools.pocompile.convertmo(inputfile, outputfile, templatefile, includefuzzy=False)

	reads in a base class derived inputfile, converts using pocompile, writes to outputfile








poconflicts

Conflict finder for Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poconflicts.html
for examples and usage instructions.


	
class translate.tools.poconflicts.ConflictOptionParser(formats, usetemplates=False, allowmissingtemplate=False, description=None)

	a specialized Option Parser for the conflict tool...


	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
buildconflictmap()

	work out which strings are conflicting






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
clean(string, options)

	returns the cleaned string that contains the text to be matched






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
flatten(text, joinchar)

	flattens text to just be words






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
outputconflicts(options)

	saves the result of the conflict match






	
parse_args(args=None, values=None)

	parses the command line options, handling implicit input/output args






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(fileprocessor, options, fullinputpath)

	process an individual file






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	recurse through directories and process files






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run()

	parses the arguments, and runs recursiveprocess with the resulting options






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setprogressoptions()

	Sets the progress options.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.












pocount

Count strings and words for supported localization files.

These include: XLIFF, TMX, Gettex PO and MO, Qt .ts and .qm, Wordfast TM, etc

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html
for examples and usage instructions.


	
translate.tools.pocount.calcstats_old(filename)

	This is the previous implementation of calcstats() and is left for
comparison and debuging purposes.






	
translate.tools.pocount.summarize(title, stats, style=0, indent=8, incomplete_only=False)

	Print summary for a .po file in specified format.





	Parameters:	
	title – name of .po file

	stats – array with translation statistics for the file specified

	indent – indentation of the 2nd column (length of longest filename)

	incomplete_only (Boolean) – omit fully translated files






	Return type:	Boolean




	Returns:	1 if counting incomplete files (incomplete_only=True) and the
file is completely translated, 0 otherwise














podebug

Insert debug messages into XLIFF and Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/podebug.html
for examples and usage instructions.


	
translate.tools.podebug.convertpo(inputfile, outputfile, templatefile, format=None, rewritestyle=None, ignoreoption=None)

	Reads in inputfile, changes it to have debug strings, writes to outputfile.








pogrep

Grep XLIFF, Gettext PO and TMX localization files.

Matches are output to snippet files of the same type which can then be reviewed
and later merged using pomerge.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html
for examples and usage instructions.


	
class translate.tools.pogrep.GrepMatch(unit, part='target', part_n=0, start=0, end=0)

	Just a small data structure that represents a search match.






	
class translate.tools.pogrep.GrepOptionParser(formats, usetemplates=False, allowmissingtemplate=False, description=None)

	a specialized Option Parser for the grep tool...


	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
parse_args(args=None, values=None)

	parses the command line options, handling implicit input/output args






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)

	Process an individual file.






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	Recurse through directories and process files.






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run()

	parses the arguments, and runs recursiveprocess with the resulting options






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setprogressoptions()

	Sets the progress options.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.










	
translate.tools.pogrep.find_matches(unit, part, strings, re_search)

	Return the GrepFilter objects where re_search matches in strings.






	
translate.tools.pogrep.real_index(string, nfc_index)

	Calculate the real index in the unnormalized string that corresponds to
the index nfc_index in the normalized string.






	
translate.tools.pogrep.rungrep(inputfile, outputfile, templatefile, checkfilter)

	reads in inputfile, filters using checkfilter, writes to outputfile








pomerge

Merges XLIFF and Gettext PO localization files.

Snippet file produced by e.g. pogrep and updated by a
translator can be merged back into the original files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html
for examples and usage instructions.


	
translate.tools.pomerge.mergestores(store1, store2, mergeblanks, mergefuzzy, mergecomments)

	Take any new translations in store2 and write them into store1.






	
translate.tools.pomerge.str2bool(option)

	Convert a string value to boolean





	Parameters:	option (String) – yes, true, 1, no, false, 0


	Return type:	Boolean












porestructure

Restructure Gettxt PO files produced by
poconflicts into the original directory tree
for merging using pomerge.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html
for examples and usage instructions.


	
class translate.tools.porestructure.SplitOptionParser(formats, usetemplates=False, allowmissingtemplate=False, description=None)

	a specialized Option Parser for posplit


	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
parse_args(args=None, values=None)

	parses the command line options, handling implicit input/output args






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(options, fullinputpath)

	process an individual file






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	recurse through directories and process files






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run()

	Parses the arguments, and runs recursiveprocess with the resulting
options...






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setprogressoptions()

	Sets the progress options.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.












posegment

Segment Gettext PO, XLIFF and TMX localization files at the sentence level.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/posegment.html
for examples and usage instructions.


	
translate.tools.posegment.segmentfile(inputfile, outputfile, templatefile, sourcelanguage='en', targetlanguage=None, stripspaces=True, onlyaligned=False)

	reads in inputfile, segments it then, writes to outputfile








poswap

Builds a new translation file with the target of the input language as
source language.


Note

Ensure that the two po files correspond 100% to the same pot file before using
this.



To translate Kurdish (ku) through French:

poswap -i fr/ -t ku -o fr-ku





To convert the fr-ku files back to en-ku:

poswap --reverse -i fr/ -t fr-ku -o en-ku





See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poswap.html
for examples and usage instructions.


	
translate.tools.poswap.convertpo(inputpofile, outputpotfile, template, reverse=False)

	reads in inputpofile, removes the header, writes to outputpotfile.






	
translate.tools.poswap.swapdir(store)

	Swap the source and target of each unit.








poterminology

Create a terminology file by reading a set of .po or .pot files to produce a pootle-terminology.pot.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poterminology.html
for examples and usage instructions.


	
class translate.tools.poterminology.TerminologyOptionParser(formats, usetemplates=False, allowmissingtemplate=False, description=None)

	a specialized Option Parser for the terminology tool...


	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)






	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid.  Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like).  Default implementation just returns the passed-in
values; subclasses may override as desired.






	
checkoutputsubdir(options, subdir)

	Checks to see if subdir under options.output needs to be created,
creates if neccessary.






	
define_option(option)

	Defines the given option, replacing an existing one of the same short
name if neccessary...






	
destroy()

	Declare that you are done with this OptionParser.  This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly.  After calling destroy(), the
OptionParser is unusable.






	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.






	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.






	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.






	
finalizetempoutputfile(options, outputfile, fulloutputpath)

	Write the temp outputfile to its final destination.






	
format_manpage()

	returns a formatted manpage






	
getformathelp(formats)

	Make a nice help string for describing formats...






	
getfullinputpath(options, inputpath)

	Gets the absolute path to an input file.






	
getfulloutputpath(options, outputpath)

	Gets the absolute path to an output file.






	
getfulltemplatepath(options, templatepath)

	Gets the absolute path to a template file.






	
getoutputname(options, inputname, outputformat)

	Gets an output filename based on the input filename.






	
getoutputoptions(options, inputpath, templatepath)

	Works out which output format and processor method to use...






	
getpassthroughoptions(options)

	Get the options required to pass to the filtermethod...






	
gettemplatename(options, inputname)

	Gets an output filename based on the input filename.






	
getusageman(option)

	returns the usage string for the given option






	
getusagestring(option)

	returns the usage string for the given option






	
initprogressbar(allfiles, options)

	Sets up a progress bar appropriate to the options and files.






	
isexcluded(options, inputpath)

	Checks if this path has been excluded.






	
isrecursive(fileoption, filepurpose='input')

	Checks if fileoption is a recursive file.






	
isvalidinputname(options, inputname)

	Checks if this is a valid input filename.






	
mkdir(parent, subdir)

	Makes a subdirectory (recursively if neccessary).






	
openinputfile(options, fullinputpath)

	Opens the input file.






	
openoutputfile(options, fulloutputpath)

	Opens the output file.






	
opentemplatefile(options, fulltemplatepath)

	Opens the template file (if required).






	
opentempoutputfile(options, fulloutputpath)

	Opens a temporary output file.






	
outputterminology(options)

	saves the generated terminology glossary






	
parse_args(args=None, values=None)

	parses the command line options, handling implicit input/output args






	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).






	
print_manpage(file=None)

	outputs a manpage for the program using the help information






	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout).  Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]).  Does nothing if self.usage is empty
or not defined.






	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout).  As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name.  Does nothing if self.version is empty or undefined.






	
processfile(fileprocessor, options, fullinputpath)

	process an individual file






	
recurseinputfilelist(options)

	Use a list of files, and find a common base directory for them.






	
recurseinputfiles(options)

	Recurse through directories and return files to be processed.






	
recursiveprocess(options)

	recurse through directories and process files






	
reportprogress(filename, success)

	Shows that we are progressing...






	
run()

	parses the arguments, and runs recursiveprocess with the resulting options






	
set_usage(usage=None)

	sets the usage string - if usage not given, uses getusagestring for each option






	
seterrorleveloptions()

	Sets the errorlevel options.






	
setformats(formats, usetemplates)

	Sets the format options using the given format dictionary.





	Parameters:	formats (Dictionary) – The dictionary keys should be:


	Single strings (or 1-tuples) containing an
input format (if not usetemplates)

	Tuples containing an input format and
template format (if usetemplates)

	Formats can be None to indicate what to do
with standard input



The dictionary values should be tuples of
outputformat (string) and processor method.












	
setmanpageoption()

	creates a manpage option that allows the optionparser to generate a
manpage






	
setprogressoptions()

	Sets the progress options.






	
splitext(pathname)

	Splits pathname into name and ext, and removes the extsep.





	Parameters:	pathname (string [https://docs.python.org/2.7/library/string.html#module-string]) – A file path


	Returns:	root, ext


	Return type:	tuple










	
splitinputext(inputpath)

	Splits an inputpath into name and extension.






	
splittemplateext(templatepath)

	Splits a templatepath into name and extension.






	
templateexists(options, templatepath)

	Returns whether the given template exists...






	
warning(msg, options=None, exc_info=None)

	Print a warning message incorporating ‘msg’ to stderr and exit.












pretranslate

Fill localization files with suggested translations based on
translation memory and existing translations.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pretranslate.html
for examples and usage instructions.


	
translate.tools.pretranslate.match_fuzzy(input_unit, matchers)

	Return a fuzzy match from a queue of matchers.






	
translate.tools.pretranslate.match_source(input_unit, template_store)

	Returns a matching unit from a template. matching based on unit id






	
translate.tools.pretranslate.match_template_id(input_unit, template_store)

	Returns a matching unit from a template. matching based on unit id






	
translate.tools.pretranslate.match_template_location(input_unit, template_store)

	Returns a matching unit from a template. matching based on locations






	
translate.tools.pretranslate.memory(tmfiles, max_candidates=1, min_similarity=75, max_length=1000)

	Returns the TM store to use. Only initialises on first call.






	
translate.tools.pretranslate.pretranslate_file(input_file, output_file, template_file, tm=None, min_similarity=75, fuzzymatching=True)

	Pretranslate any factory supported file with old translations and
translation memory.






	
translate.tools.pretranslate.pretranslate_store(input_store, template_store, tm=None, min_similarity=75, fuzzymatching=True)

	Do the actual pretranslation of a whole store.






	
translate.tools.pretranslate.pretranslate_unit(input_unit, template_store, matchers=None, mark_reused=False, merge_on='id')

	Pretranslate a unit or return unchanged if no translation was found.





	Parameters:	
	input_unit – Unit that will be pretranslated.

	template_store – Fill input unit with units matching in this store.

	matchers – List of fuzzy matcher
objects.

	mark_reused – Whether to mark old translations as reused or not.

	merge_on – Where will the merge matching happen on.
















pydiff

diff tool like GNU diff, but lets you have special options
that are useful in dealing with PO files


	
class translate.tools.pydiff.DirDiffer(fromdir, todir, options)

	generates diffs between directories


	
isexcluded(difffile)

	checks if the given filename has been excluded from the diff






	
writediff(outfile)

	writes the actual diff to the given file










	
class translate.tools.pydiff.FileDiffer(fromfile, tofile, options)

	generates diffs between files


	
get_from_lines(group)

	returns the lines referred to by group, from the fromfile






	
get_to_lines(group)

	returns the lines referred to by group, from the tofile






	
unified_diff(group)

	takes the group of opcodes and generates a unified diff line
by line






	
writediff(outfile)

	writes the actual diff to the given file










	
translate.tools.pydiff.main()

	main program for pydiff








pypo2phppo

Convert Python format .po files to PHP format .po files.


	
translate.tools.pypo2phppo.convertpy2php(inputfile, outputfile, template=None)

	Converts from Python .po to PHP .po





	Parameters:	
	inputfile – file handle of the source

	outputfile – file handle to write to

	template – unused














	
translate.tools.pypo2phppo.main(argv=None)

	Converts from Python .po to PHP .po











          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   t
   


   
     			

     		
       t	

     
       	[image: -]
       	
       translate	
       

     
       	
       	
       translate.convert	
       

     
       	
       	
       translate.convert.accesskey	
       

     
       	
       	
       translate.convert.convert	
       

     
       	
       	
       translate.convert.csv2po	
       

     
       	
       	
       translate.convert.csv2tbx	
       

     
       	
       	
       translate.convert.dtd2po	
       

     
       	
       	
       translate.convert.factory	
       

     
       	
       	
       translate.convert.html2po	
       

     
       	
       	
       translate.convert.ical2po	
       

     
       	
       	
       translate.convert.ini2po	
       

     
       	
       	
       translate.convert.json2po	
       

     
       	
       	
       translate.convert.moz2po	
       

     
       	
       	
       translate.convert.mozfunny2prop	
       

     
       	
       	
       translate.convert.mozlang2po	
       

     
       	
       	
       translate.convert.odf2xliff	
       

     
       	
       	
       translate.convert.oo2po	
       

     
       	
       	
       translate.convert.oo2xliff	
       

     
       	
       	
       translate.convert.php2po	
       

     
       	
       	
       translate.convert.po2csv	
       

     
       	
       	
       translate.convert.po2dtd	
       

     
       	
       	
       translate.convert.po2html	
       

     
       	
       	
       translate.convert.po2ical	
       

     
       	
       	
       translate.convert.po2ini	
       

     
       	
       	
       translate.convert.po2json	
       

     
       	
       	
       translate.convert.po2moz	
       

     
       	
       	
       translate.convert.po2mozlang	
       

     
       	
       	
       translate.convert.po2oo	
       

     
       	
       	
       translate.convert.po2php	
       

     
       	
       	
       translate.convert.po2prop	
       

     
       	
       	
       translate.convert.po2rc	
       

     
       	
       	
       translate.convert.po2sub	
       

     
       	
       	
       translate.convert.po2symb	
       

     
       	
       	
       translate.convert.po2tiki	
       

     
       	
       	
       translate.convert.po2tmx	
       

     
       	
       	
       translate.convert.po2ts	
       

     
       	
       	
       translate.convert.po2txt	
       

     
       	
       	
       translate.convert.po2web2py	
       

     
       	
       	
       translate.convert.po2wordfast	
       

     
       	
       	
       translate.convert.po2xliff	
       

     
       	
