
Translate Toolkit Documentation
Release 3.0.0

Translate.org.za

Jun 15, 2020

Contents

1 User’s Guide 3
1.1 Features . 3
1.2 Installation . 4
1.3 Converters . 6
1.4 Tools . 60
1.5 Scripts . 99
1.6 Use Cases . 111
1.7 Translation Related File Formats . 128

2 Developer’s Guide 161
2.1 Translate Styleguide . 161
2.2 Documentation . 168
2.3 Building . 171
2.4 Testing . 172
2.5 Command Line Functional Testing . 174
2.6 Contributing . 176
2.7 Translate Toolkit Developers Guide . 178
2.8 Making a Translate Toolkit Release . 182
2.9 Deprecation of Features . 187

3 Additional Notes 189
3.1 Release Notes . 189
3.2 History of the Translate Toolkit . 231
3.3 License . 232

4 API Reference 233
4.1 API . 233

Python Module Index 715

Index 719

i

ii

Translate Toolkit Documentation, Release 3.0.0

Welcome to Translate Toolkit’s documentation. This documentation covers both user’s and programmer’s perspective.

Contents 1

Translate Toolkit Documentation, Release 3.0.0

2 Contents

CHAPTER 1

User’s Guide

This part has the user’s documentation for the tools included in the Translate Toolkit.

1.1 Features

• Work with ONE localisation format. You’ll no longer be editing DTD files in one tool, .properties in another,
OpenOffice GSI in a third. Simply do all your localisation in a PO or XLIFF editor

• Converters for a number of formats

– OpenOffice.org SDF/GSI

– Mozilla: .properties, DTD, XHTML, .inc, .ini, etc

– Others: Comma Separated Value, TMX, XLIFF, TBX, PHP, WordFast TXT, Qt .ts, txt, .ini, Windows .rc,
ical, subtitles, Mac OS X strings

• File access to localization files through the format API in all the above formats, as well as .qph, .qm, .mo

• Output valid target file types. We make sure that your output files (e.g. .properties) contain all comments from
the original file and preserves the layout of the original as far as possible. If your PO entry is marked as fuzzy we
use the English text, not your half complete translation. The converters for OpenOffice.org and Mozilla formats
will also perform simple checks and corrections to make sure you have none of those hard to find localisation
bugs.

• Our checker has over 42 checks to find errors such as: missing or translated variables, missing accelerator keys,
bad escaping, start capitalisation, missing sentences, bad XML and much more.

• Language awareness, taking language conventions for capitalisation, quotes and other punctuation into account

• Find conflicting translations easily, cases where you have translated a source word differently or used a target
word for 2 very different English concepts

• Extract messages using simple text or a regular expression allowing you to quickly find and extract words that
you need to fix due to glossary changes.

• Merge snippets of PO files into your existing translations.

3

Translate Toolkit Documentation, Release 3.0.0

• Create word, string and file counts of your files. Making it much easier to budget time as string counts do not
give you a good indication of expected work.

• Create a set of PO files with debugging entries to allow you to easily locate the source of translations. Very use-
ful in OpenOffice.org which provides scant clues as to where the running application has sourced the message.

The Translate Toolkit is also a powerful API for writing translation and localisation tools, already used by our own
and several other projects. See the base class section for more information.

1.2 Installation

This is a guide to installing the Translate Toolkit on your system. If the Translate Toolkit is already packaged for your
system, this is probably the easiest way to install it. For several Linux distributions, the package might be available
through your package manager. On Windows, we recommend using a virtual environment.

If your system already has the toolkit prepackaged, then please let us know what steps are required to install it.

1.2.1 Building

For build instructions, see the Building page.

1.2.2 Download

Download a stable released version. Or if you have a python environment, run pip install translate-toolkit. For those
who need problems fixed, or who want to work on the bleeding edge, get the latest source from Git.

If you install through your distribution’s package manager, you should automatically have all the dependencies you
need. If you are installing a version from Version Control, or from a source release, you should check the README
file for information on the dependencies that are needed. Some of the dependencies are optional. The README file
documents this.

1.2.3 Installing packaged versions

Get the package for your system:

RPM If you want to install easily on an RPM based system
.tar.gz for source based installing on Linux
.deb for Debian GNU/Linux (etch version)

The RPM package can be installed by using the following command:

$ rpm -Uvh translate-toolkit-1.0.1.rpm

To install a tar.bz2:

$ tar xvjf translate-toolkit-1.1.0.tar.bz2
$ cd translate-toolkit-1.1.0
$ su
$./setup.py install

On Debian (if you are on etch), just type the following command:

4 Chapter 1. User’s Guide

https://github.com/translate/translate/releases

Translate Toolkit Documentation, Release 3.0.0

$ aptitude install translate-toolkit

If you are using an old Debian stable system, you might want to install the .tar.bz2 version. Be sure to install python
and python development first with:

$ apt-get install python python-dev

Alternatively newer packages might be in testing.

1.2.4 Installing on Windows

On Windows we recommend that you install Translate Toolkit using a virtual environment. This makes installation
clean and isolated.

Use the latest Python 3.8. Install virtualenvwrapper-win to simplify handling of virtualenvs.

1. Install latest Python 3.8

2. Open cmd.exe or similar

3. pip install virtualenvwrapper-win

4. mkvirtualenv ttk where “ttk” is the name for the new virtualenv

5. pip install translate-toolkit[recommended] to install latest stable or pip install –pre translate-
toolkit[recommended] to try a pre-release

6. po2prop –version to double check you have the right version

Next times you need to use Translate Toolkit just remember to:

1. Open cmd.exe or similar

2. workon ttk to enable the virtualenv again

3. Run the Translate Toolkit commands you want

1.2.5 Installing from Git

If you want to try the bleeding edge, or just want to have the latest fixes from a stabilising branch then you need to use
Git to get your sources:

$ git clone https://github.com/translate/translate.git

This will retrieve the master branch of the Toolkit. Further Git instructions are also available.

Once you have the sources you have two options, a full install:

$ su
$./setup.py install

or, running the tools from the source directory:

$ su
$ pip install -e .

1.2. Installation 5

https://pypi.python.org/pypi/virtualenvwrapper-win
https://www.python.org/downloads/windows/
http://git.or.cz/course/svn.html

Translate Toolkit Documentation, Release 3.0.0

1.2.6 Verify installed version

To verify which version of the toolkit you have installed run:

$ prop2po --version
prop2po 3.0.0

1.2.7 Cleaning up existing installation

To remove old versions of the toolkit which you might have installed without a virtual environment or without your
package manager.

The following advice only applies to manual installation from a tarball.

1. Find location of your python packages:

$ python -c "from distutils.sysconfig import get_python_lib; print(get_python_
→˓lib())"

2. Delete toolkit package from your Python site-packages directory e.g.:

$ rm -R /usr/local/lib/python3.8/dist-packages/translate

1.3 Converters

1.3.1 General Usage

The tools follow a general usage convention which is helpful to understand.

Input & Output

The last two arguments of your command are the input and output files/directories:

moz2po <input> <output>

You can of course still use the -i and -o options which allows you to reorder commands

moz2po -o <output> -i <input>

Error Reporting

All tools accept the option --errorlevel. If you find a bug, add this option and send the traceback to the develop-
ers.

moz2po <other-options> --errorlevel=traceback

Templates

If you are working with any file format and you wish to preserve comments and layout then use your source file as a
template.

6 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

po2dtd -t <source-file> <input> <output>

This will use the files in <source-file> as a template, merge the PO files in <input>, and create new DTD files
in <output>

If you ran this without the templates you would get valid DTD files but they would not preserve the layout or all the
comments from the source DTD file

The same concept of templates is also used when you merge files.

pomerge -t <old> <fixes> <new>

This would take the <old> files merge in the <fixes> and output new PO files, preserving formatting, into <new>.
You can use the same directory for <old> and <new> if you want the merges to overwrite files in <old>.

source2target

The converters all follow this convention:

• source = the format from which you are converting e.g. in oo2po we are converting from OpenOffice.org
SDF/GSI

• target = the format into which you are converting e.g. in oo2po we are converting to Gettext PO

Getting Help

The --help option will always list the available commands for the tool.

moz2po --help

1.3.2 moz2po

moz2po converts Mozilla files to PO files. It wraps converters that handle .properties, .dtd and some strange Mozilla
files. The tool can work with files from Mozilla’s Mercurial repository. The tools thus provides a complete roundtrip
for Mozilla localisation using PO files and PO editors.

Note: This page should only be used as a reference to the command-line options for moz2po and po2moz. For more
about using the Translate Toolkit and PO files for translating Mozilla products, please see the page on Mozilla L10n
Scripts.

Usage

moz2po [options] <dir> <po>
po2moz [options] <po> <dir>

Where:

<dir> is a directory containing valid Mozilla files
<po> is a directory of PO or POT files

Options (moz2po):

1.3. Converters 7

Translate Toolkit Documentation, Release 3.0.0

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in inc, it, *, dtd, properties formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in it.po, it.pot, manifest, xhtml.po, xhtml.pot,
ini.po, ini.pot, rdf, js, *, html.po, html.pot, inc.po, inc.pot, dtd.po, dtd.pot, prop-
erties.po, properties.pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in it, *, properties, dtd, inc formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2moz):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in dtd.po, dtd.pot, ini.po, ini.pot, inc.po, inc.pot, man-
ifest, it.po, it.pot, *, html.po, html.pot, js, rdf, properties.po, properties.pot,
xhtml.po, xhtml.pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in dtd, *, inc, it, properties formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in dtd, *, inc, it, properties formats

-S, --timestamp skip conversion if the output file has newer timestamp

-l LOCALE, --locale=LOCALE set output locale (required as this sets the directory names)

--removeuntranslated remove untranslated strings from output

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Examples

Creating POT files

See also:

8 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Creating Mozilla POT files.

After extracting the en-US l10n files, you can run the following command:

moz2po -P l10n/en-US pot

This creates a set of POT (-P) files in the pot directory from the Mozilla files in l10n/en-US for use as PO
Templates.

If you want to create a set of POT files with another base language try the following:

moz2po -P l10n/fr-FR fr-pot

This will create a set of POT files in fr-pot that have French as your source language.

Creating PO files from existing non-PO translations

If you have existing translations (Mozilla related or other Babelzilla files) and you wish to convert them to PO for
future translation then the following generic instructions will work:

moz2po -t en-US af-ZA af-ZA_pofiles

This will combine the untranslated template en-US files from en-US combine them with your existing translations in
af-ZA and output PO files to af-ZA_pofiles.

moz2po -t l10n/fr l10n/xh po/xh

For those who are not English fluent you can do the same with another languages. In this case msgid will contain
the French text from l10n/fr. This is useful for translating where the translators other languages is not English but
French, Spanish or Portuguese. Please make sure that the source languages i.e. the msgid language is fully translated
as against en-US.

Creating Mercurial ready translations

po2moz -t l10n/en-US po/xh l10n/xh

Create Mozilla files using the templates files in l10n/en-US (see above for how to create them) with PO translations
in po/xh and output them to l10n/xh. The files now in l10n/xh are ready for submission to Mozilla and can be
used to build a language pack or translated version of Mozilla.

Issues

You can perform the bulk of your work (99%) with moz2po.

Localisation of XHTML is not yet perfect, you might want to work with the files directly.

Issue 203 tracks the outstanding features which would allow complete localisation of Mozilla including; all help, start
pages, rdf files, etc. It also tracks some bugs.

Accesskeys don’t yet work in .properties files and in several cases where the Mozilla .dtd files don’t follow the nor-
mal conventions, for example in security/manager/chrome/pippki/pref-ssl.dtd.po. You might also
want to check the files mentioned in this Mozilla bug 329444 where mistakes in the DTD-definitions cause problems
in the matching of accelerators with the text.

You might want to give special attention to the following files since it contains customisations that are not really
translations.

1.3. Converters 9

https://github.com/translate/translate/issues/203
https://bugzilla.mozilla.org/show_bug.cgi?id=329444

Translate Toolkit Documentation, Release 3.0.0

• mail/chrome/messenger/downloadheaders.dtd.po

• toolkit/chrome/global/intl.properties.po

Also, all width, height and size specifications need to be edited with feedback from testing the translated interfaces.