       	
       translate.convert.poreplace	
       

     
       	
       	
       translate.convert.pot2po	
       

     
       	
       	
       translate.convert.prop2mozfunny	
       

     
       	
       	
       translate.convert.prop2po	
       

     
       	
       	
       translate.convert.rc2po	
       

     
       	
       	
       translate.convert.sub2po	
       

     
       	
       	
       translate.convert.symb2po	
       

     
       	
       	
       translate.convert.tiki2po	
       

     
       	
       	
       translate.convert.ts2po	
       

     
       	
       	
       translate.convert.txt2po	
       

     
       	
       	
       translate.convert.web2py2po	
       

     
       	
       	
       translate.convert.xliff2odf	
       

     
       	
       	
       translate.convert.xliff2oo	
       

     
       	
       	
       translate.convert.xliff2po	
       

     
       	
       	
       translate.filters	
       

     
       	
       	
       translate.filters.autocorrect	
       

     
       	
       	
       translate.filters.checks	
       

     
       	
       	
       translate.filters.decoration	
       

     
       	
       	
       translate.filters.helpers	
       

     
       	
       	
       translate.filters.pofilter	
       

     
       	
       	
       translate.filters.prefilters	
       

     
       	
       	
       translate.filters.spelling	
       

     
       	
       	
       translate.lang	
       

     
       	
       	
       translate.lang.af	
       

     
       	
       	
       translate.lang.am	
       

     
       	
       	
       translate.lang.ar	
       

     
       	
       	
       translate.lang.bn	
       

     
       	
       	
       translate.lang.code_or	
       

     
       	
       	
       translate.lang.common	
       

     
       	
       	
       translate.lang.data	
       

     
       	
       	
       translate.lang.de	
       

     
       	
       	
       translate.lang.el	
       

     
       	
       	
       translate.lang.es	
       

     
       	
       	
       translate.lang.fa	
       

     
       	
       	
       translate.lang.factory	
       

     
       	
       	
       translate.lang.fi	
       

     
       	
       	
       translate.lang.fr	
       

     
       	
       	
       translate.lang.gu	
       

     
       	
       	
       translate.lang.he	
       

     
       	
       	
       translate.lang.hi	
       

     
       	
       	
       translate.lang.hy	
       

     
       	
       	
       translate.lang.identify	
       

     
       	
       	
       translate.lang.ja	
       

     
       	
       	
       translate.lang.km	
       

     
       	
       	
       translate.lang.kn	
       

     
       	
       	
       translate.lang.ko	
       

     
       	
       	
       translate.lang.ml	
       

     
       	
       	
       translate.lang.mr	
       

     
       	
       	
       translate.lang.ne	
       

     
       	
       	
       translate.lang.ngram	
       

     
       	
       	
       translate.lang.pa	
       

     
       	
       	
       translate.lang.poedit	
       

     
       	
       	
       translate.lang.si	
       

     
       	
       	
       translate.lang.st	
       

     
       	
       	
       translate.lang.sv	
       

     
       	
       	
       translate.lang.ta	
       

     
       	
       	
       translate.lang.te	
       

     
       	
       	
       translate.lang.team	
       

     
       	
       	
       translate.lang.th	
       

     
       	
       	
       translate.lang.ug	
       

     
       	
       	
       translate.lang.ur	
       

     
       	
       	
       translate.lang.vi	
       

     
       	
       	
       translate.lang.zh	
       

     
       	
       	
       translate.misc	
       

     
       	
       	
       translate.misc.autoencode	
       

     
       	
       	
       translate.misc.dictutils	
       

     
       	
       	
       translate.misc.file_discovery	
       

     
       	
       	
       translate.misc.lru	
       

     
       	
       	
       translate.misc.multistring	
       

     
       	
       	
       translate.misc.optrecurse	
       

     
       	
       	
       translate.misc.ourdom	
       

     
       	
       	
       translate.misc.progressbar	
       

     
       	
       	
       translate.misc.quote	
       

     
       	
       	
       translate.misc.sparse	
       

     
       	
       	
       translate.misc.stdiotell	
       

     
       	
       	
       translate.misc.wsgi	
       

     
       	
       	
       translate.misc.wStringIO	
       

     
       	
       	
       translate.misc.xml_helpers	
       

     
       	
       	
       translate.search	
       

     
       	
       	
       translate.search.indexing	
       

     
       	
       	
       translate.search.indexing.CommonIndexer	
       

     
       	
       	
       translate.search.indexing.PyLuceneIndexer	
       

     
       	
       	
       translate.search.indexing.PyLuceneIndexer1	
       

     
       	
       	
       translate.search.indexing.XapianIndexer	
       

     
       	
       	
       translate.search.lshtein	
       

     
       	
       	
       translate.search.match	
       

     
       	
       	
       translate.search.segment	
       

     
       	
       	
       translate.search.terminology	
       

     
       	
       	
       translate.services	
       

     
       	
       	
       translate.services.tmserver	
       

     
       	
       	
       translate.storage	
       

     
       	
       	
       translate.storage._factory_classes	
       

     
       	
       	
       translate.storage.base	
       

     
       	
       	
       translate.storage.benchmark	
       

     
       	
       	
       translate.storage.bundleprojstore	
       

     
       	
       	
       translate.storage.catkeys	
       

     
       	
       	
       translate.storage.cpo	
       

     
       	
       	
       translate.storage.csvl10n	
       

     
       	
       	
       translate.storage.directory	
       

     
       	
       	
       translate.storage.dtd	
       

     
       	
       	
       translate.storage.factory	
       

     
       	
       	
       translate.storage.fpo	
       

     
       	
       	
       translate.storage.html	
       

     
       	
       	
       translate.storage.ical	
       

     
       	
       	
       translate.storage.ini	
       

     
       	
       	
       translate.storage.jsonl10n	
       

     
       	
       	
       translate.storage.lisa	
       

     
       	
       	
       translate.storage.mo	
       

     
       	
       	
       translate.storage.mozilla_lang	
       

     
       	
       	
       translate.storage.odf_io	
       

     
       	
       	
       translate.storage.odf_shared	
       

     
       	
       	
       translate.storage.omegat	
       

     
       	
       	
       translate.storage.oo	
       

     
       	
       	
       translate.storage.php	
       

     
       	
       	
       translate.storage.placeables	
       

     
       	
       	
       translate.storage.placeables.base	
       

     
       	
       	
       translate.storage.placeables.general	
       

     
       	
       	
       translate.storage.placeables.interfaces	
       

     
       	
       	
       translate.storage.placeables.lisa	
       

     
       	
       	
       translate.storage.placeables.parse	
       

     
       	
       	
       translate.storage.placeables.strelem	
       

     
       	
       	
       translate.storage.placeables.terminology	
       

     
       	
       	
       translate.storage.placeables.xliff	
       

     
       	
       	
       translate.storage.po	
       

     
       	
       	
       translate.storage.pocommon	
       

     
       	
       	
       translate.storage.poheader	
       

     
       	
       	
       translate.storage.poparser	
       

     
       	
       	
       translate.storage.poxliff	
       

     
       	
       	
       translate.storage.project	
       

     
       	
       	
       translate.storage.projstore	
       

     
       	
       	
       translate.storage.properties	
       

     
       	
       	
       translate.storage.pypo	
       

     
       	
       	
       translate.storage.qm	
       

     
       	
       	
       translate.storage.qph	
       

     
       	
       	
       translate.storage.rc	
       

     
       	
       	
       translate.storage.statistics	
       

     
       	
       	
       translate.storage.statsdb	
       

     
       	
       	
       translate.storage.subtitles	
       

     
       	
       	
       translate.storage.symbian	
       

     
       	
       	
       translate.storage.tbx	
       

     
       	
       	
       translate.storage.tiki	
       

     
       	
       	
       translate.storage.tmdb	
       

     
       	
       	
       translate.storage.tmx	
       

     
       	
       	
       translate.storage.trados	
       

     
       	
       	
       translate.storage.ts	Deprecated:
       

     
       	
       	
       translate.storage.ts2	
       

     
       	
       	
       translate.storage.txt	
       

     
       	
       	
       translate.storage.utx	
       

     
       	
       	
       translate.storage.versioncontrol	
       

     
       	
       	
       translate.storage.versioncontrol.bzr	
       

     
       	
       	
       translate.storage.versioncontrol.cvs	
       

     
       	
       	
       translate.storage.versioncontrol.darcs	
       

     
       	
       	
       translate.storage.versioncontrol.git	
       

     
       	
       	
       translate.storage.versioncontrol.hg	
       

     
       	
       	
       translate.storage.versioncontrol.svn	
       

     
       	
       	
       translate.storage.wordfast	
       

     
       	
       	
       translate.storage.workflow	
       

     
       	
       	
       translate.storage.xliff	
       

     
       	
       	
       translate.storage.xml_extract	
       

     
       	
       	
       translate.storage.xml_extract.extract	
       

     
       	
       	
       translate.storage.xml_extract.generate	
       

     
       	
       	
       translate.storage.xml_extract.misc	
       

     
       	
       	
       translate.storage.xml_extract.unit_tree	
       

     
       	
       	
       translate.storage.xml_extract.xpath_breadcrumb	
       

     
       	
       	
       translate.storage.xml_name	
       

     
       	
       	
       translate.storage.zip	
       

     
       	
       	
       translate.tools	
       

     
       	
       	
       translate.tools.build_tmdb	
       

     
       	
       	
       translate.tools.phppo2pypo	
       

     
       	
       	
       translate.tools.poclean	
       

     
       	
       	
       translate.tools.pocompile	
       

     
       	
       	
       translate.tools.poconflicts	
       

     
       	
       	
       translate.tools.pocount	
       

     
       	
       	
       translate.tools.podebug	
       

     
       	
       	
       translate.tools.pogrep	
       

     
       	
       	
       translate.tools.pomerge	
       

     
       	
       	
       translate.tools.porestructure	
       

     
       	
       	
       translate.tools.posegment	
       

     
       	
       	
       translate.tools.poswap	
       

     
       	
       	
       translate.tools.poterminology	
       

     
       	
       	
       translate.tools.pretranslate	
       

     
       	
       	
       translate.tools.pydiff	
       

     
       	
       	
       translate.tools.pypo2phppo	
       

   



          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Translate Toolkit 1.12.0 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z
 


A


  	
      
  	accelerators() (translate.filters.checks.StandardChecker method)
  


      
  	accesskeysuffixes (in module translate.storage.dtd)
  


      	
        
  	(in module translate.storage.properties)
  


      


      
  	acronyms() (translate.filters.checks.StandardChecker method)
  


      
  	add() (translate.storage.versioncontrol.bzr.bzr method)
  


      	
        
  	(translate.storage.versioncontrol.GenericRevisionControlSystem method)
  


        
  	(translate.storage.versioncontrol.cvs.cvs method)
  


        
  	(translate.storage.versioncontrol.darcs.darcs method)
  


        
  	(translate.storage.versioncontrol.git.git method)
  


        
  	(translate.storage.versioncontrol.hg.hg method)
  


        
  	(translate.storage.versioncontrol.svn.svn method)
  


      


      
  	add_duplicates_option() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	add_fuzzy_option() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	add_multifile_option() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	add_option() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	add_source() (translate.storage.project.Project method)
  


      
  	add_source_convert() (translate.storage.project.Project method)
  


      
  	add_threshold_option() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	add_unit_to_index() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	addalttrans() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	adderror() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	addheader() (translate.storage.lisa.LISAfile method)
  


      	
        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	addline() (translate.storage.oo.oofile method)
  


      	
        
  	(translate.storage.oo.oounit method)
  


      


      
  	addlocation() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	addlocations() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	addnote() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	addplural() (translate.storage.poxliff.PoXliffFile method)
  


  

  	
      
  	addsourceunit() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	addtranslation() (translate.storage.tmx.tmxfile method)
  


      
  	addunit() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


      


      
  	AdvSubStationAlphaFile (class in translate.storage.subtitles)
  


      
  	af (class in translate.lang.af)
  


      
  	AltAttrPlaceable (class in translate.storage.placeables.general)
  


      
  	alter_length() (translate.lang.af.af class method)
  


      	
        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	am (class in translate.lang.am)
  


      
  	ANALYZER_DEFAULT (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


      
  	ANALYZER_EXACT (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


      
  	ANALYZER_PARTIAL (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


      
  	ANALYZER_TOKENIZE (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


      
  	append_file() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	apply_to_strings() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	applytokenizer() (translate.misc.sparse.SimpleParser method)
  


      
  	applytokenizers() (translate.misc.sparse.SimpleParser method)
  


      
  	applytranslation() (in module translate.convert.po2dtd)
  


      	
        
  	(in module translate.convert.po2prop)
  


      


      
  	ar (class in translate.lang.ar)
  


      
  	ArchiveConvertOptionParser (class in translate.convert.convert)
  


  





B


  	
      
  	BasePlaceable (class in translate.storage.placeables.interfaces)
  


      
  	batchruntests() (in module translate.filters.checks)
  


      
  	begin_transaction() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	blank() (translate.filters.checks.StandardChecker method)
  


      
  	bn (class in translate.lang.bn)
  


      
  	brackets() (translate.filters.checks.StandardChecker method)
  


      
  	build_checkerconfig() (in module translate.filters.pofilter)
  


  

  	
      
  	build_store() (in module translate.storage.xml_extract.extract)
  


      
  	build_unit_tree() (in module translate.storage.xml_extract.unit_tree)
  


      
  	buildconflictmap() (translate.tools.poconflicts.ConflictOptionParser method)
  


      
  	buildfromunit() (translate.storage.base.TranslationUnit class method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit class method)
  


        
  	(translate.storage.dtd.dtdunit class method)
  


        
  	(translate.storage.html.htmlunit class method)
  


        
  	(translate.storage.ical.icalunit class method)
  


        
  	(translate.storage.ini.iniunit class method)
  


        
  	(translate.storage.jsonl10n.JsonUnit class method)
  


        
  	(translate.storage.lisa.LISAunit class method)
  


        
  	(translate.storage.mo.mounit class method)
  


        
  	(translate.storage.mozilla_lang.LangUnit class method)
  


        
  	(translate.storage.omegat.OmegaTUnit class method)
  


        
  	(translate.storage.php.phpunit class method)
  


        
  	(translate.storage.poxliff.PoXliffUnit class method)
  


        
  	(translate.storage.properties.propunit class method)
  


        
  	(translate.storage.qm.qmunit class method)
  


        
  	(translate.storage.qph.QphUnit class method)
  


        
  	(translate.storage.rc.rcunit class method)
  


        
  	(translate.storage.subtitles.SubtitleUnit class method)
  


        
  	(translate.storage.tbx.tbxunit class method)
  


        
  	(translate.storage.tiki.TikiUnit class method)
  


        
  	(translate.storage.tmx.tmxunit class method)
  


        
  	(translate.storage.ts2.tsunit class method)
  


        
  	(translate.storage.txt.TxtUnit class method)
  


        
  	(translate.storage.utx.UtxUnit class method)
  