There are some constructed strings in the Mozilla code which we can’t do much about. Take good care to read
the localisation notes. For an example, see mail/chrome/messenger/downloadheaders.dtd.po. In that
specific file, the localisation note from the DTD file is lost, so take good care of those.

The file extension of the original Mozilla file is required to tell the Toolkit how to do the conversion. Therefore, a file
like foo.dtd must be named foo.dtd.po in order to po2moz to recognise it as a DTD file.

1.3.3 oo2po

Convert between OpenOffice.org GSI/SDF files and the PO format. This tool provides a complete roundtrip; it pre-
serves the structure of the GSI file and creates completely valid PO files.

oo2xliff will convert the SDF files to XLIFF format.

Usage

oo2po [options] <sdf> <output>
po2oo [options] [-t <en-US.sdf>] -l <targetlang> <input> <sdf|output>

or for XLIFF files:

oo2xliff [options] -l <targetlang> <sdf> <output>
xliff2oo [options] [-t <en-US.sdf>] -l <targetlang> <input> <sdf|output>

Where:

<sdf> is a valid OpenOffice.org GSI or SDF files
<output> is a directory for the resultant PO/POT/XLIFF files
<input> is a directory of translated PO/XLIFF files
<targetlang> is the ISO 639 language code used in the sdf file, e.g. af

Options (oo2po and oo2xliff):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in oo, sdf formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot, xlf formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po) (only available in oo2po

10 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/ISO_639

Translate Toolkit Documentation, Release 3.0.0

-l LANG, --language=LANG set target language to extract from oo file (e.g. af-ZA) (required for
oo2xliff)

--source-language=LANG set source language code (default en-US)

--nonrecursiveinput don’t treat the input oo as a recursive store

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

--multifile=MULTIFILESTYLE how to split po/pot files (single, toplevel or onefile)

Options (po2oo and xliff2oo):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot, xlf formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in oo, sdf formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in oo, sdf formats

-S, --timestamp skip conversion if the output file has newer timestamp

-l LANG, --language=LANG set target language code (e.g. af-ZA) [required]

--source-language=LANG set source language code (default en-US)

-T, --keeptimestamp don’t change the timestamps of the strings

--nonrecursiveoutput don’t treat the output oo as a recursive store

--nonrecursivetemplate don’t treat the template oo as a recursive store

--skipsource don’t output the source language, but fallback to it where needed

--filteraction=ACTION action on pofilter failure: none (default), warn, exclude-serious, exclude-all

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

--multifile=MULTIFILESTYLE how to split po/pot files (single, toplevel or onefile)

Examples

These examples demonstrate most of the useful invocations of oo2po:

Creating POT files

oo2po -P en-US.sdf pot

1.3. Converters 11

Translate Toolkit Documentation, Release 3.0.0

Extract messages from en-US.sdf and place them in a directory called pot. The -P option ensures that we create POT
files instead of PO files.

oo2po -P --source-language=fr fr-FR.sdf french-pot

Instead of creating English POT files we are now creating POT files that contain French in the msgid. This is useful
for translators who are not English literate. You will need to have a fully translated sdf in the source language.

Creating PO files from existing work

oo2po --duplicates=merge -l zu zu-ZA.sdf zulu

Extract all existing Zulu (zu) messages from zu-ZA.sdf and place them in a directory called zulu. If you find duplicate
messages in a file then merge them into a single message (This is the default behaviour for traditional PO files). You
might want to use pomigrate2 to ensure that your PO files match the latest POT files.:

cat GSI_af.sdf GSI_xh.sdf > GSI_af-xh.sdf
oo2po --source-language=af -l xh GSI_af-xh.sdf af-xh-po

Here we are creating PO files with your existing translations but a different source language. Firstly we combine the
two SDF files. Then oo2po creates a set of PO files in af-xh-po using Afrikaans (af) as the source language and Xhosa
(xh) as the target language from the combined SDF file GSI_af-xh.sdf

Creating a new GSI/SDF file

po2oo -l zu zulu zu_ZA.sdf

Using PO files found in zulu create an SDF files called zu_ZA.sdf for language zu:

po2oo -l af -t en-US.sdf --nofuzzy --keeptimestamp --filteraction=exclude-serious
→˓afrikaans af_ZA.sdf

Create an Afrikaans (af) SDF file called af_ZA.sdf using en-US.sdf as a template and preserving the timestamps within
the SDF file while also eliminating any serious errors in translation. Using templates ensures that the resultant SDF
file has exactly the same format as the template SDF file. In an SDF file each translated string can have a timestamp
attached. This creates a large amount of unuseful traffic when comparing version of the SDF file, by preserving the
timestamp we ensure that this does not change and can therefore see the translation changes clearly. We have included
the nofuzzy option (on by default) that prevent fuzzy PO messages from getting into the SDF file. Lastly the filteraction
option is set to exclude serious errors: variables failures and translated XML will be excluded from the final SDF.

helpcontent2

The escaping of helpcontent2 from SDF files was very confusing, issue 295 implemented a fix that appeared in
version 1.1.0 (All known issues were fixed in 1.1.1). Translators are now able to translate helpcontent2 with clean
escaping.

1.3.4 odf2xliff and xliff2odf

Convert OpenDocument (ODF) files to XLIFF localization files. Create translated ODF files by combining the original
ODF files with XLIFF files containing translations of strings in the original document.

12 Chapter 1. User’s Guide

https://github.com/translate/translate/issues/295

Translate Toolkit Documentation, Release 3.0.0

XLIFF is the XML Localization Interchange File Format developed by OASIS (The Organization for the Advancement
of Structured Information Standards) to allow translation work to be standardised no matter what the source format
and to allow the work to be freely moved from tool to tool.

If you are more used to software translation or l10n, you might want to read a bit about Document translation. This
should help you to get the most out of translating ODF with XLIFF.

Usage

odf2xliff [options] <original_odf> <xliff>
xliff2odf [options] -t <original_odf> <xliff> <translated_odf>

Where:

<original_odf> is an ODF document whose strings have to be translated
<xliff> is an XLIFF file
<translated_odf> is an ODF file to generate by replacing the strings in

<original_odf> with the translated strings in <xliff>

Options (odf2xliff):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in ODF format

-o OUTPUT, --output=OUTPUT write to OUTPUT in XLIFF format

-S, --timestamp skip conversion if the output file has newer timestamp

Options (xliff2odf):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in XLIFF formats

-o OUTPUT, --output=OUTPUT write to OUTPUT in ODF format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ODF format

-S, --timestamp skip conversion if the output file has newer timestamp

Examples

odf2xliff english.odt english_français.xlf

1.3. Converters 13

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff

Translate Toolkit Documentation, Release 3.0.0

Create an XLIFF file from an ODT file (the source ODF file could also be any of the other ODF files, including ODS,
ODG, etc.).

xliff2odf -t english.odt english_français.xlf français.odt

Using english.odt as the template document, and english_français.xlf as the file of translations, create a translated file
français.odt.

Bugs

This filter is not yet extensively used – we appreciate your feedback. For more information on conformance to stan-
dards, see the XLIFF or OpenDocument Format pages.

1.3.5 prop2po

Convert between Java property files (.properties) and Gettext PO format.

Note: this tool completely eliminates the need for native2ascii as po2prop does the correct escaping to the Latin1
encoding that is needed by Java.

The following other formats are also supported via the –personality parameter:

• Adobe Flex

• Skype .lang

• Mac OS X .strings

• Mozilla .properties

Usage

prop2po [options] <property> <po>
po2prop [options] -t <template> <po> <property>

Where:

<property> is a directory containing property files or an individual property file
<po> is a directory containing PO files and an individual property file
<template> is a directory of template property files or a single template property file

Options (prop2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in properties format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

14 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in properties format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--personality=TYPE override the input file format: flex, java, mozilla, java-utf8, skype, gaia, strings
(for .properties files, default: java)

--encoding=ENCODING override the encoding set by the personality

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2prop):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in properties format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in properties format

-S, --timestamp skip conversion if the output file has newer timestamp

--personality=TYPE override the input file format: flex, java, mozilla, java-utf8, skype, gaia, strings
(for .properties files, default: java)

--encoding=ENCODING override the encoding set by the personality (since 1.8.0)

--removeuntranslated remove untranslated strings from output

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Examples

These examples demonstrate most of the useful invocations of prop2po:

Creating POT files

prop2po -P properties pot

Extract messages from properties directory and place them in a directory called pot. The -P option ensures that we
create POT files instead of PO files.:

prop2po -P file.properties file.pot

Extract messages from file.properties and place them in file.pot.

1.3. Converters 15

Translate Toolkit Documentation, Release 3.0.0

Creating PO files from existing work

prop2po --duplicates=msgctxt -t reference zu zu-po

Extract all existing Zulu messages from zu directory and place the resultant PO files in a directory called zu-po. If
you find duplicate messages in a file then use Gettext’s mgsctxt to disambiguate them. During the merge we use the
.properties files in reference as templates and as the source of the English text for the msgid. Once you have your PO
files you might want to use pomigrate2 to ensure that your PO files match the latest POT files.

Creating .properties files from your translations

po2prop -t reference zu-po zu

Using our translations found in zu-po and the templates found in reference we create a new set of property files in
zu. These new property files will look exactly like those found in the templates, but with the text changed to the
translation. Any fuzzy entry in our PO files will be ignored and any untranslated item will be placed in zu in English.
The .properties file created will be based on the Java specification and will thus use escaped Unicode. Where:

Will appear in the files as:

\u1E7D\u1E01\u1E3D\u1E7B\u1E1D

To get output as used by Mozilla localisation do the following:

po2prop --personality=mozilla -t reference zu-po zu

This will do exactly the same as above except that the output will now appear as real Unicode characters in UTF-8
encoding.

Doing away with native2ascii

The native2ascii command is the traditional tool of property file localisers. With prop2po there is no need to use this
command or to ever work directly with the escaped Unicode.

If you are working mostly with Gettext PO files then this is a double benefit as you can now use your favourite PO
editor to translate Java applications. Your process would now look like this:

prop2po some.properties some.po

Firstly create a PO file that you can translate. Now translate it in your favourite PO editor.:

po2prop -t some.properties some.po some-other.properties

Using the original properties file as a template we preserve all layout and comments, combined with your PO transla-
tion we create a new translate properties file. During this whole process we have not needed to understand or process
any escaping prop2po and po2prop handle that all automatically.

If you have existing translations you can recover them as follows:

prop2po -t some.properties translations.properties translations.po

This takes the default English properties file and combines it with your translate properties file and created a PO file.
You now continue translating using your PO file.

16 Chapter 1. User’s Guide

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/native2ascii.html

Translate Toolkit Documentation, Release 3.0.0

1.3.6 php2po

Converts PHP localisable string arrays to Gettext PO format.

Usage

php2po [options] <php> <po>
po2php [options] <po> <php>

Where:

<php> is a valid PHP localisable file or directory of those files
<po> is a directory of PO or POT files

Options (php2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in php format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in php format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2php):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in php format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in php format

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

1.3. Converters 17

Translate Toolkit Documentation, Release 3.0.0

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Formats Supported

Check PHP format document to see to which extent the PHP format is supported.

Examples

This example looks at roundtrip of PHP translations as well as recovery of existing translations.

First we need to create a set of POT files.:

php2po -P lang/en pot/

All .php files found in the lang/en directory are converted to Gettext POT files and placed in the pot directory.

If you are translating for the first time then you can skip the next step. If you need to recover your existing translations
then we do the following:

php2po -t lang/en lang/zu po-zu/

Using the English PHP files found in lang/en and your existing Zulu translation in lang/zu we create a set of PO
files in po-zu. These will now have your translations. Please be aware that in order for that to work 100% you need
to have both English and Zulu at the same revision, if they are not you will have to review all translations.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

po2php -t lang/en po-zu/ lang/zu

Your translations found in the Zulu PO directory, po-zu, will be converted to PHP using the files in lang/en as
templates and placing your new translations in lang/zu.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

1.3.7 sub2po

sub2po allows you to use the same principles of PO files with Subtitles. In PO only items that change are marked
fuzzy and only new items need to be translated, unchanged items remain unchanged for the translation.

Usage

sub2po [options] <foo.srt> <foo.po>
po2sub [options] [-t <foo.srt>] <XX.po> <foo-XX.srt>

Where:

foo.srt is the input subtitle file
foo.po is an empty PO file that may be translated
XX.po is a PO file translated into the XX language
foo-XX.srt is the foo.srt file translated into language XX

18 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Options (sub2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in .srt format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ass, srt, ssa, sub formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2sub):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in srt format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in txt format

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Examples

To create the POT files is simple:

sub2po -P SUBTITLE_FILE subtitles.pot

A translator would copy the POT file to their own PO file and then create translations of the entries. If you wish to
create a PO file and not a POT file then leave off the -P option.

To convert back:

1.3. Converters 19

Translate Toolkit Documentation, Release 3.0.0

po2sub -t SUBTITLE_FILE subtitles-XX.po subtitles-XX.srt

Translating

Translate as normal. However, see the issues mentioned at Subtitles.

Bugs

There might be some issues with encodings, since the srt files don’t specify them. We assume files to be encoded in
UTF-8, so a conversion should solve this easily. Note that most of the handling of the srt files come from gaupol.

1.3.8 txt2po

txt2po allows you to use the same principles of PO files with normal text files. In PO only items that change are
marked fuzzy and only new items need to be translated, unchanged items remain unchanged for the translation.

Usage

txt2po [options] <foo.txt> <foo.po>
po2txt [options] [-t <foo.txt>] <XX.po> <foo-XX.txt>

Where:

foo.txt is the input plain text file
foo.po is an empty PO file that may be translated
XX.po is a PO file translated into the XX language
foo-XX.txt is the foo.txt file translated into language XX

Options (txt2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in *, txt formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--encoding=ENCODING The encoding of the input file (default: UTF-8)

--flavour=FLAVOUR The flavour of text file: plain (default), dokuwiki, mediawiki

--no-segmentation Don’t segment the file, treat it like a single message

20 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2txt):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in txt format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in txt format

-S, --timestamp skip conversion if the output file has newer timestamp

--encoding=ENCODING The encoding of the template file (default: UTF-8)

-w WRAP, --wrap=WRAP set number of columns to wrap text at

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

A roundtrip example

Preparing input files

With txt2po a text file is broken down into sections. Each section is separated by a line of whitespace. Each section
will appear as a msgid in the PO file. Because of this simple method of breaking up the input file it might be necessary
to alter the layout of your input file. For instance you might want to separate a heading from a paragraph by using
whitespace.

For steps in a process you would want to leave a blank line between each step so that each step can be translated
independently.

For a list of items you might want to group them together so that a translator could for example place them in alphabetic
order for their translation.

Once the input file is prepared you can proceed to the next step.

Creating the POT files

This is simple:

txt2po -P TEXT_FILE text_file.pot

A translator would copy the POT file to their own PO file and then create translations of the entries. If you wish to
create a PO file and not a POT file then leave off the -P option.

1.3. Converters 21

Translate Toolkit Documentation, Release 3.0.0

You might want to manually edit the POT file to remove items that should not be translated. For instance if part of the
document is a license you might want to remove those if you do not want the license translated for legal reasons.

Translating

Translate as normal. However translators should be aware that writers of the text file may have used spaces, dashes,
equals, underscores and other aids to indicate things such as:

* Headings and sub-headings

* Code examples, command lines examples

* Various lists

* etc

They will need to adapt these to work in their language being aware of how they will appear once they are merged
with the original text document.

Creating a translated text file

With the translations complete you can create a translated text file like this:

po2txt -w 75 -t TEXT_FILE translated.po TEXT_FILE.translated

This uses the original text file as a template and creates a new translated text file using the translations found in the PO
file.

The -w command allows you to reflow the translated text to N number of characters, otherwise the text will appear as
one long line.

Help with Wiki syntax

dokuwiki

To retrieve the raw syntax for your dokuwiki page add ‘?do=export_raw’ to you URL. The following would retrieve
the DokuWiki home page in raw dokuwiki format https://www.dokuwiki.org/dokuwiki?do=export_raw

wget https://www.dokuwiki.org/dokuwiki?do=export_raw -O txt2po.txt
txt2po --flavour=dokuwiki -P txt2po.txt txt2po.pot
edit txt2po.pot
po2txt -t txt2po.txt fr.po fr.txt

First we retrieve the file in raw dokuwiki format, then we create a POT file for editing. We created a French translation
and using po2txt plus the original file as a template we output fr.txt which is a French version of the original txt2po.txt.
This file can now be uploaded to the wiki server.

MediaWiki

To retrieve the raw media wiki syntax add ‘?action=raw’ to you wiki URL. The following retrieves the Translate
Toolkit page from Wikipedia in raw MediaWiki format http://en.wikipedia.org/wiki/Translate_Toolkit?action=raw or
http://en.wikipedia.org/w/index.php?title=Pootle&action=raw.

To process follow the instructions above but substituting the MediaWiki retrieval method.

22 Chapter 1. User’s Guide

https://www.dokuwiki.org/dokuwiki
https://www.dokuwiki.org/dokuwiki?do=export_raw
http://en.wikipedia.org/wiki/Translate_Toolkit?action=raw
http://en.wikipedia.org/w/index.php?title=Pootle&action=raw

Translate Toolkit Documentation, Release 3.0.0

1.3.9 po2wordfast

Convert Gettext PO files to a Wordfast Translation Memory translation memory file.

Wordfast is a popular Windows based computer-assisted translation tool.

Usage

po2wordfast [options] --language <target> <po> <wordfast>

Where:

<po> a PO file or directory
<wordfast> a Wordfast translation memory file

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in tmx format

-S, --timestamp skip conversion if the output file has newer timestamp

-l LANG, --language=LANG set target language code (e.g. af-ZA) [required]

--source-language=LANG set source language code (default: en)

Examples

po2wordfast -l xh-ZA browser.po browser.txt

Use the Xhosa (xh-ZA) translations in the PO file browser.po to create a Wordfast translation memory file called
browser.txt

1.3.10 po2tmx

Convert Gettext PO files to a TMX translation memory file. TMX is the Translation Memory eXchange format devel-
oped by OSCAR.

If you are interested in po2tmx, you might also be interested in posegment that can be used to perform some automated
segmentation on sentence level.

1.3. Converters 23

http://en.wikipedia.org/wiki/Wordfast

Translate Toolkit Documentation, Release 3.0.0

Usage

po2tmx [options] --language <target> <po> <tmx>

Where:

<po> is a PO file
<tmx> is a TMX file

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in tmx format

-S, --timestamp skip conversion if the output file has newer timestamp

-l LANG, --language=LANG set target language code (e.g. af-ZA) [required]

--source-language=LANG set source language code (default: en)

--comments=COMMENT set default comment import: none, source, type or others (default: none)

Examples

po2tmx -l xh browser.po browser.tmx

Use the Xhosa (xh) translations in the PO file browser.po to create a TMX file called browser.tmx

Bugs and issues

Markup stripping

po2tmx conforms to TMX v1.4 without stripping markup. See the TMX conformance page for more details.

It has not been widely tested so your mileage may vary.

TMX and PO in OmegaT

In some tools, like OmegaT, PO files are parsed without expanding escaped sequences, even though such tools use
TMX for translation memory. Keep this in mind when using po2tmx, because po2tmx converts \n and \t to newlines
and tabs in the TMX file. If such a TMX file is used while translating PO files in OmegaT, matching will be less than
100%.

24 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

In other tools, such as Swordfish, the PO comment “no-wrap” is interpreted in the same way as the equivalent function
in XML, which may also lead to mismatches if TMXes from po2tmx are used.

There is nothing wrong with po2tmx, but if used in conjunction with tools that handle PO files differently, it may lead
to less than perfect matching.

Tips

TMX with only unique segments

To create a TMX with no duplicates (in other words, only unique strings), use msgcat to first create a large PO file
with non-uniques removed.

1.3.11 pot2po

Convert a Gettext PO Template file to a PO file and merge in existing translations if they are present. A translation
memory (compendium) can also be used for fuzzy matching. This corresponds to a large extent with the program
“msgmerge” from the gettext package.

Note: This tool also works with translation formats other than Gettext PO, for example XLIFF.

Usage

pot2po [options] <pot> <po>

Where:

<pot> is a PO Template (POT) file or directory of POT files
<po> is a PO file or a directory of PO files

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in catkeys, lang, pot, ts, xlf, xliff formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in catkeys, lang, po, pot, ts, xlf, xliff formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in catkeys, lang, po, pot, ts, xlf,
xliff formats (old translations)

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--tm=TM The file to use as translation memory when fuzzy matching

1.3. Converters 25

Translate Toolkit Documentation, Release 3.0.0

-s MIN_SIMILARITY, --similarity=MIN_SIMILARITY The minimum similarity for inclusion
(default: 75%)

--nofuzzymatching Disable all fuzzy matching

Examples

pot2po -t zu-1.0.1 pot-2.0.2 zu-2.0.2

Here we are initialising the PO files in zu-2.0.2 based on the POT files in pot-2.0.2. We are using the old translations
in zu-1.0.1 as templates so that we can reuse our existing translations in the new files.

pot2po can also be used to update against newer templates an existing translation file in a format different than
Gettext PO, for example XLIFF:

pot2po -t af.xlf -i templates.xlf -o updated-af.xlf

If the POT files have undergone major reshuffling then you may want to use pomigrate2 which can now use pot2po as
its merging backend. pomigrate2 will do its best to migrate your files to the correct locations before merging. It will
also make use of a compendium if requested.

pot2po --tm=compendium.po --similarity=60 -t xh-old pot xh-new

With this update we are using compendium.po as a translations memory (you can make use of other files such as TMX,
etc). We will accept any match that scores above 60%.

Merging

It helps to understand when and how pot2po will merge. The default is to follow msgmerge’s behaviour but we add
some extra features with fuzzy matching:

• If everything matches we carry that across

• We can resurrect obsolete messages for reuse

• Messages no longer used are made obsolete

• If we cannot find a match we will first look through the current and obsolete messages and then through any
global translation memory

• Fuzzy matching makes use of the Levenshtein distance algorithm to detect the best matches

Performance

Fuzzy matches are usually of good quality. Installation of the python-Levenshtein package will speed up fuzzy match-
ing. Without this a Python based matcher is used which is considerably slower.

Bugs

• pomerge and pot2po should probably become one.

26 Chapter 1. User’s Guide

https://pypi.python.org/pypi/python-Levenshtein

Translate Toolkit Documentation, Release 3.0.0

1.3.12 csv2po

Convert between CSV (Comma Separated Value) files and the PO format. This is useful for those translators who can
only use a Spreadsheet, a modern spreadsheet can open CSV files for editing. It is also useful if you have other data
such as translation memory in CSV format and you wish to use it with your PO translations.

If you are starting out with your own CSV files (not created by po2csv), take note of the assumptions of the column
layout explained below.

Usage

csv2po [options] <csv> <po>
po2csv [options] <po> <csv>

Where:

<csv> is a file or directory containing CSV files
<po> is a file or directory containing PO files

Options (csv2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in csv format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in po, pot, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--charset=CHARSET set charset to decode from csv files

--columnorder=COLUMNORDER specify the order and position of columns (loca-
tion,source,target)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2csv):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

1.3. Converters 27

Translate Toolkit Documentation, Release 3.0.0

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in csv format

-S, --timestamp skip conversion if the output file has newer timestamp

--columnorder=COLUMNORDER specify the order and position of columns (loca-
tion,source,target)

CSV file layout

The resultant CSV file has the following layout

Col-
umn

Data Description

A Location All the PO #: location comments. These are needed to reconstruct or merge the CSV
back into the PO file

B Source Lan-
guage

The msgid or source string

C Target Lan-
guage

The msgstr or target language

Examples

These examples demonstrate the use of csv2po:

po2csv -P pot csv

We use the -P option to recognise POT files found in pot and convert them to CSV files placed in csv:

csv2po csv po

Convert CSV files in csv to PO files placed in po:

csv2po --charset=windows-1250 -t pot csv po

User working on Windows will often return files encoded in everything but Unicode. In this case we convert CSV files
found in csv from windows-1250 to UTF-8 and place the correctly encoded files in po. We use the templates found in
pot to ensure that we preserve formatting and other data. Note that UTF-8 is the only available destination encoding.

csv2po --columnorder=location,target,source fr.csv fr.po

In case the CSV file has the columns in a different order you may use --columnorder.