        
  	(translate.storage.wordfast.WordfastUnit class method)
  


        
  	(translate.storage.xliff.xliffunit class method)
  


      


      
  	buildunits() (translate.search.match.matcher method)
  


      	
        
  	(translate.search.match.terminologymatcher method)
  


      


      
  	BundleProjectStore (class in translate.storage.bundleprojstore)
  


      
  	bzr (class in translate.storage.versioncontrol.bzr)
  


  





C


  	
      
  	calcstats_old() (in module translate.tools.pocount)
  


      
  	cancel_transaction() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	capsstart() (translate.lang.af.af class method)
  


      	
        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	CatchStringOutput (class in translate.misc.wStringIO)
  


      
  	categories (translate.filters.checks.TeeChecker attribute)
  


      	
        
  	(translate.filters.checks.UnitChecker attribute)
  


      


      
  	CatkeysDialect (class in translate.storage.catkeys)
  


      
  	CatkeysFile (class in translate.storage.catkeys)
  


      
  	CatkeysHeader (class in translate.storage.catkeys)
  


      
  	CatkeysUnit (class in translate.storage.catkeys)
  


      
  	changeencoding() (translate.storage.fpo.pofile method)
  


      
  	character_iter() (in module translate.search.segment)
  


      	
        
  	(translate.lang.af.af class method)
  


        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	characters() (in module translate.search.segment)
  


      	
        
  	(translate.lang.af.af class method)
  


        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	check_values() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	checker (translate.lang.common.Common attribute)
  


      
  	CheckerConfig (class in translate.filters.checks)
  


      
  	checkoutputsubdir() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	CJKpunc (translate.lang.common.Common attribute)
  


      
  	classes_str (in module translate.storage.factory)
  


      
  	classifyunit() (translate.storage.statistics.Statistics method)
  


      
  	classifyunits() (translate.storage.statistics.Statistics method)
  


      
  	clean() (translate.tools.poconflicts.ConflictOptionParser method)
  


      
  	cleanfile() (in module translate.tools.poclean)
  


      
  	cleanunit() (in module translate.tools.poclean)
  


      
  	cleanup() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      
  	clear() (translate.misc.dictutils.ordereddict method)
  


      
  	clear_test_dir() (translate.storage.benchmark.TranslateBenchmarker method)
  


      
  	close() (translate.misc.wStringIO.CatchStringOutput method)
  


      	
        
  	(translate.storage.project.Project method)
  


      


      
  	code (translate.lang.common.Common attribute)
  


      
  	code_or (class in translate.lang.code_or)
  


      
  	combine() (in module translate.convert.accesskey)
  


      
  	commit() (translate.storage.versioncontrol.bzr.bzr method)
  


      	
        
  	(translate.storage.versioncontrol.GenericRevisionControlSystem method)
  


        
  	(translate.storage.versioncontrol.cvs.cvs method)
  


        
  	(translate.storage.versioncontrol.darcs.darcs method)
  


        
  	(translate.storage.versioncontrol.git.git method)
  


        
  	(translate.storage.versioncontrol.hg.hg method)
  


        
  	(translate.storage.versioncontrol.svn.svn method)
  


      


      
  	commit_transaction() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	commitdirectory() (in module translate.storage.versioncontrol)
  


      
  	Common (class in translate.lang.common)
  


      
  	CommonDatabase (class in translate.search.indexing.CommonIndexer)
  


      
  	CommonEnquire (class in translate.search.indexing.CommonIndexer)
  


      
  	commonpunc (translate.lang.common.Common attribute)
  


      
  	compendiumconflicts() (translate.filters.checks.StandardChecker method)
  


      
  	compose_mappings() (in module translate.storage.xml_extract.misc)
  


      
  	con (translate.storage.statsdb.StatsCache attribute)
  


      
  	ConflictOptionParser (class in translate.tools.poconflicts)
  


      
  	convert_forward() (translate.storage.project.Project method)
  


      
  	convert_store() (in module translate.convert.sub2po)
  


      	
        
  	(translate.convert.ical2po.ical2po method)
  


        
  	(translate.convert.ini2po.ini2po method)
  


        
  	(translate.convert.json2po.json2po method)
  


        
  	(translate.convert.rc2po.rc2po method)
  


      


      
  	convert_stores() (in module translate.convert.pot2po)
  


      
  	convert_unit() (in module translate.convert.sub2po)
  


      	
        
  	(translate.convert.ical2po.ical2po method)
  


        
  	(translate.convert.ini2po.ini2po method)
  


        
  	(translate.convert.json2po.json2po method)
  


        
  	(translate.convert.rc2po.rc2po method)
  


      


      
  	convertcsv() (in module translate.convert.csv2po)
  


      	
        
  	(in module translate.convert.csv2tbx)
  


        
  	(in module translate.convert.po2csv)
  


      


      
  	convertdtd() (in module translate.convert.dtd2po)
  


      
  	convertfile() (translate.convert.csv2tbx.csv2tbx method)
  


      
  	converthtml() (in module translate.convert.html2po)
  


      	
        
  	(in module translate.convert.po2html)
  


      


  

  	
      
  	convertical() (in module translate.convert.ical2po)
  


      
  	convertini() (in module translate.convert.ini2po)
  


      
  	convertjson() (in module translate.convert.json2po)
  


      
  	convertlang() (in module translate.convert.mozlang2po)
  


      	
        
  	(in module translate.convert.po2mozlang)
  


      


      
  	convertmo() (in module translate.tools.pocompile)
  


      
  	convertmozillaprop() (in module translate.convert.po2prop)
  


      	
        
  	(in module translate.convert.prop2po)
  


      


      
  	convertodf() (in module translate.convert.odf2xliff)
  


      
  	convertoo() (in module translate.convert.oo2po)
  


      	
        
  	(in module translate.convert.oo2xliff)
  


      


      
  	ConvertOptionParser (class in translate.convert.convert)
  


      
  	convertphp() (in module translate.convert.php2po)
  


      
  	convertphp2py() (in module translate.tools.phppo2pypo)
  


      
  	convertpo() (in module translate.convert.po2tiki)
  


      	
        
  	(in module translate.convert.po2tmx)
  


        
  	(in module translate.convert.po2ts)
  


        
  	(in module translate.convert.po2wordfast)
  


        
  	(in module translate.convert.po2xliff)
  


        
  	(in module translate.tools.podebug)
  


        
  	(in module translate.tools.poswap)
  


      


      
  	convertpot() (in module translate.convert.pot2po)
  


      
  	convertprop() (in module translate.convert.prop2po)
  


      
  	convertpropunit() (translate.convert.prop2po.prop2po method)
  


      
  	convertpy2php() (in module translate.tools.pypo2phppo)
  


      
  	convertrc() (in module translate.convert.rc2po)
  


      
  	convertstore() (translate.convert.csv2po.csv2po method)
  


      	
        
  	(translate.convert.php2po.php2po method)
  


        
  	(translate.convert.po2txt.po2txt method)
  


        
  	(translate.convert.prop2po.prop2po method)
  


      


      
  	convertstrings() (in module translate.convert.po2prop)
  


      	
        
  	(in module translate.convert.prop2po)
  


      


      
  	convertsub() (in module translate.convert.sub2po)
  


      
  	converttiki() (in module translate.convert.tiki2po)
  


      
  	convertts() (in module translate.convert.ts2po)
  


      
  	converttxt() (in module translate.convert.po2txt)
  


      	
        
  	(in module translate.convert.txt2po)
  


      


      
  	convertunit() (translate.convert.csv2po.csv2po method)
  


      	
        
  	(translate.convert.php2po.php2po method)
  


        
  	(translate.convert.prop2po.prop2po method)
  


      


      
  	convertxliff() (in module translate.convert.xliff2odf)
  


      	
        
  	(in module translate.convert.xliff2po)
  


      


      
  	copy() (translate.misc.dictutils.ordereddict method)
  


      	
        
  	(translate.storage.placeables.general.AltAttrPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


      


      
  	copyinput() (in module translate.convert.convert)
  


      
  	copytemplate() (in module translate.convert.convert)
  


      
  	correct() (in module translate.filters.autocorrect)
  


      
  	correctorigin() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	countaccelerators() (in module translate.filters.decoration)
  


      
  	countmatch() (in module translate.filters.helpers)
  


      
  	countsmatch() (in module translate.filters.helpers)
  


      
  	countwords() (translate.storage.statistics.Statistics method)
  


      
  	create_sample_files() (translate.storage.benchmark.TranslateBenchmarker method)
  


      
  	createcontextgroup() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	createfilenode() (translate.storage.xliff.xlifffile method)
  


      
  	creategroup() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	createlanguageNode() (translate.storage.lisa.LISAunit method)
  


      	
        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	createPHnodes() (translate.storage.lisa.LISAunit method)
  


      	
        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	createsubfileindex() (translate.storage.oo.oomultifile method)
  


      
  	credits() (translate.filters.checks.StandardChecker method)
  


      
  	csv2po (class in translate.convert.csv2po)
  


      
  	csv2tbx (class in translate.convert.csv2tbx)
  


      
  	csvfile (class in translate.storage.csvl10n)
  


      
  	cull() (translate.misc.lru.LRUCachingDict method)
  


      
  	cur (translate.storage.statsdb.StatsCache attribute)
  


      
  	cvs (class in translate.storage.versioncontrol.cvs)
  


      
  	cyr2lat (in module translate.lang.af)
  


  





D


  	
      
  	darcs (class in translate.storage.versioncontrol.darcs)
  


      
  	de (class in translate.lang.de)
  


      
  	decode() (translate.storage.pypo.pofile method)
  


      
  	DEFAULT_RCS (in module translate.storage.versioncontrol)
  


      
  	define_option() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	delalttrans() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	delete_doc() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	delete_document_by_id() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	delete_range() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	depth_first() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	destroy() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	detect_header() (in module translate.storage.csvl10n)
  


      
  	Dialect (class in translate.storage.ini)
  


      	
        
  	(class in translate.storage.properties)
  


      


  

  	
      
  	dialects (in module translate.lang.poedit)
  


      
  	dict (translate.storage.catkeys.CatkeysUnit attribute)
  


      	
        
  	(translate.storage.omegat.OmegaTUnit attribute)
  


        
  	(translate.storage.utx.UtxUnit attribute)
  


        
  	(translate.storage.wordfast.WordfastUnit attribute)
  


      


      
  	DirDiffer (class in translate.tools.pydiff)
  


      
  	Directory (class in translate.storage.directory)
  


      
  	disable_interspersed_args() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	distance() (in module translate.search.lshtein)
  


      
  	doreplace() (translate.convert.convert.Replacer method)
  


      
  	DotsProgressBar (class in translate.misc.progressbar)
  


      
  	doublequoting() (translate.filters.checks.StandardChecker method)
  


      
  	doublespacing() (translate.filters.checks.StandardChecker method)
  


      
  	doublewords() (translate.filters.checks.StandardChecker method)
  


      
  	dtdfile (class in translate.storage.dtd)
  


      
  	dtdunit (class in translate.storage.dtd)
  


  





E


  	
      
  	el (class in translate.lang.el)
  


      
  	elem_at_offset() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	elem_offset() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	emails() (translate.filters.checks.StandardChecker method)
  


      
  	emptyfiletotals() (in module translate.storage.statsdb)
  


      
  	enable_interspersed_args() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	encode() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


        
  	(translate.storage.properties.Dialect class method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	encode_if_needed_utf8() (in module translate.storage.oo)
  


      
  	encodingToUse() (in module translate.storage.pocommon)
  


      
  	endpunc() (translate.filters.checks.StandardChecker method)
  


      
  	endwhitespace() (translate.filters.checks.StandardChecker method)
  


      
  	entitydecode() (in module translate.misc.quote)
  


      
  	entityencode() (in module translate.misc.quote)
  


      
  	error() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	es (class in translate.lang.es)
  


      
  	escape() (in module translate.storage.trados)
  


  

  	
      
  	escape_help_text() (in module translate.storage.oo)
  


      
  	escape_text() (in module translate.storage.oo)
  


      
  	escape_to_python() (in module translate.storage.rc)
  


      
  	escape_to_rc() (in module translate.storage.rc)
  


      
  	escapecontrols() (in module translate.misc.quote)
  


      
  	escapeforpo() (in module translate.storage.pypo)
  


      
  	escapes() (translate.filters.checks.StandardChecker method)
  


      
  	ethiopicpunc (translate.lang.common.Common attribute)
  


      
  	expansion_factors (in module translate.lang.data)
  


      
  	export_file() (translate.storage.project.Project method)
  


      
  	extendtm() (translate.search.match.matcher method)
  


      	
        
  	(translate.search.match.terminologymatcher method)
  


      


      
  	Extensions (translate.storage.base.TranslationStore attribute)
  


      
  	extract() (in module translate.convert.accesskey)
  


      	
        
  	(in module translate.misc.quote)
  


      


      
  	extract_msgid_comment() (in module translate.storage.pocommon)
  


      
  	extractpoline() (in module translate.storage.pypo)
  


      
  	extractwithoutquotes() (in module translate.misc.quote)
  


  





F


  	
      
  	fa (class in translate.lang.fa)
  


      
  	fi (class in translate.lang.fi)
  


      
  	field_analyzers (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


      
  	FIELDNAMES (in module translate.storage.catkeys)
  


      
  	FIELDNAMES_HEADER (in module translate.storage.catkeys)
  


      
  	FIELDNAMES_HEADER_DEFAULTS (in module translate.storage.catkeys)
  


      
  	file_iter() (translate.storage.directory.Directory method)
  


      	
        
  	(translate.storage.zip.ZIPFile method)
  


      


      
  	filechecks() (translate.storage.statsdb.StatsCache method)
  


      
  	FileDiffer (class in translate.tools.pydiff)
  


      
  	filepaths() (translate.filters.checks.StandardChecker method)
  


      
  	filestatestats() (translate.storage.statsdb.StatsCache method)
  


      
  	filestats() (translate.storage.statsdb.StatsCache method)
  


      
  	filetotals() (translate.storage.statsdb.StatsCache method)
  


      
  	filteraccelerators() (in module translate.filters.prefilters)
  


      
  	filteraccelerators_by_list() (translate.filters.checks.StandardChecker method)
  


      	
        
  	(translate.filters.checks.StandardUnitChecker method)
  


        
  	(translate.filters.checks.TranslationChecker method)
  


        
  	(translate.filters.checks.UnitChecker method)
  


      


      
  	filtercount() (in module translate.filters.helpers)
  


      
  	FilterFailure
  


      
  	filterinputformats() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	FilterOptionParser (class in translate.filters.pofilter)
  


      
  	filteroutputoptions() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	filtertestmethod() (in module translate.filters.helpers)
  


      
  	filtervariables() (in module translate.filters.prefilters)
  


      
  	filterwordswithpunctuation() (in module translate.filters.prefilters)
  


      
  	finalizetempoutputfile() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	find() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	find_all() (in module translate.misc.quote)
  


  

  	
      
  	find_delimeter() (in module translate.storage.properties)
  


      
  	find_delimiter() (translate.storage.properties.Dialect class method)
  


      
  	find_dom_root() (in module translate.storage.xml_extract.generate)
  


      
  	find_elems_with() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	find_matches() (in module translate.tools.pogrep)
  


      
  	find_placeable_dom_tree_roots() (in module translate.storage.xml_extract.generate)
  


      
  	findaccelerators() (in module translate.filters.decoration)
  


      
  	findid() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	findmarkedvariables() (in module translate.filters.decoration)
  


      
  	findtokenpos() (translate.misc.sparse.SimpleParser method)
  


      
  	findunit() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	findunits() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	flatten() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


      


      
  	flush() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	fold_gaia_plurals() (translate.convert.prop2po.prop2po method)
  


      
  	force_override() (in module translate.storage.base)
  


      
  	forceunicode() (in module translate.lang.data)
  


      
  	format_manpage() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	fr (class in translate.lang.fr)
  


      
  	fromkeys() (translate.misc.dictutils.ordereddict static method)
  


      
  	fullname (translate.lang.common.Common attribute)
  


      
  	funcmatch() (in module translate.filters.helpers)
  


      
  	funcsmatch() (in module translate.filters.helpers)
  


      
  	functions() (translate.filters.checks.StandardChecker method)
  


      
  	fuzzy_unitcount() (translate.storage.statistics.Statistics method)
  


      
  	fuzzy_units() (translate.storage.statistics.Statistics method)
  


  





G


  	
      
  	GenericRevisionControlSystem (class in translate.storage.versioncontrol)
  


      
  	get() (translate.misc.dictutils.ordereddict method)
  


      
  	get_abs_data_filename() (in module translate.misc.file_discovery)
  


      
  	get_available_version_control_systems() (in module translate.storage.versioncontrol)
  


      
  	get_field_analyzers() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	get_file() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.project.Project method)
  


        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	get_filename_type() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	get_from_lines() (translate.tools.pydiff.FileDiffer method)
  


      
  	get_index_data() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	get_libgettextpo_version() (in module translate.storage.cpo)
  


      
  	get_matches() (translate.search.indexing.CommonIndexer.CommonEnquire method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneHits method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianEnquire method)
  


      


      
  	get_matches_count() (translate.search.indexing.CommonIndexer.CommonEnquire method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneHits method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianEnquire method)
  


      


      
  	get_parent_elem() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	get_proj_filename() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.project.Project method)
  


        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	get_query_result() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	get_real_filename() (translate.storage.project.Project method)
  


      
  	get_rich_target() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	get_source_text() (translate.storage.statistics.Statistics method)
  


      
  	get_time() (translate.storage.trados.TradosTxtDate method)
  


      	
        
  	(translate.storage.wordfast.WordfastTime method)
  


      


      
  	get_timestring() (translate.storage.trados.TradosTxtDate method)
  


      	
        
  	(translate.storage.wordfast.WordfastTime method)
  


      


      
  	get_to_lines() (translate.tools.pydiff.FileDiffer method)
  


      
  	get_version() (in module translate.storage.versioncontrol.bzr)
  


      	
        
  	(in module translate.storage.versioncontrol.hg)
  


        
  	(in module translate.storage.versioncontrol.svn)
  


      


      
  	get_versioned_object() (in module translate.storage.versioncontrol)
  


      
  	get_versioned_objects_recursive() (in module translate.storage.versioncontrol)
  


      
  	getaccelerators() (in module translate.filters.decoration)
  


      
  	getalttrans() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getarchiveclass() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      
  	getautomaticcomments() (translate.storage.poxliff.PoXliffUnit method)
  


      
  	getbodynode() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getclass() (in module translate.storage.factory)
  


      
  	getcleanfile() (translate.storage.versioncontrol.bzr.bzr method)
  


      	
        
  	(translate.storage.versioncontrol.GenericRevisionControlSystem method)
  


        
  	(translate.storage.versioncontrol.cvs.cvs method)
  


        
  	(translate.storage.versioncontrol.darcs.darcs method)
  


        
  	(translate.storage.versioncontrol.git.git method)
  


        
  	(translate.storage.versioncontrol.hg.hg method)
  


        
  	(translate.storage.versioncontrol.svn.svn method)
  


      


      
  	getcontext() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getcontextgroups() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getdatatype() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getdate() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getdict() (translate.storage.catkeys.CatkeysUnit method)
  


      	
        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	getElementsByTagName_helper() (in module translate.misc.ourdom)
  


      
  	getemails() (in module translate.filters.decoration)
  


      
  	geterrors() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getfilename() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getfilenames() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getfilenode() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getfiles() (translate.storage.directory.Directory method)
  


      	
        
  	(translate.storage.zip.ZIPFile method)
  


      


      
  	getfilters() (translate.filters.checks.StandardChecker method)
  


      	
        
  	(translate.filters.checks.StandardUnitChecker method)
  


        
  	(translate.filters.checks.TeeChecker method)
  


        
  	(translate.filters.checks.TranslationChecker method)
  


        
  	(translate.filters.checks.UnitChecker method)
  


      


      
  	getformathelp() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getfullinputpath() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getfulloutputpath() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getfulltemplatepath() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getfunctions() (in module translate.filters.decoration)
  


      
  	getheader() (translate.storage.wordfast.WordfastHeader method)
  


  

  	
      
  	getheadernode() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getheaderplural() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	getid() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	getids() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


      


      
  	getkey() (translate.storage.oo.ooline method)
  


      
  	getlanguage() (in module translate.lang.factory)
  


      
  	getlanguageNode() (translate.storage.lisa.LISAunit method)
  


      	
        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getlanguageNodes() (translate.storage.lisa.LISAunit method)
  


      	
        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getlinepos() (translate.misc.sparse.SimpleParser method)
  


      
  	getlocations() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	getnodetext() (in module translate.misc.ourdom)
  


      
  	getNodeText() (translate.storage.lisa.LISAunit method)
  


      	
        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getnotes() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	getnumbers() (in module translate.filters.decoration)
  


      
  	getobject() (in module translate.storage.factory)
  


      
  	getoofile() (translate.storage.oo.oomultifile method)
  


      
  	getoutput() (translate.storage.dtd.dtdfile method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.oo.oofile method)
  


        
  	(translate.storage.oo.ooline method)
  


        
  	(translate.storage.oo.oounit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.txt.TxtFile method)
  


      


      
  	getoutputname() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getoutputoptions() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getparts() (translate.storage.oo.ooline method)
  


      
  	getpassthroughoptions() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getprojectstyle() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	getrestype() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	getsource() (translate.storage.dtd.dtdunit method)
  


      	
        
  	(translate.storage.txt.TxtUnit method)
  


      


      
  	getsourcelanguage() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


      


      
  	getstartlength() (translate.search.match.matcher method)
  


      
  	getstoplength() (translate.search.match.matcher method)
  


      
  	getsubfilename() (translate.storage.oo.oomultifile method)
  


      
  	getsubfilesrc() (translate.storage.oo.oomultifile method)
  


      
  	gettarget() (translate.storage.dtd.dtdunit method)
  


      	
        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	gettargetlanguage() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


      


      
  	gettargetlen() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	gettemplatename() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getText() (in module translate.misc.xml_helpers)
  


      
  	gettext() (translate.storage.oo.ooline method)
  


      
  	gettext_country() (in module translate.lang.data)
  


      
  	gettext_lang() (in module translate.lang.data)
  


      
  	gettranslatorcomments() (translate.storage.poxliff.PoXliffUnit method)
  


      
  	getunits() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.base.TranslationUnit method)
  


        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.directory.Directory method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.statistics.Statistics method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


        
  	(translate.storage.zip.ZIPFile method)
  


      


      
  	geturls() (in module translate.filters.decoration)
  


      
  	getusageman() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getusagestring() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	getvariables() (in module translate.filters.decoration)
  


      
  	getXMLlang() (in module translate.misc.xml_helpers)
  


      
  	getXMLspace() (in module translate.misc.xml_helpers)
  


      
  	git (class in translate.storage.versioncontrol.git)
  


      
  	GrepMatch (class in translate.tools.pogrep)
  


      
  	GrepOptionParser (class in translate.tools.pogrep)
  


      
  	gu (class in translate.lang.gu)
  


      
  	guess_language() (in module translate.lang.team)
  


  





H


  	
      
  	handlecsvunit() (translate.convert.csv2po.csv2po method)
  


      
  	has_content (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	has_key() (translate.misc.dictutils.ordereddict method)
  


      
  	HashProgressBar (class in translate.misc.progressbar)
  


      
  	hasplural() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	hassuggestion() (translate.filters.checks.StandardUnitChecker method)
  


      
  	he (class in translate.lang.he)
  


      
  	header (translate.storage.wordfast.WordfastHeader attribute)
  


  

  	
      
  	header() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	hg (class in translate.storage.versioncontrol.hg)
  


      
  	hi (class in translate.lang.hi)
  


      
  	htmlentitydecode() (in module translate.misc.quote)
  


      
  	htmlentityencode() (in module translate.misc.quote)
  


      
  	htmlunit (class in translate.storage.html)
  


      
  	hy (class in translate.lang.hy)
  


  





I


  	
      
  	ical2po (class in translate.convert.ical2po)
  


      
  	icalfile (class in translate.storage.ical)
  


      
  	icalunit (class in translate.storage.ical)
  


      
  	ignoretests (translate.lang.common.Common attribute)
  


      
  	inc2po() (in module translate.convert.mozfunny2prop)
  


      
  	inc2prop() (in module translate.convert.mozfunny2prop)
  


      
  	INDEX_DIRECTORY_NAME (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


      
  	index_document() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	indicpunc (translate.lang.common.Common attribute)
  


      
  	infer_state() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	ini2po (class in translate.convert.ini2po)
  


      
  	inifile (class in translate.storage.ini)
  


      
  	init_headers() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	initbody() (translate.storage.lisa.LISAfile method)
  


      	
        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


      


      
  	initoutputarchive() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      
  	initprogressbar() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	inittemplatearchive() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      
  	inittm() (translate.search.match.matcher method)
  


      	
        
  	(translate.search.match.terminologymatcher method)
  


      


      
  	iniunit (class in translate.storage.ini)
  


      
  	insert() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	insert_between() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	intuplelist() (in module translate.filters.checks)
  


      
  	invertedpunc (translate.lang.common.Common attribute)
  


      
  	is_available() (in module translate.search.indexing.CommonIndexer)
  


      	
        
  	(in module translate.storage.versioncontrol.bzr)
  


        
  	(in module translate.storage.versioncontrol.cvs)
  


        
  	(in module translate.storage.versioncontrol.darcs)
  


        
  	(in module translate.storage.versioncontrol.git)
  


        
  	(in module translate.storage.versioncontrol.hg)
  


        
  	(in module translate.storage.versioncontrol.svn)
  


      


      
  	is_comment_end() (in module translate.storage.properties)
  


      
  	is_comment_one_line() (in module translate.storage.properties)
  


      
  	is_comment_start() (in module translate.storage.properties)
  


      
  	is_css_entity() (in module translate.convert.dtd2po)
  


      
  	is_line_continuation() (in module translate.storage.properties)
  


      
  	isapproved() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	isarchive() (translate.convert.convert.ArchiveConvertOptionParser method)
  


  

  	
      
  	isblank() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	iseditable (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	isempty() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	isexcluded() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


        
  	(translate.tools.pydiff.DirDiffer method)
  


      


      
  	isfragile (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	isfuzzy() (translate.filters.checks.StandardUnitChecker method)
  


      	
        
  	(translate.storage.base.TranslationUnit method)
  


        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	isheader() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	isleaf() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	isnull() (translate.storage.dtd.dtdunit method)
  


      
  	iso3166 (in module translate.lang.data)
  


      
  	iso639 (in module translate.lang.data)
  


      
  	isobsolete() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	isocode() (in module translate.lang.poedit)
  


      
  	ispurepunctuation() (in module translate.filters.decoration)
  


      
  	isrecursive() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	isreview() (translate.filters.checks.StandardUnitChecker method)
  


      	
        
  	(translate.storage.base.TranslationUnit method)
  


        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	isstringtoken() (translate.misc.sparse.SimpleParser method)
  


      
  	istranslatable (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	istranslatable() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	istranslated() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	isvalidaccelerator() (in module translate.filters.decoration)
  


      
  	isvalidinputname() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	isvisible (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	it2po() (in module translate.convert.mozfunny2prop)
  


      
  	it2prop() (in module translate.convert.mozfunny2prop)
  


      
  	items() (translate.misc.dictutils.ordereddict method)
  


      
  	iter_depth_first() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	iteritems() (translate.misc.dictutils.ordereddict method)
  


      
  	iterkeys() (translate.misc.dictutils.ordereddict method)
  


      
  	itervaluerefs() (translate.misc.lru.LRUCachingDict method)
  


      
  	itervalues() (translate.misc.dictutils.ordereddict method)
  


  





J


  	
      
  	ja (class in translate.lang.ja)
  


      
  	javapropertiesencode() (in module translate.misc.quote)
  


      
  	json2po (class in translate.convert.json2po)
  


  

  	
      
  	JsonFile (class in translate.storage.jsonl10n)
  


      
  	JsonUnit (class in translate.storage.jsonl10n)
  


  





K


  	
      
  	kdecomments() (translate.filters.checks.StandardChecker method)
  


      
  	keeptogether() (translate.misc.sparse.SimpleParser method)
  


      
  	key_strip() (translate.storage.properties.Dialect class method)
  


      
  	keys() (translate.misc.dictutils.ordereddict method)
  


  

  	
      
  	khmerpunc (translate.lang.km.km attribute)
  


      
  	km (class in translate.lang.km)
  


      
  	kn (class in translate.lang.kn)
  


      
  	ko (class in translate.lang.ko)
  


  





L


  	
      
  	labelsuffixes (in module translate.storage.dtd)
  


      	
        
  	(in module translate.storage.properties)
  


      


      
  	lang_codes (in module translate.lang.poedit)
  


      
  	lang_names (in module translate.lang.poedit)
  


      
  	LANG_TEAM_CONTACT_SNIPPETS (in module translate.lang.team)
  


      
  	LangStore (class in translate.storage.mozilla_lang)
  


      
  	languagematch() (in module translate.lang.data)
  


      
  	languages (in module translate.lang.data)
  


      
  	LangUnit (class in translate.storage.mozilla_lang)
  


      
  	launch_server() (in module translate.misc.wsgi)
  


  

  	
      
  	length_difference() (translate.lang.af.af class method)
  


      	
        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


      


      
  	LISAfile (class in translate.storage.lisa)
  


      
  	LISAunit (class in translate.storage.lisa)
  


      
  	listseperator (translate.lang.common.Common attribute)
  


      
  	listsubfiles() (translate.storage.oo.oomultifile method)
  


      
  	load() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	long() (translate.filters.checks.StandardChecker method)
  


      
  	LRUCachingDict (class in translate.misc.lru)
  


      
  	lsep (in module translate.storage.cpo)
  