Bugs

• Translation comments #[space] and KDE comments _: are not available in CSV mode which effects the trans-
lators effectiveness

• Locations #: that are not conformant to PO (i.e. have spaces) will get messed up by PO tools.

1.3.13 csv2tbx

Convert between CSV (Comma Separated Value) files and the TBX format for terminology exchange.

28 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Usage

csv2tbx [--charset=CHARSET] [--columnorder=COLUMNORDER] <csv> <tbx>

Where:

<csv> is a CSV file
<tbx> is the target TBX file

Options (csv2tbx):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in csv format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in tbx format

-S, --timestamp skip conversion if the output file has newer timestamp

--charset=CHARSET set charset to decode from csv files

--columnorder=COLUMNORDER specify the order and position of columns (com-
ment,source,target)

CSV file layout

The CSV file is expected to have three columns (separated by commas, not other characters like semicolons), of which
the default layout is

Col-
umn

Data Description

A Comment All the PO #: location comments. These are not used in the TBX files, and can be left
empty, but could be generated by po2csv

B Source Lan-
guage

The msgid or source string

C Target Lan-
guage

The msgstr or target language

Examples

These examples demonstrate the use of csv2tbx:

csv2tbx terms.csv terms.tbx

to simply convert terms.csv to terms.tbx.

To convert a directory recursively to another directory with the same structure of files:

1.3. Converters 29

Translate Toolkit Documentation, Release 3.0.0

csv2tbx csv-dir tbx-target-dir

This will convert CSV files in csv-dir to TBX files placed in tbx-target-dir.:

csv2tbx --charset=windows-1250 csv tbx

Users working on Windows will often return files in encoding other the Unicode based encodings. In this case we
convert CSV files found in csv from windows-1250 to UTF-8 and place the correctly encoded files in tbx. Note that
UTF-8 is the only available destination encoding.

Two column CSV

csv2tbx --columnorder=source,target foo.csv foo.tbx

Notes

For conformance to the standards and to see which features are implemented, see CSV and TBX.

1.3.14 tbx2po

Convert between TermBase eXchange (.tbx) glossary format and Gettext PO format.

Usage

tbx2po <tbx> <po>

Where:

<tbx> is a TBX file
<po> is the target PO file

Options (tbx2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in csv format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in tbx format

-S, --timestamp skip conversion if the output file has newer timestamp

30 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Examples

These examples demonstrate the use of tbx2po:

tbx2po terms.tbx terms.po

to simply convert terms.tbx to terms.po.

To convert a directory recursively to another directory with the same structure of files:

tbx2po tbx-dir po-target-dir

This will convert TBX files in tbx-dir to PO files placed in po-target-dir.

Notes

For conformance to the standards and to see which features are implemented, see PO Files and TBX.

1.3.15 html2po

Convert translatable items in HTML to the PO format.

Usage

html2po [options] <html> <po>
po2html [options] <po> <html>

Where:

<html> is an HTML file or a directory of HTML files
<po> is a PO file or directory of PO files

Options (html2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in htm, html, xhtml formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

-u, --untagged include untagged sections

--keepcomments preserve html comments as translation notes in the output

1.3. Converters 31

Translate Toolkit Documentation, Release 3.0.0

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2html):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in htm, html, xhtml formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in htm, html, xhtml formats

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Examples

html2po -P site pot

This will find all HTML files (.htm, .html, .xhtml) in site, convert them to POT files and place them in pot.

You can create and update PO files for different languages using the pot2po command.

po2html -t site -i xh -o site-xh

All the PO translations in xh will be converted to HTML using HTML files in site as templates and outputting new
translated HTML files in site-xh.

Notes

The HTML format description gives more details on the format of the localisable HTML content and the capabilities
of this converter.

Bugs

Some items end up in the msgid’s that should not be translated

1.3.16 flatxml2po

Converts flat XML (.xml) files to Gettext PO format, a simple monolingual and single-level XML.

32 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Usage

flatxml2po [options] <xml> <po>
po2flatxml [options] <po> <xml> [-t <base-xml>]

Where:

<xml> is a valid .xml file or directory of those files
<po> is a directory of PO or POT files
<base-
xml>

is a template or the original file before translation. required for roundtrips preserving extraneous
data.

Options (flatxml2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in xml format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-r ROOT, --root=ROOT name of the XML root element (default: “root”)

-v VALUE, --value=VALUE name of the XML value element (default: “str”)

-k KEY, --key=KEY name of the XML key attribute (default: “key”)

-n NS, --namespace=NS XML namespace uri (default: None)

Options (po2flatxml):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in xml format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in xml format

-S, --timestamp skip conversion if the output file has newer timestamp

-r ROOT, --root=ROOT name of the XML root element (default: “root”)

-v VALUE, --value=VALUE name of the XML value element (default: “str”)

-k KEY, --key=KEY name of the XML key attribute (default: “key”)

1.3. Converters 33

Translate Toolkit Documentation, Release 3.0.0

-n NS, --namespace=NS XML namespace uri (default: None)

-w INDENT, --indent=INDENT indent width in spaces, 0 for no indent (default: 2)

Formats Supported

Check flat XML format document to see to which extent the XML format is supported.

Examples

This example looks at roundtrip of flat XML translations as well as recovery of existing translations.

First we need to create a set of POT files.:

flatxml2po -P lang/en pot/

All .xml files found in the lang/en directory are converted to Gettext POT files and placed in the pot directory.

If you are translating for the first time then you can skip the next step. If you need to recover your existing translations
then we do the following:

flatxml2po -t lang/en lang/zu po-zu/

Using the English XML files found in lang/en and your existing Zulu translation in lang/zu we create a set of
PO files in po-zu. These will now have your translations. Please be aware that in order for that to work 100% you
need to have both English and Zulu at the same revision, if they are not you will have to review all translations.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

po2flatxml -t lang/en po-zu/ lang/zu

Your translations found in the Zulu PO directory, po-zu, will be converted to XML using the files in lang/en as
templates and placing your new translations in lang/zu.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

Limitations

Indentation only supports spaces (specified with --indent greater than zero) or flattened (no indentation, everything
on a single line; specified with --indent set to zero). Tabs are not supported using po2flatxml.

1.3.17 ical2po

New in version 1.2.

Converts iCalendar (*.ics) files to Gettext PO format.

34 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Usage

ical2po [options] <ical> <po>
po2ical [options] -t <ical> <po> <ical>

Where:

<ical> is a valid .ics file or directory of those files
<po> is a directory of PO or POT files

Options (ical2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in ics format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ics format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2ical):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in ics format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ics format

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

1.3. Converters 35

Translate Toolkit Documentation, Release 3.0.0

Examples

This example looks at roundtrip of iCalendar translations. While you can do recovery of translations, its unlikely that
you will ever need to do that.

First we need to create a set of POT files.

ical2po -P ical.ics ical.pot

The ical.ics file is converted to Gettext POT files called ical.pot. Directories of iCalendar files can also be processed.

Begin translating the ical.pot file by first copying it to make a PO file.

cp ical.pot ical-af.po

You are now in a position to translate the file ical-af.po in your favourite translation tool.

Once translated you can convert back as follows:

po2ical -t ical.ics ical-af.po ical-af.ics

Your translations found in the Afrikaans PO file, ical-af.po, will be converted to .ics using the file ical.ics as
a template and creating your newly translated .ics file ical-af.ics.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

Notes

The converter will only process events in the calendar file, the file itself can contain many other things that could be
localisable. Please raise a bug if you want to extract additional items.

The converter does not make use of the LANGUAGE attribute which is permitted in the format. The LANGUAGE
attribute does not aid multilingualism in this context so is ignored.

The converter could conceivably also process vCard files, but this has not been implemented for lack of a clear need.
Please raise a bug with an example if you have such a file that could benefit from localisation.

1.3.18 ini2po

Converts .ini files to Gettext PO format.

Usage

ini2po [options] <ini> <po>
po2ini [options] -t <ini> <po> <ini>

Where:

<ini> is a valid .ini file or directory of those files
<po> is a directory of PO or POT files

Options (ini2po):

--version show program’s version number and exit

36 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/Vcard

Translate Toolkit Documentation, Release 3.0.0

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in ini, isl, iss formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ini, isl, iss formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2ini):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in ini, isl formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ini, isl formats

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Formats Supported

INI files need to be organized into separate languages per file and in the following format:

[Section]
; a comment
a = a string

Comment marked with the hash symbol (#) are also allowed, and the colon (:) is also accepted as key-value delimiter:

[Section]
another comment
b : a string

This variants in comment marks and key-value delimiters can be mixed in one single INI file:

1.3. Converters 37

Translate Toolkit Documentation, Release 3.0.0

[Section]
; a comment
a = a string
another comment
b : a string
c:'other example with apostrophes'
d:"example with double quotes"

The spacing between the key-value delimiter and the key, and the between the value and the key-value delimiter is not
important since the converter automatically strips the blank spaces.

Note: A section must be present at the file beginning in order to get ini2po working properly. You may add it by hand
at the file beginning.

Note: Strings marked with double quotes and/or apostrophes will carry these quotation marks to the generated .po
file, so they will appear like:

#: [Section]c
msgid "'other example with apostrophes'"
msgstr ""

#: [Section]d
msgid "\"example with double quotes\""
msgstr ""

Examples

This example looks at roundtrip of .ini translations as well as recovery of existing translations.

First we need to create a set of POT files.

ini2po -P ini/ pot/

All .ini files found in the ini/ directory are converted to Gettext POT files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step. If you need to recover your existing translations
then we do the following:

ini2po -t lang/ zu/ po-zu/

Using the English .ini files found in lang/ and your existing Zulu translation in zu/ we create a set of PO files in
po-zu/. These will now have your translations. Please be aware that in order for the to work 100% you need to have
both English and Zulu at the same revision. If they are not, you will have to review all translations.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

po2ini -t lang/ po-zu/ zu/

Your translations found in the Zulu PO directory, po-zu/, will be converted to .ini using the files in lang/ as
templates and placing your newly translated .ini files in zu/.

38 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

Issues

We do not extract comments from .ini files. These are sometimes needed as developers provide guidance to translators
in these comments.

1.3.19 json2po

Converts .json files to Gettext PO format.

Usage

json2po [options] <json> <po>
po2json [options] -t <json> <po> <json>

Where:

<json> is a valid .json file or directory of those files
<po> is a directory of PO or POT files

Options (json2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in JSON format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in JSON format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--filter=FILTER leaves to extract e.g. ‘name,desc’: (default: extract everything)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2json):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

1.3. Converters 39

Translate Toolkit Documentation, Release 3.0.0

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in JSON format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in JSON format

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

--removeuntranslated remove untranslated strings from output

Examples

This example looks at roundtrip of .json translations as well as recovery of existing translations.

First we need to create a set of POT files.

json2po -P json/ pot/

All .json files found in the json/ directory are converted to Gettext POT files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step. If you need to recover your existing translations
then we do the following:

json2po -t lang/ zu/ po-zu/

Using the English .json files found in lang/ and your existing Zulu translation in zu/ we create a set of PO files in
po-zu/. These will now have your translations. Please be aware that in order for the to work 100% you need to have
both English and Zulu at the same revision. If they are not, you will have to review all translations.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

po2json -t lang/ po-zu/ zu/

Your translations found in the Zulu PO directory, po-zu/, will be converted to .json using the files in lang/ as
templates and placing your newly translated .json files in zu/.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

1.3.20 web2py2po

Converts web2py translation files to PO files and vice versa.

Web2py, formerly known as Gluon) is an open-source, Python-based web application framework by Massimo Di
Pierro (inspired by Django and Rails).

Web2py uses an internal localization engine based on Python dictionaries, which is applied with the T() lookup func-
tion. Web2py provides a built-in translation interface for the T()-engine, which is excellent for rapid application
development.

40 Chapter 1. User’s Guide

http://web2py.com/

Translate Toolkit Documentation, Release 3.0.0

On the other hand, for collaboration and workflow control in a wider community you might probably rather want to
use Pootle, Launchpad or similar facilities for translation, thus need to transform the web2py dictionaries into PO files
and vice versa. And exactly that is what the web2py2po converters are good for.

Usage

web2py2po [options] <web2py> <po>
po2web2py [options] <po> <web2py>

Where:

<web2py> is a valid web2py translation file
<po> is a PO or POT file or a directory of PO or POT files

Options (web2py2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in php format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2web2py):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in php format

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

1.3. Converters 41

Translate Toolkit Documentation, Release 3.0.0

Notes

Handling of blanks/untranslated messages:

Untranslated messages in the web2py translation files are usually marked with a leading %%"*** "%%, so:

• All target strings from the web2py sources with a leading %%"*** "%% are inserted as blank msgstr’s into the
PO result (web2py2po)

• Blank msgstr’s from the PO file will get the msgid string with a leading %%"*** "%% as target string in the
web2py result (po2web2py)

1.3.21 rc2po

Converts Windows Resource .rc files to Gettext PO format.

Usage

rc2po [options] <rc> <po>
po2rc [options] -t <rc> <po> <rc>

Where:

<rc> is a valid Windows Resource file or directory of those files
<po> is a directory of PO or POT files

Options (rc2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in rc format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in rc format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--charset=CHARSET charset to use to decode the RC files (default: cp1252)

-l LANG, --lang=LANG LANG entry (default: LANG_ENGLISH)

--sublang=SUBLANG SUBLANG entry (default: SUBLANG_DEFAULT)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2rc):

--version show program’s version number and exit

42 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in rc format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in rc format

-S, --timestamp skip conversion if the output file has newer timestamp

--charset=CHARSET charset to use to decode the RC files (default: utf-8)

-l LANG, --lang=LANG LANG entry

--sublang=SUBLANG SUBLANG entry (default: SUBLANG_DEFAULT)

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Formats Supported

Note: This implementation is based mostly on observing WINE .rc files, these should mimic other non-WINE .rc
files.

Examples

This example looks at roundtrip of Windows Resource translations as well as recovery of existing translations.

First we need to create a set of POT files.

rc2po -P lang/ pot/

All .rc files found in the lang/ directory are converted to Gettext POT files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step. If you need to recovery your existing translations
then we do the following:

rc2po -t lang zu po-zu/

Using the English .rc files found in lang and your existing Zulu translation in zu we create a set of PO files in
po-zu. These will now have your translations. Please be aware that in order for the to work 100% you need to have
both English and Zulu at the same revision, if they are not you will have to review all translations. Also the .rc files
may be in different encoding, we cannot at the moment process files of different encodings and assume both are in the
same encoding supplied.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

1.3. Converters 43

Translate Toolkit Documentation, Release 3.0.0

po2rc -t lang/ po-zu/ zu/

Your translations found in the Zulu PO directory, po-zu, will be converted to .rc using the files in lang/ as templates
and placing your new translations in zu/.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

Issues

If you are recovering translation using rc2po -t en.rc xx.rc xx.po then both en.rc and xx.rc need to be in
the same encoding.

There might be problems with MENUs that are deaply nested.

1.3.22 resx2po

Converts .Net Resource (.resx) files to Gettext PO format, a monolingual file format used in Microsoft .Net Applica-
tions.

Usage

resx2po [options] <resx> <po>
po2resx [options] <po> <resx> -t <resx>

Where:

<resx> is a valid .resx file or directory of those files
<po> is a directory of PO or POT files

Options (resx2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in RESX format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in RESX format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--filter=FILTER leaves to extract e.g. ‘name,desc’: (default: extract everything)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

44 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Options (po2resx):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in RESX format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in RESX format

-S, --timestamp skip conversion if the output file has newer timestamp

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Examples

This example looks at roundtrip of .resx translations as well as recovery of existing translations.

First we need to create a set of POT files

resx2po -P resx/ pot/

All .resx files found in the resx/ directory are converted to Gettext POT files and placed in the pot/ directory.

If you are translating for the first time then you can skip the next step. If you need to recover your existing translations
then we do the following

resx2po zu/ po-zu/ -t lang/

Using the English .resx files found in lang/ and your existing Zulu translation in zu/ we create a set of PO files in
po-zu/. These will now have your translations. Please be aware that in order for the to work 100% you need to have
both English and Zulu at the same revision. If they are not, you will have to review all translations.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

po2resx po-zu/ zu/ -t lang/

Your translations found in the Zulu PO directory, po-zu/, will be converted to .resx using the files in lang/ as
templates and placing your newly translated .resx files in zu/.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

1.3.23 symb2po

New in version 1.3.

1.3. Converters 45

Translate Toolkit Documentation, Release 3.0.0

Converts Symbian-style translation files to PO files and vice versa. The Symbian translation files currently have a
strong Buddycloud flavour, but the tools will be made more general as the need arises.

Usage

symb2po [options] [-t <target_lang_symb>] <source_lang_symb> <po>
po2symb [options] -t <target_lang_symb> <po> <target_lang_symb>

Where:

<target_lang_symb> is a valid Symbian translation file or directory of those files
<source_lang_symb> is a valid Symbian translation file or directory of those files
<po> is a PO or POT file or a directory of PO or POT files

Options (symb2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in php format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in the Symbian translation format

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2symb):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in php format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in the Symbian translation format

-S, --timestamp skip conversion if the output file has newer timestamp

46 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Examples

symb2po

The most common use of symb2po, is to generate a POT (PO template) file from the English translation (note that
the tool currently expects the Symbian translation file to end with the extension .r01, which is the code for English
translation files). This file then serves as the source document from which all translations will be derived.

To create a POT file called my_project.pot from the source Symbian translation file my_project.r01, the
following is executed:

symb2po my_project.r01 my_project.pot

In order to re-use existing translations in the Symbian translation format, symb2po can merge that translation into the
source Symbian translation to produce a translated PO file. The existing Symbian translation file is specified with the
-t flag.

To create a file called my_project-en-fr.po (this is not the recommended PO naming convention) from the
source Symbian translation file my_project.r01 and its French translation my_project.r02, execute:

symb2po -t my_project.r02 my_project.r01 my_project-en-fr.po

Note: Ensure that the English and French files are well aligned, in other words, no changes to the source text should
have happened since the translation was done.

po2symb

The po2symb tool is used to extract the translations in a PO into a template Symbian translation file. The template
Symbian translation file supplies the “shape” of the generated file (formatting and comments).

In order to produce a French Symbian translation file using the English Symbian translation file my_project.r01
as a template and the PO file my_project-en-fr.po (this is not the recommended PO naming convention) as the
source document, execute:

po2symb -t my_project.r01 my_project-en-fr.po my_project.r02

Notes

The tools won’t touch anything appearing between lines marked as:

// DO NOT TRANSLATE

The string r_string_languagegroup_name is used to set the Language-Team PO header field.

The Symbian translation header field Author is used to set the Last-Translator PO header field.

Issues

The file format is heavily tilted towards the Buddycould implementation

The tools do nothing with the Name and Description Symbian header fields. This means that po2symb will just
copy the values in the supplied template. So you might see something such as:

1.3. Converters 47

Translate Toolkit Documentation, Release 3.0.0

Description : Localisation File : English

in a generated French translation file.

Bugs

Probably many, since this software hasn’t been tested much yet.

1.3.24 tiki2po

Converts TikiWiki language.php files to Gettext PO format.

Usage

tiki2po [options] <tiki> <po>
po2tiki [options] <po> <tiki>

Where:

<tiki> is a valid language.php file for TikiWiki
<po> is a PO file

Options (tiki2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in php format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

--include-unused When converting, include strings in the “unused” section?

Options (po2tiki):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

48 Chapter 1. User’s Guide

http://tikiwiki.org

Translate Toolkit Documentation, Release 3.0.0

-o OUTPUT, --output=OUTPUT write to OUTPUT in php format

-S, --timestamp skip conversion if the output file has newer timestamp

Examples

These examples demonstrate the use of tiki2po:

tiki2po language.php language.po

Convert the tiki language.php file to .po:

po2tiki language.po language.php

Convert a .po file to a tiki language.php file

Notes

• Templates are not currently supported.

1.3.25 ts2po

Convert Qt .ts localization files to Gettext .po format files using ts2po and convert the translated PO Files files back to
Qt .ts using po2ts.

The Qt toolkit comes with a localization application, Qt Linguist, however you might wish to standardise on one
localization tool. ts2po allows you to standardise on the PO format and PO related tools.

Note: Virtaal and Pootle can edit .ts files directly without the need for any conversion.

Warning: po2ts uses our older .ts support. Thus many of the newer features in .ts are not supported. To support
those features rather edit directly in Virtaal or Pootle.

Usage

ts2po [options] <ts> <po>
po2ts [options] <po> <ts>

Where:

<ts> is a Qt .ts file or directory that contains .ts files
<po> is a PO file or a directory of PO files

Options (ts2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

1.3. Converters 49

http://virtaal.org
http://pootle.translatehouse.org
http://virtaal.org
http://pootle.translatehouse.org

Translate Toolkit Documentation, Release 3.0.0

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in ts format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2ts):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in ts format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in ts format

-S, --timestamp skip conversion if the output file has newer timestamp

-c CONTEXT, --context=CONTEXT use supplied context instead of the one in the .po file comment

Examples

ts2po -P psi.ts psi.pot

This will create a POT file called psi.pot from the Qt .ts file called psi.ts.

po2ts af.po psi_af.ts

Now take your translated PO files af.po and convert it into a translated Qt .ts file, psi_af.ts.

Note: You need to use the tools from the Qt toolkit to create the compiled .qm language files for the application.

Bugs

There are probably still some bugs related to migrating the various attributes across for the different formats. The
converters don’t support all the newer features of the TS format, whereas the native support of Virtaal and Pootle is
much better.

50 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

1.3.26 xliff2po

Converts XLIFF localization files to Gettext PO files. XLIFF is the XML Localization Interchange File Format devel-
oped by OASIS (Organization for the Advancement of Structured Information Standards) to allow translation work to
be standardised no matter what the source format and to allow the work to be freely moved from tool to tool.

Usage

po2xliff [options] <po> <xliff>
xliff2po [options] <xliff> <po>

Where:

<po> is a PO file or directory of PO files
<xliff> is an XLIFF file or directory of XLIFF files

Options (xliff2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in xliff format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2xliff):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in xliff format

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in xliff format

-S, --timestamp skip conversion if the output file has newer timestamp

1.3. Converters 51

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff

Translate Toolkit Documentation, Release 3.0.0

Examples

xliff2po -P xliff pot

Create POT files from the XLIFF files found in directory xliff and output them to the directory pot

po2xliff xh xh-xlf

Convert the Xhosa PO files in xh to XLIFF and place them in xh-xlf

Bugs

This filter is not yet extensively used. . . expect bugs. See XLIFF to see how well our implementation conforms to the
standard.

The PO plural implementation is still very new and needs active testing.

1.3.27 yaml2po

New in version 2.2.6.

Converts YAML localization files to Gettext PO format.

Usage

yaml2po [options] <yml> <po>
po2yaml [options] <po> <yml>

Where:

<yml> is a valid YAML localisable file or directory of those files
<po> is a directory of PO or POT files

Options (yaml2po):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in yaml, yml formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in yaml, yml formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

52 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

--duplicates=DUPLICATESTYLE what to do with duplicate strings (identical source text): merge,
msgctxt (default: ‘msgctxt’)

Options (po2yaml):

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in yaml, yml formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in yaml, yml formats

-S, --timestamp skip conversion if the output file has newer timestamp

--threshold=PERCENT only convert files where the translation completion is above PERCENT

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Formats Supported

Check YAML format document to see to which extent the YAML format is supported.

Examples

This example looks at roundtrip of YAML translations as well as recovery of existing translations.

First we need to create a set of POT files:

yaml2po -P lang/en pot/

All .yml files found in the lang/en directory are converted to Gettext POT files and placed in the pot directory.