      	
        
  	(in module translate.storage.fpo)
  


        
  	(in module translate.storage.pypo)
  


      


  





M


  	
      
  	main() (in module translate.convert.po2tiki)
  


      	
        
  	(in module translate.convert.tiki2po)
  


        
  	(in module translate.tools.phppo2pypo)
  


        
  	(in module translate.tools.pydiff)
  


        
  	(in module translate.tools.pypo2phppo)
  


      


      
  	make_query() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      
  	makeheader() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	makeheaderdict() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	makeindex() (translate.convert.csv2po.csv2po method)
  


      	
        
  	(translate.storage.base.TranslationStore method)
  


        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	makekey() (in module translate.storage.oo)
  


      
  	makeobsolete() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	map() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	markapproved() (translate.storage.poxliff.PoXliffUnit method)
  


      	
        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	markfuzzy() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	markreviewneeded() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	match_entities() (translate.convert.accesskey.UnitMixer method)
  


      
  	match_fuzzy() (in module translate.tools.pretranslate)
  


      
  	match_source() (in module translate.tools.pretranslate)
  


      
  	match_template_id() (in module translate.tools.pretranslate)
  


      
  	match_template_location() (in module translate.tools.pretranslate)
  


      
  	matcher (class in translate.search.match)
  


      
  	matchers (translate.storage.placeables.terminology.TerminologyPlaceable attribute)
  


      
  	matches() (translate.search.match.matcher method)
  


      	
        
  	(translate.search.match.terminologymatcher method)
  


      


      
  	memory() (in module translate.tools.pretranslate)
  


      
  	merge() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	merge_on (translate.storage.base.TranslationStore attribute)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile attribute)
  


        
  	(translate.storage.csvl10n.csvfile attribute)
  


        
  	(translate.storage.dtd.dtdfile attribute)
  


        
  	(translate.storage.fpo.pofile attribute)
  


        
  	(translate.storage.ical.icalfile attribute)
  


        
  	(translate.storage.ini.inifile attribute)
  


        
  	(translate.storage.jsonl10n.JsonFile attribute)
  


        
  	(translate.storage.lisa.LISAfile attribute)
  


        
  	(translate.storage.mo.mofile attribute)
  


        
  	(translate.storage.mozilla_lang.LangStore attribute)
  


        
  	(translate.storage.omegat.OmegaTFile attribute)
  


        
  	(translate.storage.omegat.OmegaTFileTab attribute)
  


        
  	(translate.storage.php.phpfile attribute)
  


        
  	(translate.storage.poxliff.PoXliffFile attribute)
  


        
  	(translate.storage.properties.propfile attribute)
  


        
  	(translate.storage.pypo.pofile attribute)
  


        
  	(translate.storage.qm.qmfile attribute)
  


        
  	(translate.storage.qph.QphFile attribute)
  


        
  	(translate.storage.rc.rcfile attribute)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile attribute)
  


        
  	(translate.storage.subtitles.MicroDVDFile attribute)
  


        
  	(translate.storage.subtitles.SubRipFile attribute)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile attribute)
  


        
  	(translate.storage.subtitles.SubtitleFile attribute)
  


        
  	(translate.storage.tbx.tbxfile attribute)
  


        
  	(translate.storage.tiki.TikiStore attribute)
  


        
  	(translate.storage.tmx.tmxfile attribute)
  


        
  	(translate.storage.trados.TradosTxtTmFile attribute)
  


        
  	(translate.storage.ts2.tsfile attribute)
  


        
  	(translate.storage.txt.TxtFile attribute)
  


        
  	(translate.storage.utx.UtxFile attribute)
  


        
  	(translate.storage.wordfast.WordfastTMFile attribute)
  


        
  	(translate.storage.xliff.xlifffile attribute)
  


      


  

  	
      
  	merge_store() (in module translate.convert.sub2po)
  


      	
        
  	(translate.convert.ical2po.ical2po method)
  


        
  	(translate.convert.ini2po.ini2po method)
  


        
  	(translate.convert.json2po.json2po method)
  


        
  	(translate.convert.rc2po.rc2po method)
  


      


      
  	mergeheaders() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	mergestore() (translate.convert.php2po.php2po method)
  


      	
        
  	(translate.convert.po2html.po2html method)
  


        
  	(translate.convert.po2txt.po2txt method)
  


        
  	(translate.convert.prop2po.prop2po method)
  


      


      
  	mergestores() (in module translate.tools.pomerge)
  


      
  	MessageProgressBar (class in translate.misc.progressbar)
  


      
  	MicroDVDFile (class in translate.storage.subtitles)
  


      
  	Mimetypes (translate.storage.base.TranslationStore attribute)
  


      
  	miscpunc (translate.lang.common.Common attribute)
  


      
  	mix_units() (translate.convert.accesskey.UnitMixer method)
  


      
  	mkdir() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	ml (class in translate.lang.ml)
  


      
  	mofile (class in translate.storage.mo)
  


      
  	mounit (class in translate.storage.mo)
  


      
  	mounpack() (in module translate.storage.mo)
  


      
  	mozilla_pluralequation (translate.lang.common.Common attribute)
  


      
  	mozillaescapemarginspaces() (in module translate.misc.quote)
  


      
  	mozillapropertiesencode() (in module translate.misc.quote)
  


      
  	mr (class in translate.lang.mr)
  


      
  	multifilter() (in module translate.filters.helpers)
  


      
  	multifiltertestmethod() (in module translate.filters.helpers)
  


      
  	multistring_to_rich() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit class method)
  


      


      
  	musttranslatewords() (translate.filters.checks.StandardChecker method)
  


  





N


  	
      
  	Name (translate.storage.base.TranslationStore attribute)
  


      
  	namespaced() (in module translate.misc.xml_helpers)
  


      	
        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	native_distance() (in module translate.search.lshtein)
  


      
  	ne (class in translate.lang.ne)
  


      
  	newlines() (translate.filters.checks.StandardChecker method)
  


      
  	NoProgressBar (class in translate.misc.progressbar)
  


      
  	normalize() (in module translate.lang.data)
  


      
  	normalize_html() (in module translate.storage.html)
  


      
  	normalize_space() (in module translate.misc.xml_helpers)
  


  

  	
      
  	normalize_xml_space() (in module translate.misc.xml_helpers)
  


      
  	normalized_unicode() (in module translate.lang.data)
  


      
  	normalizefilename() (in module translate.storage.oo)
  


      
  	notranslatewords() (translate.filters.checks.StandardChecker method)
  


      
  	nplurals (translate.lang.common.Common attribute)
  


      
  	nplurals() (translate.filters.checks.StandardUnitChecker method)
  


      
  	numbers() (translate.filters.checks.StandardChecker method)
  


      
  	numstart() (translate.lang.af.af class method)
  


      	
        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


  





O


  	
      
  	OMEGAT_FIELDNAMES (in module translate.storage.omegat)
  


      
  	OmegaTDialect (class in translate.storage.omegat)
  


      
  	OmegaTFile (class in translate.storage.omegat)
  


      
  	OmegaTFileTab (class in translate.storage.omegat)
  


      
  	OmegaTUnit (class in translate.storage.omegat)
  


      
  	oofile (class in translate.storage.oo)
  


      
  	ooline (class in translate.storage.oo)
  


      
  	oomultifile (class in translate.storage.oo)
  


      
  	oounit (class in translate.storage.oo)
  


  

  	
      
  	openarchive() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      
  	openinputfile() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.storage.oo.oomultifile method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	openoutputfile() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.storage.oo.oomultifile method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	opentemplatefile() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	opentempoutputfile() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	options() (translate.filters.checks.StandardChecker method)
  


      
  	ordereddict (class in translate.misc.dictutils)
  


      
  	outputconflicts() (translate.tools.poconflicts.ConflictOptionParser method)
  


      
  	outputterminology() (translate.tools.poterminology.TerminologyOptionParser method)
  


  





P


  	
      
  	pa (class in translate.lang.pa)
  


      
  	parse() (in module translate.misc.ourdom)
  


      	
        
  	(in module translate.storage.placeables.parse)
  


        
  	(translate.storage.base.TranslationStore method)
  


        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.oo.oofile method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.placeables.general.AltAttrPlaceable class method)
  


        
  	(translate.storage.placeables.general.XMLEntityPlaceable class method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable class method)
  


        
  	(translate.storage.placeables.strelem.StringElem class method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML class method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	parse_args() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	parse_files() (translate.storage.benchmark.TranslateBenchmarker method)
  


      
  	parse_noinput() (translate.filters.pofilter.FilterOptionParser method)
  


      
  	parse_placeables() (translate.storage.benchmark.TranslateBenchmarker method)
  


      
  	parse_tag() (in module translate.storage.xml_extract.misc)
  


      
  	parsefile() (translate.storage.base.TranslationStore class method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile class method)
  


        
  	(translate.storage.csvl10n.csvfile class method)
  


        
  	(translate.storage.dtd.dtdfile class method)
  


        
  	(translate.storage.fpo.pofile class method)
  


        
  	(translate.storage.ical.icalfile class method)
  


        
  	(translate.storage.ini.inifile class method)
  


        
  	(translate.storage.jsonl10n.JsonFile class method)
  


        
  	(translate.storage.lisa.LISAfile class method)
  


        
  	(translate.storage.mo.mofile class method)
  


        
  	(translate.storage.mozilla_lang.LangStore class method)
  


        
  	(translate.storage.omegat.OmegaTFile class method)
  


        
  	(translate.storage.omegat.OmegaTFileTab class method)
  


        
  	(translate.storage.php.phpfile class method)
  


        
  	(translate.storage.poxliff.PoXliffFile class method)
  


        
  	(translate.storage.properties.propfile class method)
  


        
  	(translate.storage.pypo.pofile class method)
  


        
  	(translate.storage.qm.qmfile class method)
  


        
  	(translate.storage.qph.QphFile class method)
  


        
  	(translate.storage.rc.rcfile class method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile class method)
  


        
  	(translate.storage.subtitles.MicroDVDFile class method)
  


        
  	(translate.storage.subtitles.SubRipFile class method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile class method)
  


        
  	(translate.storage.subtitles.SubtitleFile class method)
  


        
  	(translate.storage.tbx.tbxfile class method)
  


        
  	(translate.storage.tiki.TikiStore class method)
  


        
  	(translate.storage.tmx.tmxfile class method)
  


        
  	(translate.storage.trados.TradosTxtTmFile class method)
  


        
  	(translate.storage.ts2.tsfile class method)
  


        
  	(translate.storage.txt.TxtFile class method)
  


        
  	(translate.storage.utx.UtxFile class method)
  


        
  	(translate.storage.wordfast.WordfastTMFile class method)
  


        
  	(translate.storage.xliff.xlifffile class method)
  


      


      
  	parseheader() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	parseheaderstring() (in module translate.storage.poheader)
  


      
  	ParserError
  


      
  	ParseState (class in translate.storage.xml_extract.extract)
  


      
  	parseString() (in module translate.misc.ourdom)
  


      
  	parsestring() (translate.storage.base.TranslationStore class method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile class method)
  


        
  	(translate.storage.csvl10n.csvfile class method)
  


        
  	(translate.storage.dtd.dtdfile class method)
  


        
  	(translate.storage.fpo.pofile class method)
  


        
  	(translate.storage.ical.icalfile class method)
  


        
  	(translate.storage.ini.inifile class method)
  


        
  	(translate.storage.jsonl10n.JsonFile class method)
  


        
  	(translate.storage.lisa.LISAfile class method)
  


        
  	(translate.storage.mo.mofile class method)
  


        
  	(translate.storage.mozilla_lang.LangStore class method)
  


        
  	(translate.storage.omegat.OmegaTFile class method)
  


        
  	(translate.storage.omegat.OmegaTFileTab class method)
  


        
  	(translate.storage.php.phpfile class method)
  


        
  	(translate.storage.poxliff.PoXliffFile class method)
  


        
  	(translate.storage.properties.propfile class method)
  


        
  	(translate.storage.pypo.pofile class method)
  


        
  	(translate.storage.qm.qmfile class method)
  


        
  	(translate.storage.qph.QphFile class method)
  


        
  	(translate.storage.rc.rcfile class method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile class method)
  


        
  	(translate.storage.subtitles.MicroDVDFile class method)
  


        
  	(translate.storage.subtitles.SubRipFile class method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile class method)
  


        
  	(translate.storage.subtitles.SubtitleFile class method)
  


        
  	(translate.storage.tbx.tbxfile class method)
  


        
  	(translate.storage.tiki.TikiStore class method)
  


        
  	(translate.storage.tmx.tmxfile class method)
  


        
  	(translate.storage.trados.TradosTxtTmFile class method)
  


        
  	(translate.storage.ts2.tsfile class method)
  


        
  	(translate.storage.txt.TxtFile class method)
  


        
  	(translate.storage.utx.UtxFile class method)
  


        
  	(translate.storage.wordfast.WordfastTMFile class method)
  


        
  	(translate.storage.xliff.xlifffile class method)
  


      


      
  	php2po (class in translate.convert.php2po)
  


      
  	phpdecode() (in module translate.storage.php)
  


      
  	phpencode() (in module translate.storage.php)
  


      
  	phpfile (class in translate.storage.php)
  


      
  	phpunit (class in translate.storage.php)
  


      
  	pluralequation (translate.lang.common.Common attribute)
  


      
  	po2dtd (class in translate.convert.po2dtd)
  


      
  	po2html (class in translate.convert.po2html)
  


      
  	po2inc() (in module translate.convert.prop2mozfunny)
  


      
  	po2ini() (in module translate.convert.prop2mozfunny)
  


      
  	po2it() (in module translate.convert.prop2mozfunny)
  


      
  	po2txt (class in translate.convert.po2txt)
  


      
  	pofile (class in translate.storage.fpo)
  


      	
        
  	(class in translate.storage.pypo)
  


      


      
  	poheader (class in translate.storage.poheader)
  


      
  	pop() (translate.misc.dictutils.ordereddict method)
  


      
  	popitem() (translate.misc.dictutils.ordereddict method)
  


      
  	potifyformat() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	PoXliffFile (class in translate.storage.poxliff)
  


  

  	
      
  	PoXliffUnit (class in translate.storage.poxliff)
  


      
  	pretranslate_file() (in module translate.tools.pretranslate)
  


      
  	pretranslate_store() (in module translate.tools.pretranslate)
  


      
  	pretranslate_unit() (in module translate.tools.pretranslate)
  


      
  	print_help() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	print_manpage() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	print_tree() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	print_usage() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	print_version() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	printf() (translate.filters.checks.StandardChecker method)
  


      
  	processfile() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	ProgressBar (class in translate.misc.progressbar)
  


      
  	Project (class in translate.storage.project)
  