If you are translating for the first time then you can skip the next step. If you need to recover your existing translations
then we do the following:

yaml2po -t lang/en lang/zu po-zu/

Using the English YAML files found in lang/en and your existing Zulu translation in lang/zu we create a set of
PO files in po-zu. These will now have your translations. Please be aware that in order for that to work 100% you
need to have both English and Zulu at the same revision, if they are not you will have to review all translations.

You are now in a position to translate your recovered translations or your new POT files.

Once translated you can convert back as follows:

po2yaml -t lang/en po-zu/ lang/zu

1.3. Converters 53

Translate Toolkit Documentation, Release 3.0.0

Your translations found in the Zulu PO directory, po-zu, will be converted to YAML using the files in lang/en as
templates and placing your new translations in lang/zu.

To update your translations simply redo the POT creation step and make use of pot2po to bring your translation
up-to-date.

1.3.28 –errorlevel=ERRORLEVEL

This is a parameter that can be passed to most of the programs in the translate toolkit in order to choose the level of
feedback that you need when errors occur. It is mostly useful for debugging. Please report your errors to the developers
with --errorlevel=traceback.

none

Display no error messages

message

Display on the error message

An error occurred processing PO file

exception

Give the error message and name and Python exception

ValueError: An error occurred processing PO file

traceback

Provide a full traceback for debugging purposes

csv2po: warning: Error processing: nso/readlicense_oo/docs/readme.csv: Traceback
→˓(most recent call last):

File "/usr/lib/python2.4/site-packages/translate/misc/optrecurse.py", line 415, in
→˓recursiveprocess

success = self.processfile(fileprocessor, options, fullinputpath, fulloutputpath,
→˓fulltemplatepath)

File "/usr/lib/python2.4/site-packages/translate/misc/optrecurse.py", line 468, in
→˓processfile

if fileprocessor(inputfile, outputfile, templatefile, **passthroughoptions):

File "/usr/lib/python2.4/site-packages/translate/convert/csv2po.py", line 183, in
→˓convertcsv

outputpo = convertor.convertfile(inputcsv)

File "/usr/lib/python2.4/site-packages/translate/convert/csv2po.py", line 159, in
→˓convertfile

raise ValueError("An error occurred processing PO file")

(continues on next page)

54 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

ValueError: An error occurred processing PO file

1.3.29 –duplicates=DUPLICATESTYLE

Gettext PO files only allow one message with a common msgid (source string). Many other formats allow duplicate
entries. To create a valid PO file you need to merge these duplicate entries into one PO message. However, this often
negatively affects the roundtrip or is not what is expected by the user. Thus we have a number of methods of handling
duplicates which we call duplicate styles.

Also affected are conversions in which the source format is empty (allowing possible translation). As the header in a
PO file is identified by an empty source string, your message will appear to be a duplicate of the header. In this case
duplicate removal is critical.

Previously the tools used msgid_comment (KDE style comments) to disambiguate text. However, with the release of
Gettext 0.15, the new msgctxt disambiguation is now recommended, especially if you wish to use your files with other
Gettext the tools. Many other pieces of software now also support this feature, and will probably become the best
choice for almost all circumstances. It is the default in our converters.

merge

This is the traditional Gettext approach. All messages with the same source string or English string are merged into
one PO message.

#: file1.dtd:instruction_manual
#: file1.dtd:manual_process
msgid "Manual"
msgstr ""

If however the source text is blank (these are often configuration options in Mozilla) then the merge style will use
KDE comments as used in the msgid_comment style in order to create unambiguous entries that can still be used for
configuration.

#: file1.dtd:translators_name
msgid "_: file1.dtd:translators_name\n"
msgstr ""

#: file1.dtd:translators_email
msgid "_: file1.dtd:translators_email\n"
msgstr ""

msgctxt (default)

This uses the msgctxt feature of Gettext that was introduced with Gettext 0.15. Some tools might not support it 100%.
This option is the default in recent releases of the Translate Toolkit.

#: file1.dtd:instruction_manual
msgctxt "instruction_manual"
msgid "Manual"
msgstr ""

#: file1.dtd:manual_process
(continues on next page)

1.3. Converters 55

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

msgctxt "manual_process"
msgid "Manual"
msgstr ""

1.3.30 –progress=PROGRESS

All of the programs can give visual feedback. This options allows you to select the style of that feedback.

In the examples we are converting and OpenOffice.org 2.0 sdf/gsi file into POT files using oo2po.

none

No visual feedback, this is useful if you want to use any of the scripts as part of another script and don’t want feedback
to interfere with the operation.

$ oo2po -P --progress=none en-US.sdf pot
$

dots

Use visual dots to represent progress. Each dot represent a file that has been processed.

$ oo2po -P --progress=dots en-US.sdf pot
..
→˓.......
..
→˓.......
...
$

bar (default)

Use a progress bar consisting of hashes (#) to show progress.

$ oo2po -P --progress=bar en-US.sdf pot
processing 227 files...
[##############################] 69%

This is the default mode of operation, therefore this command would create the same output.

$ oo2po -P en-US.sdf pot

verbose

Combine the hash (#) progress bar form the bar option with the actual names of files that have been processed.

$ oo2po -P --progress=verbose en-US.sdf pot
processing 227 files...
so3/src.oo

(continues on next page)

56 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

dbaccess/source/ui/uno.oo
helpcontent2/source/text/shared.oo
wizards/source/formwizard.oo
sch/source/ui/dlg.oo
helpcontent2/source/text/sbasic/shared/01.oo
dbaccess/source/core/resource.oo
svtools/source/sbx.oo
dbaccess/source/ui/relationdesign.oo
scp2/source/writer.oo
filter/source/xsltdialog.oo
[##] 5%

names

Prints out only the filenames without any other progress indicator. This is a good option when outputting to a log file
rather than a terminal.

$ oo2po -P --progress=names en-US.sdf pot
so3/src.oo
dbaccess/source/ui/uno.oo
helpcontent2/source/text/shared.oo
wizards/source/formwizard.oo
sch/source/ui/dlg.oo
helpcontent2/source/text/sbasic/shared/01.oo
dbaccess/source/core/resource.oo
svtools/source/sbx.oo
dbaccess/source/ui/relationdesign.oo
scp2/source/writer.oo
filter/source/xsltdialog.oo

1.3.31 –filteraction=ACTION

none (default)

Take no action. Messages from failing test will appear in the output file

warn

Print a warning but otherwise include the message in the output file.

exclude-serious

Only exclude errors that are listed as serious by the convertor. All other are included.

exclude-all

Exclude any message that fails a test.

1.3. Converters 57

Translate Toolkit Documentation, Release 3.0.0

1.3.32 –multifile=MULTIFILESTYLE

This options determines how the POT/PO files are spli from the source files. In many cases you have source files that
generate either too many small files or one large files which you would rather see split up into smaller files.

single

Output individual files.

toplevel

Split the source files at the top level. Ie you see a number of top level files.

onefiles

One large file instead of many smaller files.

1.3.33 –personality=TYPE

java (default)

Create output strictly according to the specification for .properties files. This will use escaped Unicode for any non-
ASCII characters. Thus the following string found in a PO file:

Will appear as follows in the output .properties file:

\u1E7D\u1E01\u1E3D\u1E7B\u1E1D

mozilla

Mozilla has made slight adjustments to the Java .properties spec. Mozilla will accept UTF-8 encoded strings in the
property file and thus does not need escaped Unicode. Thus the above string – – will not be escaped. Mozilla property
files are thus more useful for non-Latin languages in that they are actually readable.

Of course this style of file is only used by Mozilla and should not be used for other projects that follow the Java spec
more strictly.

skype

Skype .lang files are .properties files in UTF-16. The & is used as an accelerator (marked in the PO header).

flex

Flex follows the Mozilla approach, a UTF-8 encoded file with no escaped unicode. We include it as its own dialect for
ease of use.

58 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

strings

Much Mac OS X and iPhone software is translated using .strings files. These are quite different from properties files
and we treat them here as key value files.

The files are in UTF-16 with a few minor escaping conventions.

1.3.34 –accelerator=ACCELERATOR

Accelerator Marker Used by
& KDE Desktop and Mozilla (when using moz2po)
_ GNOME Desktop and other GTK+ based applications
~ LibreOffice and Apache OpenOffice

Converters change many different formats to PO and back again. Sometimes only one direction is supported, or
conversion is done using non-PO formats. The converters follow a general pattern of usage, understanding that will
make the converters much easier to use and understand.

• moz2po – Mozilla .properties and .dtd converter. Works with Firefox and Thunderbird

• oo2po – OpenOffice.org SDF converter (Also works as oo2xliff).

• odf2xliff – Convert OpenDocument (ODF) documents to XLIFF and vice-versa.

• prop2po – Java property file (.properties) converter

• php2po – PHP localisable string arrays converter.

• sub2po – Converter for various subtitle files

• txt2po – Plain text to PO converter

• po2wordfast – Wordfast Translation Memory converter

• po2tmx – TMX (Translation Memory Exchange) converter

• pot2po – initialise PO Template files for translation

• csv2po – Comma Separated Value (CSV) converter. Useful for doing translations using a spreadsheet.

• csv2tbx – Create TBX (TermBase eXchange) files from Comma Separated Value (CSV) files

• html2po – HTML converter

• flatxml2po – Flat XML converter

• ical2po – iCalendar file converter

• ini2po – Windows INI file converter

• json2po – JSON file converter

• web2py2po – web2py translation to PO converter

• rc2po – Windows Resource .rc (C++ Resource Compiler) converter

• resx2po – .Net Resource (.resx) file converter

• symb2po – Symbian-style translation to PO converter

• tiki2po – TikiWiki language.php converter

• ts2po – Qt Linguist .ts converter

1.3. Converters 59

http://kde.org
http://mozilla.org
http://www.gnome.org
http://www.gtk.org
http://www.libreoffice.org
http://www.openoffice.org
http://tikiwiki.org/

Translate Toolkit Documentation, Release 3.0.0

• xliff2po – XLIFF (XML Localisation Interchange File Format) converter

• yaml2po – YAML (Yet Another Markup Language) converter

1.4 Tools

The PO tools allow you to manipulate and work with PO files

1.4.1 Quality Assurance

poconflicts

poconflicts takes a PO file and creates an set of output PO files that contain messages that conflict. During any
translation project that involves a large amount of work or a number of translators you will see message conflicts. A
conflict is where the same English message has been translated differently (in some languages this may have been
intentional). Conflicts occur due to different translation style or a shift in translations as the translators or project
mature.

poconflicts allows you to quickly identify these problem messages, investigate and correct them. To merge the files
back, they have to be restructured into the correct directory structure using porestructure in order to enable merging
using pomerge.

Usage

poconflicts [options] <po> <conflicts>

Where:

<po> is a directory of existing PO files or an individual PO file
<conflicts> is a directory containing one PO file for each conflict

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po format

-I, --ignore-case ignore case distinctions

-v, --invert invert the conflicts thus extracting conflicting destination words

--accelerator=ACCELERATORS ignores the given accelerator characters when matching

60 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Examples

Here are some examples that demonstrate the usefulness of poconflict

poconflicts --accelerator=~ -I xhosa conflicts

This extracts messages from the PO files in the xhosa directory and places a new PO file for each identified conflict
in conflicts. We are working with OpenOffice files and we therefore use the tilde (~) as the accelerator marker (with
this set F~ile is considered the same as ~File). We are also ignoring the case of the message using -I (thus File is
considered the same as file or FILE)

Another useful option is to look at the inverted conflicts. This will detect target words that have been used to translate
different source words.

poconflicts --accelerator=~ -I -v xhosa conflicts

Now in the conflicts directory we will find PO files based on the Xhosa word. We can now check where a Xhosa word
has been used for different source or English words. Often there is no problem but you might find cases where the
same Xhosa word was used for Delete and Cancel – clearly a usability issue.

The translator makes the needed corrections to the files and then we can proceed to merge the results back into the PO
files. Unchanged entries can be removed.

Now restructure the files to resemble the original directory structure using porestructure:

porestructure -i conflicts -o conflicts_tree

Now merge the changes back using pomerge:

pomerge -t xhosa -i conflicts_tree -o xhosa

This takes the corrected files from conflicts_tree and merge them into the files in xhosa using the same files as tem-
plates.

pofilter

Pofilter allows you to run a number of checks against your PO, XLIFF or TMX files. These checks are designed to
pick up problems with capitalisation, accelerators, variables, etc. Those messages that fail any of the checks are output
and marked so that you can correct them.

Use pofilter -l to get a list of available checks.

Once you have corrected the errors in your PO files you can merge the corrections into your existing translated PO
files using pomerge.

Usage

pofilter [options] <in> <out>

Where:

<in> the input file or directory which contains PO or XLIFF files
<out> the output file or directory that contains PO or XLIFF files that fail the various tests

Options:

1.4. Tools 61

Translate Toolkit Documentation, Release 3.0.0

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in pot, po, xlf, tmx formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot, xlf, tmx formats

-l, --listfilters list filters available

--review include elements marked for review (default)

--noreview exclude elements marked for review

--fuzzy include elements marked fuzzy (default)

--nofuzzy exclude elements marked fuzzy

--nonotes don’t add notes about the errors (since version 1.3)

--autocorrect output automatic corrections where possible rather than describing issues

--language=LANG set target language code (e.g. af-ZA) [required for spell check]. This will help to
make pofilter aware of the conventions of your language

--openoffice use the standard checks for OpenOffice translations

--libreoffice use the standard checks for LibreOffice translations

--mozilla use the standard checks for Mozilla translations

--drupal use the standard checks for Drupal translations

--gnome use the standard checks for Gnome translations

--kde use the standard checks for KDE translations

--wx use the standard checks for wxWidgets translations – identical to –kde

--excludefilter=FILTER don’t use FILTER when filtering

-t FILTER, --test=FILTER only use test FILTERs specified with this option when filtering

--notranslatefile=FILE read list of untranslatable words from FILE (must not be translated)

--musttranslatefile=FILE read list of translatable words from FILE (must be translated)

--validcharsfile=FILE read list of all valid characters from FILE (must be in UTF-8)

Example

Here are some examples to demonstrate how to use pofilter:

pofilter --openoffice af af-check

Use the default settings (accelerator and variables) for OpenOffice.org. Check all PO files in af and output any
messages that fail the check in af-check (create the directory if it does not already exist).

62 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

pofilter -t isfuzzy -t untranslated zu zu-check

Only run the isfuzzy and untranslated checks, this will extract all messages that are either fuzzy or untranslated.

pofilter --excludefilter=simplecaps --nofuzzy nso nso-check

Run all filters except simplecaps. You might want to do this if your language does not make use of capitalisation or
if the test is creating too many false positives. Also only run the checks against messages that are not marked fuzzy.
This is useful if you have already marked problem strings as fuzzy or you know that the fuzzy strings are bad, with
this option you don’t have to see the obviously wrong messages.

pofilter --language=fr dir dir-check

Tell pofilter that you are checking French translations so that it can take the conventions of the language into account
(for things like punctuation, spacing, quoting, etc.) It will also disable some tests that are not meaningful for your
language, like capitalisation checks for languages that don’t have capital letters.

pofilter --excludefilter=untranslated

Tell pofilter not to complain about your untranslated units.

pofilter -l

List all the available checks.

Bugs

There are minor bugs in the filters. Most relate to false positives, corner cases or minor changes for better fault
description.

Descriptions of all pofilter tests

The following are descriptions of the tests available in pofilter, Pootle and Virtaal with some details about what type
of errors they are useful to test for and the limitations of each test.

Keep in mind that the software might point to errors which are not necessarily wrong (false positives).

Currently there are 48 tests. You can always get a list of the currently available tests by running:

pofilter -l

To see test specific to a specific targeted application or group of applications run:

pofilter --gnome -l

Adding new tests and new language adaptations

If you have an idea for a new test or want to add target language adaptations for your language then please help us
with information about your test idea and the specifics of your language.

1.4. Tools 63

http://docs.translatehouse.org/projects/pootle/en/latest/features/checks.html#checks

Translate Toolkit Documentation, Release 3.0.0

Test Classification

Some tests are more important than others so we have classified them to help you determine which to run first.

• Critical – can break a program

– dialogsizes, escapes, newlines, nplurals, printf , pythonbraceformat, tabs, variables, xmltags

• Functional – may confuse the user

– accelerators, acronyms, blank, emails, filepaths, functions, gconf , kdecomments, long, musttranslate-
words, notranslatewords, numbers, options, purepunc, sentencecount, short, spellcheck, urls, unchanged

• Cosmetic – make it look better

– brackets, doublequoting, doublespacing, doublewords, endpunc, endwhitespace, puncspacing, simplecaps,
simpleplurals, startcaps, singlequoting, startpunc, startwhitespace, validchars

• Extraction – useful mainly for extracting certain types of string

– compendiumconflicts, credits, hassuggestion, isfuzzy, isreview, untranslated

Test Description

accelerators

Checks whether accelerators are consistent between the two strings.

Make sure you use the --mozilla, --kde, etc options so that pofilter knows which type of accelerator it is looking
for. The test will pick up accelerators that are missing and ones that shouldn’t be there.

This check alters its default behavior in Mozilla checker for some languages so it instead checks that accelerators are
not present in translation. The purpose of this is to ensure that for languages where the accelerators shouldn’t be used
the accelerators are not present in the translations. This is common for Indic languages.

acronyms

Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating acronyms is
a language decision but many languages leave them unchanged. In that case this test is useful for tracking down
translations of the acronym and correcting them.

blank

Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is different from
untranslated which is completely empty. This test is useful in that if something is translated as ” ” it will appear to
most tools as if it is translated.

brackets

Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

64 Chapter 1. User’s Guide

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html#accelerators

Translate Toolkit Documentation, Release 3.0.0

compendiumconflicts

Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not consistent. If the
compendium is used later in a message merge then these conflicts will appear in your translations. This test quickly
extracts those for correction.

credits

Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators can fill
in their name and possibly their contact details. This test allows you to find these units easily to check that they
are completed correctly and also disables other tests that might incorrectly get triggered for these units (such as urls,
emails, etc.)

dialogsizes

Checks that dialog sizes are not translated.

This is a Mozilla specific test. Mozilla uses a language called XUL to define dialogues and screens. This can make
use of CSS to specify properties of the dialogue. These properties include things such as the width and height of the
box. The size might need to be changed if the dialogue size changes due to longer translations. Thus translators can
change these settings. But you are only meant to change the number not translate the words ‘width’ or ‘height’. This
check capture instances where these are translated. It will also catch other types of errors in these units.

doublequoting

Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated string. This
tests takes into account that several languages use different quoting characters, and will test for them instead.

doublespacing

Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the original but
not in your translation. Some of these are spurious and how you correct them depends on the conventions of your
language.

doublewords

Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These are
generally typos that need correcting. Some languages may have valid repeated words in their structure, in that case
either ignore those instances or switch this test off using the --excludefilters option.

1.4. Tools 65

Translate Toolkit Documentation, Release 3.0.0

emails

Checks to see that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses e.g.
info@example.com are not translated. In some cases of course you should translate the address but generally you
shouldn’t.

endpunc

Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it ends in :[space]
then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your translations, not simply three
separate full-stops. You may pick up some errors in the original: feel free to keep your translation and notify the
programmers. In some languages, characters such as ? ! are always preceded by a space e.g. [space]? — do what your
language customs dictate. Other false positives you will notice are, for example, if through changes in word-order you
add “), etc. at the end of the sentence. Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence, that often
these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially match them with the
English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom question marks for
Greek and Arabic, Devenagari Danda, full-width punctuation for CJK languages, etc. Support for your language can
be added easily if it is not there yet.

endwhitespace

Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for those strings
which will evidently be followed by another string in the program, e.g. [Password:] or [Enter your username:].
The whitespace is an inherent part of the string. This filter makes sure you don’t miss those important but otherwise
invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be enough
without an added extra space.

escapes

Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \uNNNN to ensure that if they exist in the original string you also have them in the
translation.

filepaths

Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file-path, unless
it is being used as an example, e.g. [your_user_name/path/to/filename.conf].

66 Chapter 1. User’s Guide

mailto:info@example.com

Translate Toolkit Documentation, Release 3.0.0

functions

Checks to see that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

gconf

Checks if we have any gconf config settings translated.

Gconf settings should not be translated so this check checks that gconf settings such as “name” or “modification_date”
are not translated in the translation. It allows you to change the surrounding quotes but will ensure that the setting
values remain untranslated.

hassuggestion

Checks if there is at least one suggested translation for this unit.

If a message has a suggestion (an alternate translation stored in alt-trans units in XLIFF and .pending files in PO) then
these will be extracted. This is used by Pootle and is probably only useful in pofilter when using XLIFF files.

isfuzzy

Checks if the po element has been marked fuzzy.

If a message is marked fuzzy in the PO file then it is extracted. Note this is different from --fuzzy and --nofuzzy
options which specify whether tests should be performed against messages marked fuzzy.

isreview

Checks if the po element has been marked for review.

If you have made use of the ‘review’ flags in your translations:

(review) reason for review
(pofilter) testname: explanation for translator

Then if a message is marked for review in the PO file it will be extracted. Note this is different from --review and
--noreview options which specify whether tests should be performed against messages already marked as under
review.

kdecomments

Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often translate the com-
ment. This test tries to identify instances where the comment has been translated.

1.4. Tools 67

Translate Toolkit Documentation, Release 3.0.0

long

Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source text is only 1
character long. Otherwise, we use a general ratio that will catch very big differences but is set conservatively to limit
the number of false positives.

musttranslatewords

Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occurrences of
‘OK’ in the translation if it appeared in the source string. You must specify a file containing all of the must translate
words using --musttranslatefile.

newlines

Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

nplurals

Checks for the correct number of noun forms for plural translations.

This uses the plural information in the language module of the toolkit. This is the same as the Gettext nplural value. It
will check that the number of plurals required is the same as the number supplied in your translation.

notranslatewords

Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word, Ex-
cel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate words using
--notranslatefile.

numbers

Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in your translation.
Also changes in order will trigger this error.

Some languages don’t use latin numbers but instead use different numbers. This check will take that into account.

options

Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain untranslated.
These could be translated in the future if programs can create a mechanism to allow this, but currently they are not

68 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

translated. If the options has a parameter, e.g. --file=FILE, then the test will check that the parameter has been
translated.

printf

Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used by
programs to format output in a human readable form (they are place holders for variable data). They allow you to
specify lengths of string variables, string padding, number padding, precision, etc. Generally they will look like this:
%d, %5.2f, %100s, etc. The test can also manage variables-reordering using the %1$s syntax. The variables’ type
and details following data are tested to ensure that they are strictly identical, but they may be reordered.

See also:

pythonbraceformat

See also:

printf Format String

puncspacing

Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the space. It
checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctuation marks are
used. This check will take that into account.

purepunc

Checks that strings that are purely punctuation are not changed.

This extracts strings like “+” or “-” as these usually should not be changed.

pythonbraceformat

Checks whether Python brace format strings match.

Python supports both a variant of the printf formatting system, and its own formatting language which uses placehold-
ers enclosed in braces. The placeholders can be named, numbered, or anonymous; the former two are filled in from
positional args, the latter from keyword arguments. Example:

'the {} {0} hungry {insect}'.format('very', insect='caterpiller')
--> 'the very very hungry caterpiller'

The pythonbraceformat filter checks for the following problems:

• named placeholders that are present in the original, but missing in the translation, and vice versa.

• originals and translations that require different numbers of positional args.

1.4. Tools 69

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

When the translation has variables not in the original, this can lead to program crashes. The translation not using all
variables the original uses is safe. Nonetheless, this filter triggers in both cases.

See also:

PEP 3101 – Advanced String Formatting

sentencecount

Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated string.
You may not always want to use this test, if you find you often need to reformat your translation, because the original
is badly-expressed, or because the structure of your language works better that way. Do what works best for your
language: it’s the meaning of the original you want to convey, not the exact way it was written in the English.

short

Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is multiple
characters long. Otherwise, we use a general ratio that will catch very big differences but is set conservatively to limit
the number of false positives.

simplecaps

Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that don’t start
with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t. It will also highlight
sentences that have extra capitals; depending on the capitalisation convention of your language, you might want to
change these to Title Case, or change them all to normal sentence case.

simpleplurals

Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then inspect the
message, to check that the correct plural form has been used for your language. In some languages, plurals are made
by adding text at the beginning of words, making the English style messy. In this case, they often revert to the plural
form. This test allows an editor to check that the plurals used are correct. Be aware that this test may create a number
of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)” was used in
the translation.

singlequoting

Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s and in posses-
sive forms like user’s, this test can output spurious errors if your language doesn’t use such forms. If a quote appears
at the end of a sentence in the translation, i.e. '., this might not be detected properly by the check.