      
  	ProjectStore (class in translate.storage.projstore)
  


      
  	prop2inc() (in module translate.convert.prop2mozfunny)
  


      
  	prop2it() (in module translate.convert.prop2mozfunny)
  


      
  	prop2po (class in translate.convert.prop2po)
  


      
  	propertiesdecode() (in module translate.misc.quote)
  


      
  	propfile (class in translate.storage.properties)
  


      
  	propunit (class in translate.storage.properties)
  


      
  	prune() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	puncdict (translate.lang.common.Common attribute)
  


      
  	puncend() (in module translate.filters.decoration)
  


      
  	puncspacing() (translate.filters.checks.StandardChecker method)
  


      
  	puncstart() (in module translate.filters.decoration)
  


      
  	punctranslate() (translate.lang.af.af class method)
  


      	
        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	punctuation (translate.lang.common.Common attribute)
  


      
  	purepunc() (translate.filters.checks.StandardChecker method)
  


      
  	PyLuceneDatabase (class in translate.search.indexing.PyLuceneIndexer)
  


      	
        
  	(class in translate.search.indexing.PyLuceneIndexer1)
  


      


      
  	PyLuceneHits (class in translate.search.indexing.PyLuceneIndexer)
  


      
  	
    Python Enhancement Proposals
  


      	
        
  	PEP 257
  


        
  	PEP 8, [1], [2], [3]
  


      


      
  	python_distance() (in module translate.search.lshtein)
  


  





Q


  	
      
  	qmfile (class in translate.storage.qm)
  


      
  	qmunit (class in translate.storage.qm)
  


      
  	qmunpack() (in module translate.storage.qm)
  


      
  	QphFile (class in translate.storage.qph)
  


      
  	QphUnit (class in translate.storage.qph)
  


      
  	QUERY_TYPE (translate.search.indexing.CommonIndexer.CommonDatabase attribute)
  


  

  	
      
  	quote_plus() (in module translate.storage.pocommon)
  


      
  	quoteforandroid() (in module translate.storage.dtd)
  


      
  	quotefordtd() (in module translate.storage.dtd)
  


      
  	quoteforpo() (in module translate.storage.pypo)
  


      
  	quotes (translate.lang.common.Common attribute)
  


  





R


  	
      
  	raiseerror() (translate.misc.sparse.SimpleParser method)
  


      
  	rc2po (class in translate.convert.rc2po)
  


      
  	rcfile (class in translate.storage.rc)
  


      
  	RCS_METADIR (translate.storage.versioncontrol.GenericRevisionControlSystem attribute)
  


      
  	rcunit (class in translate.storage.rc)
  


      
  	read_obsolete_lines() (in module translate.storage.poparser)
  


      
  	read_prevmsgid_lines() (in module translate.storage.poparser)
  


      
  	real_index() (in module translate.tools.pogrep)
  


      
  	reclassifyunit() (translate.storage.statistics.Statistics method)
  


      
  	recursearchivefiles() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      
  	recurseinputfilelist() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	recurseinputfiles() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	RecursiveOptionParser (class in translate.misc.optrecurse)
  


      
  	recursiveprocess() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	redtd (class in translate.convert.po2dtd)
  


      
  	reduce_tree() (in module translate.storage.xml_extract.misc)
  


      
  	register_dialect() (in module translate.storage.ini)
  


      	
        
  	(in module translate.storage.properties)
  


      


      
  	remove_file() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.project.Project method)
  


        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	remove_type() (translate.storage.placeables.general.AltAttrPlaceable method)
  


      	
        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.terminology.TerminologyPlaceable method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


      


      
  	remove_unit_from_index() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	removedefaultfile() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	removeduplicates() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.pypo.pofile method)
  


      


      
  	removeinvalidamps() (in module translate.storage.dtd)
  


  

  	
      
  	removekdecomments() (in module translate.filters.prefilters)
  


      
  	removenotes() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	removewhitespace() (translate.misc.sparse.SimpleParser method)
  


      
  	renderer (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	replace_dom_text() (in module translate.storage.xml_extract.generate)
  


      
  	Replacer (class in translate.convert.convert)
  


      
  	replacestrings() (in module translate.convert.csv2po)
  


      
  	reportprogress() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	require_index() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	rich_parsers (translate.storage.base.TranslationUnit attribute)
  


      
  	rich_source (translate.storage.base.TranslationUnit attribute)
  


      
  	rich_target (translate.storage.base.TranslationUnit attribute)
  


      	
        
  	(translate.storage.xliff.xliffunit attribute)
  


      


      
  	rich_to_multistring() (translate.storage.base.TranslationUnit class method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit class method)
  


        
  	(translate.storage.dtd.dtdunit class method)
  


        
  	(translate.storage.html.htmlunit class method)
  


        
  	(translate.storage.ical.icalunit class method)
  


        
  	(translate.storage.ini.iniunit class method)
  


        
  	(translate.storage.jsonl10n.JsonUnit class method)
  


        
  	(translate.storage.lisa.LISAunit class method)
  


        
  	(translate.storage.mo.mounit class method)
  


        
  	(translate.storage.mozilla_lang.LangUnit class method)
  


        
  	(translate.storage.omegat.OmegaTUnit class method)
  


        
  	(translate.storage.php.phpunit class method)
  


        
  	(translate.storage.poxliff.PoXliffUnit class method)
  


        
  	(translate.storage.properties.propunit class method)
  


        
  	(translate.storage.qm.qmunit class method)
  


        
  	(translate.storage.qph.QphUnit class method)
  


        
  	(translate.storage.rc.rcunit class method)
  


        
  	(translate.storage.subtitles.SubtitleUnit class method)
  


        
  	(translate.storage.tbx.tbxunit class method)
  


        
  	(translate.storage.tiki.TikiUnit class method)
  


        
  	(translate.storage.tmx.tmxunit class method)
  


        
  	(translate.storage.ts2.tsunit class method)
  


        
  	(translate.storage.txt.TxtUnit class method)
  


        
  	(translate.storage.utx.UtxUnit class method)
  


        
  	(translate.storage.wordfast.WordfastUnit class method)
  


        
  	(translate.storage.xliff.xliffunit class method)
  


      


      
  	RTF_ESCAPES (in module translate.storage.trados)
  


      
  	rtlpunc (translate.lang.common.Common attribute)
  


      
  	run() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	run_command() (in module translate.storage.versioncontrol)
  


      
  	run_filters() (translate.filters.checks.StandardChecker method)
  


      	
        
  	(translate.filters.checks.StandardUnitChecker method)
  


        
  	(translate.filters.checks.TeeChecker method)
  


        
  	(translate.filters.checks.TranslationChecker method)
  


        
  	(translate.filters.checks.UnitChecker method)
  


      


      
  	run_test() (translate.filters.checks.StandardChecker method)
  


      	
        
  	(translate.filters.checks.StandardUnitChecker method)
  


        
  	(translate.filters.checks.TranslationChecker method)
  


        
  	(translate.filters.checks.UnitChecker method)
  


      


      
  	runclean() (in module translate.tools.poclean)
  


      
  	runfilter() (in module translate.filters.pofilter)
  


      
  	rungrep() (in module translate.tools.pogrep)
  


      
  	runtests() (in module translate.filters.checks)
  


  





S


  	
      
  	safe_escape() (in module translate.storage.html)
  


      
  	save() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.bundleprojstore.BundleProjectStore method)
  


        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.project.Project method)
  


        
  	(translate.storage.projstore.ProjectStore method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	savefile() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	SCAN_PARENTS (translate.storage.versioncontrol.GenericRevisionControlSystem attribute)
  


      
  	scanfiles() (translate.storage.directory.Directory method)
  


      	
        
  	(translate.storage.zip.ZIPFile method)
  


      


      
  	search() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	searchElementsByTagName_helper() (in module translate.misc.ourdom)
  


      
  	searchreplaceinput() (translate.convert.convert.Replacer method)
  


      
  	searchreplacetemplate() (translate.convert.convert.Replacer method)
  


      
  	segmentfile() (in module translate.tools.posegment)
  


      
  	sentence_iter() (in module translate.search.segment)
  


      	
        
  	(translate.lang.af.af class method)
  


        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	sentencecount() (translate.filters.checks.StandardChecker method)
  


      
  	sentenceend (translate.lang.common.Common attribute)
  


      
  	sentences() (in module translate.search.segment)
  


      	
        
  	(translate.lang.af.af class method)
  


        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	separatetokens() (translate.misc.sparse.SimpleParser method)
  


      
  	SeriousFilterFailure
  


      
  	set_field_analyzers() (translate.search.indexing.CommonIndexer.CommonDatabase method)
  


      	
        
  	(translate.search.indexing.PyLuceneIndexer.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.PyLuceneIndexer1.PyLuceneDatabase method)
  


        
  	(translate.search.indexing.XapianIndexer.XapianDatabase method)
  


      


      
  	set_time() (translate.storage.trados.TradosTxtDate method)
  


      	
        
  	(translate.storage.wordfast.WordfastTime method)
  


      


      
  	set_timestring() (translate.storage.trados.TradosTxtDate method)
  


      	
        
  	(translate.storage.wordfast.WordfastTime method)
  


      


      
  	set_usage() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	setarchiveoptions() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      
  	setconfig() (translate.filters.checks.StandardChecker method)
  


      	
        
  	(translate.filters.checks.StandardUnitChecker method)
  


        
  	(translate.filters.checks.TranslationChecker method)
  


        
  	(translate.filters.checks.UnitChecker method)
  


      


      
  	setcontext() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	setdefault() (translate.misc.dictutils.ordereddict method)
  


      
  	setdict() (translate.storage.catkeys.CatkeysUnit method)
  


      	
        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	seterrorleveloptions() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	setfilename() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	setformats() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	setid() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


      


      
  	setmanpageoption() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	setparameters() (translate.search.match.matcher method)
  


      	
        
  	(translate.search.match.terminologymatcher method)
  


      


      
  	setparts() (translate.storage.oo.ooline method)
  


      
  	setpotoption() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	setprogressoptions() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	setprojectstyle() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	setsource() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


      


      
  	setsourcelanguage() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


      


      
  	setsuggestionstore() (translate.filters.checks.StandardChecker method)
  


      	
        
  	(translate.filters.checks.StandardUnitChecker method)
  


        
  	(translate.filters.checks.TeeChecker method)
  


        
  	(translate.filters.checks.TranslationChecker method)
  


        
  	(translate.filters.checks.UnitChecker method)
  


      


      
  	settarget() (translate.storage.base.TranslationUnit method)
  


      	
        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


      


      
  	settargetlanguage() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysHeader method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


      


      
  	settext() (translate.storage.oo.ooline method)
  


      
  	settimestampoption() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	setXMLlang() (in module translate.misc.xml_helpers)
  


      
  	setXMLspace() (in module translate.misc.xml_helpers)
  


      
  	short() (translate.filters.checks.StandardChecker method)
  


      
  	should_output_store() (in module translate.convert.convert)
  


      
  	show() (translate.misc.progressbar.DotsProgressBar method)
  


      	
        
  	(translate.misc.progressbar.NoProgressBar method)
  


        
  	(translate.misc.progressbar.ProgressBar method)
  


      


      
  	si (class in translate.lang.si)
  


      
  	simplecaps() (translate.filters.checks.StandardChecker method)
  


  

  	
      
  	SimpleParser (class in translate.misc.sparse)
  


      
  	simpleplurals() (translate.filters.checks.StandardChecker method)
  


      
  	simplercode() (in module translate.lang.data)
  


      
  	simplify_to_common() (in module translate.lang.data)
  


      
  	singlequoting() (translate.filters.checks.StandardChecker method)
  


      
  	slam() (translate.misc.wStringIO.CatchStringOutput method)
  


      
  	source (translate.storage.dtd.dtdunit attribute)
  


      	
        
  	(translate.storage.txt.TxtUnit attribute)
  


      


      
  	source_wordcount() (translate.storage.statistics.Statistics method)
  


      
  	sourcefiles (translate.storage.bundleprojstore.BundleProjectStore attribute)
  


      	
        
  	(translate.storage.projstore.ProjectStore attribute)
  


      


      
  	sourcelen() (in module translate.search.match)
  


      
  	spaceend() (in module translate.filters.decoration)
  


      
  	spacestart() (in module translate.filters.decoration)
  


      
  	specialchars (translate.lang.common.Common attribute)
  


      
  	spellcheck() (translate.filters.checks.StandardChecker method)
  


      
  	splitext() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	splitinputext() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	SplitOptionParser (class in translate.tools.porestructure)
  


      
  	splittemplateext() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	st (class in translate.lang.st)
  


      
  	StandardChecker (class in translate.filters.checks)
  


      
  	StandardUnitChecker (class in translate.filters.checks)
  


      
  	startcaps() (translate.filters.checks.StandardChecker method)
  


      
  	startpunc() (translate.filters.checks.StandardChecker method)
  


      
  	startwhitespace() (translate.filters.checks.StandardChecker method)
  


      
  	StateEnum (class in translate.storage.workflow)
  


      
  	statefordb() (in module translate.storage.statsdb)
  


      
  	statemap (translate.storage.ts2.tsunit attribute)
  


      
  	Statistics (class in translate.storage.statistics)
  


      
  	StatsCache (class in translate.storage.statsdb)
  


      
  	str2bool() (in module translate.tools.pomerge)
  


      
  	string_xpath (in module translate.misc.xml_helpers)
  


      
  	string_xpath_normalized (in module translate.misc.xml_helpers)
  


      
  	StringElem (class in translate.storage.placeables.strelem)
  


      
  	stringeval() (in module translate.misc.sparse)
  


      
  	stringquote() (in module translate.misc.sparse)
  


      
  	stringtokenize() (translate.misc.sparse.SimpleParser method)
  


      
  	strip_html() (in module translate.storage.html)
  


      
  	sub (translate.storage.placeables.strelem.StringElem attribute)
  


      
  	SubRipFile (class in translate.storage.subtitles)
  


      
  	SubStationAlphaFile (class in translate.storage.subtitles)
  


      
  	SubtitleFile (class in translate.storage.subtitles)
  


      
  	SubtitleUnit (class in translate.storage.subtitles)
  


      
  	suggestions_in_format (translate.storage.base.TranslationStore attribute)
  


      	
        
  	(translate.storage.xliff.xlifffile attribute)
  


      


      
  	summarize() (in module translate.tools.pocount)
  


      
  	supported_files() (in module translate.storage.factory)
  


      
  	sv (class in translate.lang.sv)
  


      
  	svn (class in translate.storage.versioncontrol.svn)
  


      
  	swapdir() (in module translate.tools.poswap)
  


      
  	switchfile() (translate.storage.poxliff.PoXliffFile method)
  


      	
        
  	(translate.storage.xliff.xlifffile method)
  


      


  





T


  	
      
  	ta (class in translate.lang.ta)
  


      
  	TAB_UTF16 (in module translate.storage.wordfast)
  


      
  	tabs() (translate.filters.checks.StandardChecker method)
  


      
  	tagname() (in module translate.filters.checks)
  


      
  	tagproperties() (in module translate.filters.checks)
  


      
  	target (translate.storage.dtd.dtdunit attribute)
  


      	
        
  	(translate.storage.lisa.LISAunit attribute)
  


        
  	(translate.storage.qph.QphUnit attribute)
  


        
  	(translate.storage.tbx.tbxunit attribute)
  


        
  	(translate.storage.tmx.tmxunit attribute)
  


        
  	(translate.storage.txt.TxtUnit attribute)
  


        
  	(translate.storage.xliff.xliffunit attribute)
  


      


      
  	targetfiles (translate.storage.bundleprojstore.BundleProjectStore attribute)
  


      	
        
  	(translate.storage.projstore.ProjectStore attribute)
  


      


      
  	tbxfile (class in translate.storage.tbx)
  


      
  	tbxunit (class in translate.storage.tbx)
  


      
  	te (class in translate.lang.te)
  


      
  	TeeChecker (class in translate.filters.checks)
  


      
  	templateexists() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	terminologymatcher (class in translate.search.match)
  


      
  	TerminologyOptionParser (class in translate.tools.poterminology)
  


      
  	TerminologyPlaceable (class in translate.storage.placeables.terminology)
  


      
  	text (translate.storage.oo.ooline attribute)
  


      
  	th (class in translate.lang.th)
  


      
  	TikiStore (class in translate.storage.tiki)
  


      
  	TikiUnit (class in translate.storage.tiki)
  


      
  	time (translate.storage.trados.TradosTxtDate attribute)
  


      	
        
  	(translate.storage.wordfast.WordfastTime attribute)
  


      


      
  	timestring (translate.storage.trados.TradosTxtDate attribute)
  


      	
        
  	(translate.storage.wordfast.WordfastTime attribute)
  


      


      
  	TMServer (class in translate.services.tmserver)
  


      
  	tmxfile (class in translate.storage.tmx)
  


      
  	tmxunit (class in translate.storage.tmx)
  


      
  	tokenize() (translate.misc.sparse.SimpleParser method)
  


      
  	tr_lang() (in module translate.lang.data)
  


      
  	TRADOS_TIMEFORMAT (in module translate.storage.trados)
  


      
  	TradosTxtDate (class in translate.storage.trados)
  


      
  	TradosTxtTmFile (class in translate.storage.trados)
  


      
  	tranliterate_cyrillic() (in module translate.lang.af)
  


      
  	transaction() (in module translate.storage.statsdb)
  


      
  	transfiles (translate.storage.bundleprojstore.BundleProjectStore attribute)
  


      	
        
  	(translate.storage.projstore.ProjectStore attribute)
  


      


      
  	Translatable (class in translate.storage.xml_extract.extract)
  


      
  	translate() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.placeables.general.AltAttrPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLEntityPlaceable method)
  


        
  	(translate.storage.placeables.general.XMLTagPlaceable method)
  


        
  	(translate.storage.placeables.interfaces.BasePlaceable method)
  


        
  	(translate.storage.placeables.strelem.StringElem method)
  


        
  	(translate.storage.placeables.xliff.UnknownXML method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.pypo.pofile method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


      


      
  	translate.convert (module), [1]
  


      
  	translate.convert.accesskey (module)
  


      
  	translate.convert.convert (module)
  


      
  	translate.convert.csv2po (module)
  


      
  	translate.convert.csv2tbx (module)
  


      
  	translate.convert.dtd2po (module)
  


      
  	translate.convert.factory (module)
  


      
  	translate.convert.html2po (module)
  


      
  	translate.convert.ical2po (module)
  


      
  	translate.convert.ini2po (module)
  


      
  	translate.convert.json2po (module)
  


      
  	translate.convert.moz2po (module)
  


      
  	translate.convert.mozfunny2prop (module)
  


      
  	translate.convert.mozlang2po (module)
  


      
  	translate.convert.odf2xliff (module)
  


      
  	translate.convert.oo2po (module)
  


      
  	translate.convert.oo2xliff (module)
  


      
  	translate.convert.php2po (module)
  


      
  	translate.convert.po2csv (module)
  


      
  	translate.convert.po2dtd (module)
  


      
  	translate.convert.po2html (module)
  


      
  	translate.convert.po2ical (module)
  


      
  	translate.convert.po2ini (module)
  


      
  	translate.convert.po2json (module)
  


      
  	translate.convert.po2moz (module)
  


      
  	translate.convert.po2mozlang (module)
  


      
  	translate.convert.po2oo (module)
  


      
  	translate.convert.po2php (module)
  


      
  	translate.convert.po2prop (module)
  


      
  	translate.convert.po2rc (module)
  


      
  	translate.convert.po2sub (module)
  


      
  	translate.convert.po2symb (module)
  


      
  	translate.convert.po2tiki (module)
  


      
  	translate.convert.po2tmx (module)
  


      
  	translate.convert.po2ts (module)
  


      
  	translate.convert.po2txt (module)
  


      
  	translate.convert.po2web2py (module)
  


      
  	translate.convert.po2wordfast (module)
  


      
  	translate.convert.po2xliff (module)
  


      
  	translate.convert.poreplace (module)
  


      
  	translate.convert.pot2po (module)
  


      
  	translate.convert.prop2mozfunny (module)
  


      
  	translate.convert.prop2po (module)
  


      
  	translate.convert.rc2po (module)
  


      
  	translate.convert.sub2po (module)
  


      
  	translate.convert.symb2po (module)
  


      
  	translate.convert.tiki2po (module)
  


      
  	translate.convert.ts2po (module)
  


      
  	translate.convert.txt2po (module)
  


      
  	translate.convert.web2py2po (module)
  


      
  	translate.convert.xliff2odf (module)
  


      
  	translate.convert.xliff2oo (module)
  


      
  	translate.convert.xliff2po (module)
  


      
  	translate.filters (module), [1]
  


      
  	translate.filters.autocorrect (module)
  


      
  	translate.filters.checks (module)
  


      
  	translate.filters.decoration (module)
  


      
  	translate.filters.helpers (module)
  


      
  	translate.filters.pofilter (module)
  


      
  	translate.filters.prefilters (module)
  


      
  	translate.filters.spelling (module)
  


      
  	translate.lang (module), [1]
  


      
  	translate.lang.af (module)
  


      
  	translate.lang.am (module)
  


      
  	translate.lang.ar (module)
  


      
  	translate.lang.bn (module)
  


      
  	translate.lang.code_or (module)
  


      
  	translate.lang.common (module)
  


      
  	translate.lang.data (module)
  


      
  	translate.lang.de (module)
  


      
  	translate.lang.el (module)
  


      
  	translate.lang.es (module)
  


      
  	translate.lang.fa (module)
  


      
  	translate.lang.factory (module)
  


      
  	translate.lang.fi (module)
  


      
  	translate.lang.fr (module)
  


      
  	translate.lang.gu (module)
  


      
  	translate.lang.he (module)
  


      
  	translate.lang.hi (module)
  


      
  	translate.lang.hy (module)
  


      
  	translate.lang.identify (module)
  


      
  	translate.lang.ja (module)
  


      
  	translate.lang.km (module)
  


      
  	translate.lang.kn (module)
  


      
  	translate.lang.ko (module)
  


      
  	translate.lang.ml (module)
  


      
  	translate.lang.mr (module)
  


      
  	translate.lang.ne (module)
  


      
  	translate.lang.ngram (module)
  


      
  	translate.lang.pa (module)
  


      
  	translate.lang.poedit (module)
  


      
  	translate.lang.si (module)
  


      
  	translate.lang.st (module)
  


      
  	translate.lang.sv (module)
  


      
  	translate.lang.ta (module)
  


      
  	translate.lang.te (module)
  


      
  	translate.lang.team (module)
  


      
  	translate.lang.th (module)
  


      
  	translate.lang.ug (module)
  


      
  	translate.lang.ur (module)
  


      
  	translate.lang.vi (module)
  


  

  	
      
  	translate.lang.zh (module)
  


      
  	translate.misc (module), [1]
  


      
  	translate.misc.autoencode (module)
  


      
  	translate.misc.dictutils (module)
  


      
  	translate.misc.file_discovery (module)
  


      
  	translate.misc.lru (module)
  


      
  	translate.misc.multistring (module)
  


      
  	translate.misc.optrecurse (module)
  


      
  	translate.misc.ourdom (module)
  


      
  	translate.misc.progressbar (module)
  


      
  	translate.misc.quote (module)
  


      
  	translate.misc.sparse (module)
  


      
  	translate.misc.stdiotell (module)
  


      
  	translate.misc.wsgi (module)
  


      
  	translate.misc.wStringIO (module)
  


      
  	translate.misc.xml_helpers (module)
  


      
  	translate.search (module), [1]
  


      
  	translate.search.indexing (module)
  


      
  	translate.search.indexing.CommonIndexer (module)
  


      
  	translate.search.indexing.PyLuceneIndexer (module)
  


      
  	translate.search.indexing.PyLuceneIndexer1 (module)
  


      
  	translate.search.indexing.XapianIndexer (module)
  


      
  	translate.search.lshtein (module)
  


      
  	translate.search.match (module)
  


      
  	translate.search.segment (module)
  


      
  	translate.search.terminology (module)
  


      
  	translate.services (module), [1]
  


      
  	translate.services.tmserver (module)
  


      
  	translate.storage (module), [1]
  


      
  	translate.storage._factory_classes (module)
  


      
  	translate.storage.base (module)
  


      
  	translate.storage.benchmark (module)
  


      
  	translate.storage.bundleprojstore (module)
  


      
  	translate.storage.catkeys (module)
  


      
  	translate.storage.cpo (module)
  


      
  	translate.storage.csvl10n (module)
  


      
  	translate.storage.directory (module)
  


      
  	translate.storage.dtd (module)
  


      
  	translate.storage.factory (module)
  


      
  	translate.storage.fpo (module)
  


      
  	translate.storage.html (module)
  


      
  	translate.storage.ical (module)
  


      
  	translate.storage.ini (module)
  


      
  	translate.storage.jsonl10n (module)
  


      
  	translate.storage.lisa (module)
  


      
  	translate.storage.mo (module)
  


      
  	translate.storage.mozilla_lang (module)
  


      
  	translate.storage.odf_io (module)
  


      
  	translate.storage.odf_shared (module)
  


      
  	translate.storage.omegat (module)
  


      
  	translate.storage.oo (module)
  


      
  	translate.storage.php (module)
  


      
  	translate.storage.placeables (module)
  


      
  	translate.storage.placeables.base (module)
  


      
  	translate.storage.placeables.general (module)
  


      
  	translate.storage.placeables.interfaces (module)
  


      
  	translate.storage.placeables.lisa (module)
  


      
  	translate.storage.placeables.parse (module)
  


      
  	translate.storage.placeables.strelem (module)
  


      
  	translate.storage.placeables.terminology (module)
  


      
  	translate.storage.placeables.xliff (module)
  


      
  	translate.storage.po (module)
  


      
  	translate.storage.pocommon (module)
  


      
  	translate.storage.poheader (module)
  


      
  	translate.storage.poparser (module)
  


      
  	translate.storage.poxliff (module)
  


      
  	translate.storage.project (module)
  


      
  	translate.storage.projstore (module)
  


      
  	translate.storage.properties (module)
  


      
  	translate.storage.pypo (module)
  


      
  	translate.storage.qm (module)
  


      
  	translate.storage.qph (module)
  


      
  	translate.storage.rc (module)
  


      
  	translate.storage.statistics (module)
  


      
  	translate.storage.statsdb (module)
  


      
  	translate.storage.subtitles (module)
  


      
  	translate.storage.symbian (module)
  


      
  	translate.storage.tbx (module)
  


      
  	translate.storage.tiki (module)
  


      
  	translate.storage.tmdb (module)
  


      
  	translate.storage.tmx (module)
  


      
  	translate.storage.trados (module)
  


      
  	translate.storage.ts (module)
  


      
  	translate.storage.ts2 (module)
  


      
  	translate.storage.txt (module)
  


      
  	translate.storage.utx (module)
  


      
  	translate.storage.versioncontrol (module)
  


      
  	translate.storage.versioncontrol.bzr (module)
  


      
  	translate.storage.versioncontrol.cvs (module)
  


      
  	translate.storage.versioncontrol.darcs (module)
  


      
  	translate.storage.versioncontrol.git (module)
  


      
  	translate.storage.versioncontrol.hg (module)
  


      
  	translate.storage.versioncontrol.svn (module)
  


      
  	translate.storage.wordfast (module)
  


      
  	translate.storage.workflow (module)
  


      
  	translate.storage.xliff (module)
  


      
  	translate.storage.xml_extract (module)
  


      
  	translate.storage.xml_extract.extract (module)
  


      
  	translate.storage.xml_extract.generate (module)
  


      
  	translate.storage.xml_extract.misc (module)
  


      
  	translate.storage.xml_extract.unit_tree (module)
  


      
  	translate.storage.xml_extract.xpath_breadcrumb (module)
  


      
  	translate.storage.xml_name (module)
  


      
  	translate.storage.zip (module)
  


      
  	translate.tools (module), [1]
  


      
  	translate.tools.build_tmdb (module)
  


      
  	translate.tools.phppo2pypo (module)
  


      
  	translate.tools.poclean (module)
  


      
  	translate.tools.pocompile (module)
  


      
  	translate.tools.poconflicts (module)
  


      
  	translate.tools.pocount (module)
  


      
  	translate.tools.podebug (module)
  


      
  	translate.tools.pogrep (module)
  


      
  	translate.tools.pomerge (module)
  


      
  	translate.tools.porestructure (module)
  


      
  	translate.tools.posegment (module)
  


      
  	translate.tools.poswap (module)
  


      
  	translate.tools.poterminology (module)
  


      
  	translate.tools.pretranslate (module)
  


      
  	translate.tools.pydiff (module)
  


      
  	translate.tools.pypo2phppo (module)
  


      
  	TranslateBenchmarker (class in translate.storage.benchmark)
  


      
  	translated_unitcount() (translate.storage.statistics.Statistics method)
  


      
  	translated_units() (translate.storage.statistics.Statistics method)
  


      
  	translated_wordcount() (translate.storage.statistics.Statistics method)
  


      
  	TranslationChecker (class in translate.filters.checks)
  


      
  	translations (translate.storage.placeables.terminology.TerminologyPlaceable attribute)
  


      
  	TranslationStore (class in translate.storage.base)
  


      
  	TranslationUnit (class in translate.storage.base)
  


      
  	tsfile (class in translate.storage.ts2)
  


      
  	tsunit (class in translate.storage.ts2)
  


      
  	TxtFile (class in translate.storage.txt)
  


      
  	TxtUnit (class in translate.storage.txt)
  


      
  	tzstring() (in module translate.storage.poheader)
  


  





U


  	
      
  	ug (class in translate.lang.ug)
  


      
  	unchanged() (translate.filters.checks.StandardChecker method)
  


      
  	unescape() (in module translate.storage.pypo)
  


      	
        
  	(in module translate.storage.trados)
  


      


      
  	unescape_help_text() (in module translate.storage.oo)
  


      
  	unescape_text() (in module translate.storage.oo)
  


      
  	unified_diff() (translate.tools.pydiff.FileDiffer method)
  


      
  	unit2dict() (in module translate.search.match)
  


      
  	unit_iter() (translate.storage.base.TranslationStore method)
  


      	
        
  	(translate.storage.base.TranslationUnit method)
  


        
  	(translate.storage.catkeys.CatkeysFile method)
  


        
  	(translate.storage.catkeys.CatkeysUnit method)
  


        
  	(translate.storage.csvl10n.csvfile method)
  


        
  	(translate.storage.directory.Directory method)
  


        
  	(translate.storage.dtd.dtdfile method)
  


        
  	(translate.storage.dtd.dtdunit method)
  


        
  	(translate.storage.fpo.pofile method)
  


        
  	(translate.storage.html.htmlunit method)
  


        
  	(translate.storage.ical.icalfile method)
  


        
  	(translate.storage.ical.icalunit method)
  


        
  	(translate.storage.ini.inifile method)
  


        
  	(translate.storage.ini.iniunit method)
  


        
  	(translate.storage.jsonl10n.JsonFile method)
  


        
  	(translate.storage.jsonl10n.JsonUnit method)
  


        
  	(translate.storage.lisa.LISAfile method)
  


        
  	(translate.storage.lisa.LISAunit method)
  


        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.mo.mounit method)
  


        
  	(translate.storage.mozilla_lang.LangStore method)
  


        
  	(translate.storage.mozilla_lang.LangUnit method)
  


        
  	(translate.storage.omegat.OmegaTFile method)
  


        
  	(translate.storage.omegat.OmegaTFileTab method)
  


        
  	(translate.storage.omegat.OmegaTUnit method)
  


        
  	(translate.storage.php.phpfile method)
  


        
  	(translate.storage.php.phpunit method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.poxliff.PoXliffUnit method)
  


        
  	(translate.storage.properties.propfile method)
  


        
  	(translate.storage.properties.propunit method)
  


        
  	(translate.storage.qm.qmfile method)
  


        
  	(translate.storage.qm.qmunit method)
  


        
  	(translate.storage.qph.QphFile method)
  


        
  	(translate.storage.qph.QphUnit method)
  


        
  	(translate.storage.rc.rcfile method)
  


        
  	(translate.storage.rc.rcunit method)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.MicroDVDFile method)
  


        
  	(translate.storage.subtitles.SubRipFile method)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile method)
  


        
  	(translate.storage.subtitles.SubtitleFile method)
  


        
  	(translate.storage.subtitles.SubtitleUnit method)
  


        
  	(translate.storage.tbx.tbxfile method)
  


        
  	(translate.storage.tbx.tbxunit method)
  


        
  	(translate.storage.tiki.TikiStore method)
  


        
  	(translate.storage.tiki.TikiUnit method)
  


        
  	(translate.storage.tmx.tmxfile method)
  


        
  	(translate.storage.tmx.tmxunit method)
  


        
  	(translate.storage.trados.TradosTxtTmFile method)
  


        
  	(translate.storage.ts2.tsfile method)
  


        
  	(translate.storage.ts2.tsunit method)
  


        
  	(translate.storage.txt.TxtFile method)
  


        
  	(translate.storage.txt.TxtUnit method)
  


        
  	(translate.storage.utx.UtxFile method)
  


        
  	(translate.storage.utx.UtxUnit method)
  


        
  	(translate.storage.wordfast.WordfastTMFile method)
  


        
  	(translate.storage.wordfast.WordfastUnit method)
  


        
  	(translate.storage.xliff.xlifffile method)
  


        
  	(translate.storage.xliff.xliffunit method)
  


        
  	(translate.storage.zip.ZIPFile method)
  


      


      
  	UnitChecker (class in translate.filters.checks)
  


      
  	UnitClass (translate.storage.base.TranslationStore attribute)
  


      	
        
  	(translate.storage.catkeys.CatkeysFile attribute)
  


        
  	(translate.storage.dtd.dtdfile attribute)
  


        
  	(translate.storage.ical.icalfile attribute)
  


        
  	(translate.storage.ini.inifile attribute)
  


        
  	(translate.storage.jsonl10n.JsonFile attribute)
  


        
  	(translate.storage.lisa.LISAfile attribute)
  


        
  	(translate.storage.mo.mofile attribute)
  


        
  	(translate.storage.mozilla_lang.LangStore attribute)
  


        
  	(translate.storage.omegat.OmegaTFile attribute)
  


        
  	(translate.storage.omegat.OmegaTFileTab attribute)
  


        
  	(translate.storage.oo.oofile attribute)
  


        
  	(translate.storage.php.phpfile attribute)
  


        
  	(translate.storage.poxliff.PoXliffFile attribute)
  


        
  	(translate.storage.properties.propfile attribute)
  


        
  	(translate.storage.qm.qmfile attribute)
  


        
  	(translate.storage.qph.QphFile attribute)
  


        
  	(translate.storage.rc.rcfile attribute)
  


        
  	(translate.storage.subtitles.AdvSubStationAlphaFile attribute)
  


        
  	(translate.storage.subtitles.MicroDVDFile attribute)
  


        
  	(translate.storage.subtitles.SubRipFile attribute)
  


        
  	(translate.storage.subtitles.SubStationAlphaFile attribute)
  


        
  	(translate.storage.subtitles.SubtitleFile attribute)
  


        
  	(translate.storage.tbx.tbxfile attribute)
  


        
  	(translate.storage.tiki.TikiStore attribute)
  


        
  	(translate.storage.tmx.tmxfile attribute)
  


        
  	(translate.storage.trados.TradosTxtTmFile attribute)
  


        
  	(translate.storage.ts2.tsfile attribute)
  


        
  	(translate.storage.txt.TxtFile attribute)
  


        
  	(translate.storage.utx.UtxFile attribute)
  


        
  	(translate.storage.wordfast.WordfastTMFile attribute)
  


        
  	(translate.storage.xliff.xlifffile attribute)
  


      


      
  	UnitMixer (class in translate.convert.accesskey)
  


      
  	unitstats() (translate.storage.statsdb.StatsCache method)
  


      
  	UnknownXML (class in translate.storage.placeables.xliff)
  


      
  	unquote_plus() (in module translate.storage.pocommon)
  


      
  	unquotefromandroid() (in module translate.storage.dtd)
  


      
  	unquotefromdtd() (in module translate.storage.dtd)
  


      
  	untranslated() (translate.filters.checks.StandardChecker method)
  


      
  	untranslated_unitcount() (translate.storage.statistics.Statistics method)
  


  

  	
      
  	untranslated_units() (translate.storage.statistics.Statistics method)
  


      
  	untranslated_wordcount() (translate.storage.statistics.Statistics method)
  


      
  	update() (in module translate.storage.poheader)
  


      	
        
  	(translate.filters.checks.CheckerConfig method)
  


        
  	(translate.misc.dictutils.ordereddict method)
  


        
  	(translate.storage.versioncontrol.GenericRevisionControlSystem method)
  


        
  	(translate.storage.versioncontrol.bzr.bzr method)
  


        
  	(translate.storage.versioncontrol.cvs.cvs method)
  


        
  	(translate.storage.versioncontrol.darcs.darcs method)
  


        
  	(translate.storage.versioncontrol.git.git method)
  


        
  	(translate.storage.versioncontrol.hg.hg method)
  


        
  	(translate.storage.versioncontrol.svn.svn method)
  


      


      
  	update_file() (translate.storage.bundleprojstore.BundleProjectStore method)
  


      	
        
  	(translate.storage.project.Project method)
  


        
  	(translate.storage.projstore.ProjectStore method)
  


      


      
  	updatecontributor() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	updatedirectory() (in module translate.storage.versioncontrol)
  


      
  	updateheader() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	updateheaderplural() (translate.storage.fpo.pofile method)
  


      	
        
  	(translate.storage.mo.mofile method)
  


        
  	(translate.storage.poheader.poheader method)
  


        
  	(translate.storage.poxliff.PoXliffFile method)
  


        
  	(translate.storage.pypo.pofile method)
  


      


      
  	updatetargetlanguage() (translate.filters.checks.CheckerConfig method)
  


      
  	updatevalidchars() (translate.filters.checks.CheckerConfig method)
  


      
  	ur (class in translate.lang.ur)
  


      
  	urls() (translate.filters.checks.StandardChecker method)
  


      
  	usable() (translate.search.match.matcher method)
  


      	
        
  	(translate.search.match.terminologymatcher method)
  


      


      
  	UtxDialect (class in translate.storage.utx)
  


      
  	UtxFile (class in translate.storage.utx)
  


      
  	UtxHeader (class in translate.storage.utx)
  


      
  	UtxUnit (class in translate.storage.utx)
  


  





V


  	
      
  	valid_fieldnames() (in module translate.storage.csvl10n)
  


      
  	validaccel (translate.lang.common.Common attribute)
  


      
  	validchars() (translate.filters.checks.StandardChecker method)
  


      
  	validdoublewords (translate.lang.common.Common attribute)
  


      
  	value_strip() (translate.storage.properties.Dialect class method)
  


      
  	valuerefs() (translate.misc.lru.LRUCachingDict method)
  


      
  	values() (translate.misc.dictutils.ordereddict method)
  


      
  	variables() (translate.filters.checks.StandardChecker method)
  


  

  	
      
  	varname() (in module translate.filters.prefilters)
  


      
  	varnone() (in module translate.filters.prefilters)
  


      
  	verifyoptions() (in module translate.convert.oo2po)
  


      	
        
  	(in module translate.convert.oo2xliff)
  


        
  	(translate.convert.convert.ArchiveConvertOptionParser method)
  


        
  	(translate.convert.convert.ConvertOptionParser method)
  


      


      
  	vi (class in translate.lang.vi)
  


      
  	viewitems() (translate.misc.dictutils.ordereddict method)
  


      
  	viewkeys() (translate.misc.dictutils.ordereddict method)
  


      
  	viewvalues() (translate.misc.dictutils.ordereddict method)
  


  





W


  	
      
  	warning() (translate.convert.convert.ArchiveConvertOptionParser method)
  


      	
        
  	(translate.convert.convert.ConvertOptionParser method)
  


        
  	(translate.filters.pofilter.FilterOptionParser method)
  


        
  	(translate.misc.optrecurse.RecursiveOptionParser method)
  


        
  	(translate.tools.poconflicts.ConflictOptionParser method)
  


        
  	(translate.tools.pogrep.GrepOptionParser method)
  


        
  	(translate.tools.porestructure.SplitOptionParser method)
  


        
  	(translate.tools.poterminology.TerminologyOptionParser method)
  


      


      
  	WF_ESCAPE_MAP (in module translate.storage.wordfast)
  


      
  	WF_FIELDNAMES (in module translate.storage.wordfast)
  


      
  	WF_FIELDNAMES_HEADER (in module translate.storage.wordfast)
  


      
  	WF_FIELDNAMES_HEADER_DEFAULTS (in module translate.storage.wordfast)
  


      
  	WF_TIMEFORMAT (in module translate.storage.wordfast)
  


      
  	word_iter() (in module translate.search.segment)
  


      	
        
  	(translate.lang.af.af class method)
  


        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	wordcount() (translate.storage.statistics.Statistics method)
  


      
  	WordfastDialect (class in translate.storage.wordfast)
  


  

  	
      
  	WordfastHeader (class in translate.storage.wordfast)
  


      
  	WordfastTime (class in translate.storage.wordfast)
  


      
  	WordfastTMFile (class in translate.storage.wordfast)
  


      
  	WordfastUnit (class in translate.storage.wordfast)
  


      
  	words() (in module translate.search.segment)
  


      	
        
  	(translate.lang.af.af class method)
  


        
  	(translate.lang.am.am class method)
  


        
  	(translate.lang.ar.ar class method)
  


        
  	(translate.lang.bn.bn class method)
  


        
  	(translate.lang.code_or.code_or class method)
  


        
  	(translate.lang.common.Common class method)
  


        
  	(translate.lang.de.de class method)
  


        
  	(translate.lang.el.el class method)
  


        
  	(translate.lang.es.es class method)
  


        
  	(translate.lang.fa.fa class method)
  


        
  	(translate.lang.fi.fi class method)
  


        
  	(translate.lang.fr.fr class method)
  


        
  	(translate.lang.gu.gu class method)
  


        
  	(translate.lang.he.he class method)
  


        
  	(translate.lang.hi.hi class method)
  


        
  	(translate.lang.hy.hy class method)
  


        
  	(translate.lang.ja.ja class method)
  


        
  	(translate.lang.km.km class method)
  


        
  	(translate.lang.kn.kn class method)
  


        
  	(translate.lang.ko.ko class method)
  


        
  	(translate.lang.ml.ml class method)
  


        
  	(translate.lang.mr.mr class method)
  


        
  	(translate.lang.ne.ne class method)
  


        
  	(translate.lang.pa.pa class method)
  


        
  	(translate.lang.si.si class method)
  


        
  	(translate.lang.st.st class method)
  


        
  	(translate.lang.sv.sv class method)
  


        
  	(translate.lang.ta.ta class method)
  


        
  	(translate.lang.te.te class method)
  


        
  	(translate.lang.th.th class method)
  


        
  	(translate.lang.ug.ug class method)
  


        
  	(translate.lang.ur.ur class method)
  


        
  	(translate.lang.vi.vi class method)
  


        
  	(translate.lang.zh.zh class method)
  


      


      
  	wordsinunit() (in module translate.storage.statsdb)
  


      
  	wrapmessage() (translate.convert.po2txt.po2txt method)
  


      
  	writediff() (translate.tools.pydiff.DirDiffer method)
  


      	
        
  	(translate.tools.pydiff.FileDiffer method)
  


      


      
  	writexml_helper() (in module translate.misc.ourdom)
  


  





X


  	
      
  	XapianDatabase (class in translate.search.indexing.XapianIndexer)
  


      
  	XapianEnquire (class in translate.search.indexing.XapianIndexer)
  


      
  	xlifffile (class in translate.storage.xliff)
  


      
  	xliffunit (class in translate.storage.xliff)
  


      
  	xml_preserve_ancestors (in module translate.misc.xml_helpers)
  


      
  	xml_space_ancestors (in module translate.misc.xml_helpers)
  


  

  	
      
  	XMLEntityPlaceable (class in translate.storage.placeables.general)
  


      
  	XmlNamer (class in translate.storage.xml_name)
  


      
  	XMLTagPlaceable (class in translate.storage.placeables.general)
  


      
  	xmltags() (translate.filters.checks.StandardChecker method)
  


      
  	XPathBreadcrumb (class in translate.storage.xml_extract.xpath_breadcrumb)
  


  





Z


  	
      
  	zh (class in translate.lang.zh)
  


  

  	
      
  	ZIPFile (class in translate.storage.zip)
  


  







          

      

      

    


    
         Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  _static/down.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/file.png





_static/comment-bright.png





_static/up-pressed.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Translate Toolkit 1.12.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2002-2014, Translate.
      Created using Sphinx 1.2.2.
    

  

_static/comment.png





_static/minus.png





_static/comment-close.png





_static/plus.png





_static/up.png