70 Chapter 1. User’s Guide

http://legacy.python.org/dev/peps/pep-3101/

Translate Toolkit Documentation, Release 3.0.0

spellcheck

Checks for words that don’t pass a spell-check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in the original
(usually English) text, and adds those to an exclusion list. The advantage of this exclusion is that many words that are
specific to the application will not raise errors e.g. program names, brand names, function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your lan-
guage (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have specified the
--language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker. That
makes it easy for you to identify the word and select a replacement.

startcaps

Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remaining character
is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation does not, an error is
produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower case. Contact
us if this is not yet disabled for your language.

startpunc

Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace

Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs

Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged

Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you want, but
other times you will detect words that should have been translated.

1.4. Tools 71

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

untranslated

Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated independently
of the main work.

urls

Checks to see that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t want to
translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the URL is for configuration
information, then you need to query the developers about placing configuration information in PO files. It shouldn’t
really be there, unless it is very clearly marked: such information should go into a configuration file.

validchars

Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your translation.
This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains all the
characters that are valid in your language. You must use UTF-8 encoding for the characters in the file.

If the test finds any characters not in your valid characters file then the test will print the character together with its
Unicode value (e.g. 002B).

variables

Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. Make sure you use
the --kde, --openoffice, etc flags as these define what variables will be searched for. It does not at the moment
cope with variables that use the reordering syntax of Gettext PO files.

xmltags

Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the translation. If the
counts don’t match then either the tag is missing or it was mistakenly translated by the translator, both of which are
errors.

The check ignores tags or things that look like tags that cover the whole string e.g. “<Error>” but will produce false
positives for things like “An <Error> occurred” as here “Error” should be translated. It also will allow translation of
the alt attribute in e.g. or similar translatable attributes in OpenOffice.org
help files.

72 Chapter 1. User’s Guide

http://your_server.com/filename.html
http://translate.sourceforge.net/wiki/guide/translation/html

Translate Toolkit Documentation, Release 3.0.0

pogrep

The pogrep tool extracts messages that match a regular expression into a new set of PO files that can be examined,
edited and corrected. These corrections can then be merged using pomerge.

Usage

pogrep [options] <in> <out>

Where:

<in>/<out>In and out are either directories or files. Out will contain PO/XLIFF files with only those messages that
match the regular expression that was you searched for.

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in gmo, mo, po, pot, tmx, xlf, xlff, xliff formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in gmo, mo, po, pot, tmx, xlf, xlff, xliff formats

--search=SEARCHPARTS searches the given parts (source, target, notes, locations)

-I, --ignore-case ignore case distinctions

-e, --regexp use regular expression matching

-v, --invert-match select non-matching lines

--accelerator=ACCELERATORS ignores the given accelerator characters when matching

-k, --keep-translations always extract units with translations

Example

pogrep --accelerator="_" --search msgid -I -e "software|hardware" only-zu only-zu-
→˓check

Search for the words “software” or “hardware” in the msgid field. Ignore case (-I) and treat the underscore (_)
character as an accelerator key. Search through all PO files in the directory “only-zu” and place any matches in PO
files in the directory “only-zu-check”. This would be useful to run if you know that the word for software and hardware
has been changed during the course of translation and you want to check and correct all these instances.

pogrep --search=msgid -e '^\w+(\s+\w+){0,3}$' -i templates -o short-words

Find all messages in the templates directory that have between 1 and 4 words and place them in short-words. Use this
if you want to see quick results by translating messages that are most likely menu entries or dialogue labels.

1.4. Tools 73

Translate Toolkit Documentation, Release 3.0.0

pogrep --search=msgstr -I -e "Ifayile" zu zu-check

Search all translations for the occurrence of Ifayile. You would use this to check if words have been used correctly.
Useful if you find problematic use of the same word for different concepts. You can use pocompendium to find these
conflicts.

Notes

Unicode normalization

pogrep will normalize Unicode strings. This allows you to search for strings that contain the same character but
that are using precomposed Unicode characters or which are composed using another composition recipe. While an
individual user will in all likelihood only compose characters in one way, normalization ensures that data created in a
team setting can be shared.

Further reading

Here is a blog post explaining how pogrep can be used to do more targeted localisation of GNOME: http://translate.
org.za/blogs/friedel/en/content/better-lies-about-gnome-localisation

pomerge

Pomerge will merge corrected PO, XLIFF, or TMX files (or snippets) into your existing PO, XLIFF, TMX files.
Usually you would extract errors using pofilter, make corrections to these PO (or XLIFF, TMX) snippets then merge
them back using pomerge. You could also use pogrep to extract a number of messages matching a certain string, make
corrections then merge the correction back using pomerge.

It is probably best to run pomerge against files stored in some kind of version control system so that you can monitor
what changes were made.

Pomerge will also attempt to make as small a change as possible to the text, making it easier to see the changes using
your version control system.

Usage

pomerge [options] [-t <template>] -i <input> -o <output>

Where:

<tem-
plate>

is a set of reference PO, XLIFF, TMX files, either the originals or a set of POT files

<input> contains the corrected files that are to override content in <output>
<output> contains the files whose content will be overridden by <input>. This can be the same directory as

<template>

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

74 Chapter 1. User’s Guide

http://translate.org.za/blogs/friedel/en/content/better-lies-about-gnome-localisation
http://translate.org.za/blogs/friedel/en/content/better-lies-about-gnome-localisation

Translate Toolkit Documentation, Release 3.0.0

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot, xlf formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot, xlf formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in po, pot, xlf formats

-S, --timestamp skip conversion if the output file has newer timestamp

--mergeblanks=MERGEBLANKS whether to overwrite existing translations with blank translations
(yes/no). Default is yes.

--mergefuzzy=MERGEFUZZY whether to overwrite existing translations with fuzzy translations
(yes/no). Default is yes.

--mergecomments=MERGECOMMENTS whether to merge comments as well as translations
(yes/no). Default is yes.

Examples

These examples show pomerge in action.

pomerge -t af -i af-check -o af

Take corrections from af-check merge them with the templates in af and output into af. Thus merge af-check and
override entries found in af. Do this only if you are using a version control system so that you can check what changes
pomerge made or if you have complete and utter confidence in this tool.

pomerge --mergeblanks=yes -t af -i af-check -o af-new

Merge the corrections from af-check with templates in af and output to af-new. If an entry is blank in af-check then
make it blank in the output in af-new.

Issues

• Seems to have trouble merging KDE style comments back. (Probably not relevant with newest versions any
more.)

• Only files found in the input directory will be copied to the output. The template directory is not searched for
extra files to copy to the output. Therefore it is always best to have your input directory in version control, and
use the same directory as output. This will allow you to use the diff function of the version control system to
double check changes made, with all the files of the input still present.

porestructure

porestructure takes the PO files output by poconflicts (a flat structure), and recreates the directory structure according
to the poconflict location comments found in each PO message. After being restructured, the messages in the resulting
directory structure can be merged back using pomerge.

1.4. Tools 75

Translate Toolkit Documentation, Release 3.0.0

Since poconflicts adds conflicting messages, from many different PO files, into a single PO file, the original structure of
the files and directories are lost and the new PO files are output to a single directory. The original structure information
is left in “(pofilter)” comments for each PO element.

Usage

porestructure [options] <conflicts> <po>

Where:

<conflicts> is a directory containing one the corrected output from poconflict
<po> is an output directory to write the restructured files to

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po format

Examples

The documentation for poconflicts has Examples for the complete process using poconflict, porestructure, and
pomerge.

junitmsgfmt

New in version 1.7.

Run msgfmt and provide JUnit type output for use in continuous integration systems like Hudson and Jenkins.

Usage

junitmsgfmt po/*.po > msgfmt_junit.xml

These tools are especially useful for measuring and improving translation quality.

• poconflicts – extract messages that have conflicting translation

• pofilter – filter PO files to find common errors using a number of tests

• pogrep – find strings in your PO files

• pomerge – merge file extracted using pofilter back into the original files

76 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

• porestructure – restructures PO files according to poconflict directives

• junitmsgfmt – run msgfmt and provide JUnit type output for use in continuous integration systems like Hudson
and Jenkins

1.4.2 Other tools

tmserver

tmserver is a Translation Memory service that can be queried via HTTP using a simple REST like URL/http and data
is exchanged between server and client encoded in JSON.

Note: If you are searching for an enterprise Translation Memory server then rather use amaGama.

Usage

tmserver.py --bind=HOSTNAME --port=PORT [--tmdb=TMDBFILE] [--import-translation-
→˓file=TMFILE [--import-source-lang=SOURCE_LANG] [--import-target-lang=TARGET_LANG]]

Where:

TMDB-
FILE

is the SQLite database file containing translation memory data, if not specified a new temporary
database is created

TMFILE is a translation file (po, xliff, etc.) that should be imported into the database (mostly useful when no
tmdb file is specified).

Options:

-h, --help show this help message and exit

-d TMDBFILE, --tmdb=TMDBFILE translation memory database file

-f TMFILES, --import-translation-file=TMFILES translation file to import into the database

-t TARGET_LANG, --import-target-lang=TARGET_LANG target language of translation files

-s SOURCE_LANG, --import-source-lang=SOURCE_LANG source language of translation files

-b BIND, --bind=BIND address to bind server to (default: localhost)

-p PORT, --port=PORT port to listen on (default: 8888)

--max-candidates=MAX_CANDIDATES Maximum number of candidates

--min-similarity=MIN_SIMILARITY minimum similarity

--max-length=MAX_LENGTH Maxmimum string length

--debug enable debugging features

Testing

easiest way to run the server for testing is to pass it a large translation file (maybe generated by pocompendium) to
create a tmdb database on the fly.

1.4. Tools 77

http://amagama.translatehouse.org/

Translate Toolkit Documentation, Release 3.0.0

tmserver -b localhost -p 8080 -f compendium.po -s en_US -t ar

The server can be queried using a webbrowser. the url would be:

http://HOST:PORT/tmserver/SOURCE_LANG/TARGET_LANG/unit/STRING

So to see suggestions for “open file” try the url http://localhost:8080/tmserver/en_US/ar/unit/open+file

poterminology

poterminology takes Gettext PO/POT files and extracts potential terminology.

This is useful as a first step before translating a new project (or an existing project into a new target language) as it
allows you to define key terminology for consistency in translations. The resulting terminology PO files can be used
by Pootle to provide suggestions while translating.

Generally, all the input files should have the same source language, and either be POT files (with no translations) or
PO files with translations to the same target language.

The more separate PO files you use to generate terminology, the better your results will be, but poterminology can be
used with just a single input file.

Read more about terminology extraction

Usage

poterminology [options] <input> <terminology>

Where:

<input> translations to be examined for terminology
<terminology> extracted potential terminology

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in pot, po formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-u UPDATEFILE, --update=UPDATEFILE update terminology in UPDATEFILE

-S STOPFILE, --stopword-list=STOPFILE read stopword (term exclusion) list from STOPFILE
(default site-packages/translate/share/stoplist-en)

-F, --fold-titlecase fold “Title Case” to lowercase (default)

-C, --preserve-case preserve all uppercase/lowercase

78 Chapter 1. User’s Guide

http://localhost:8080/tmserver/en_US/ar/unit/open+file
http://en.wikipedia.org/wiki/Terminology_extraction

Translate Toolkit Documentation, Release 3.0.0

-I, --ignore-case make all terms lowercase

--accelerator=ACCELERATORS ignore the given accelerator characters when matching (accelerator
characters probably require quoting)

-t LENGTH, --term-words=LENGTH generate terms of up to LENGTH words (default 3)

--nonstop-needed=MIN omit terms with less than MIN nonstop words (default 1)

--inputs-needed=MIN omit terms appearing in less than MIN input files (default 2, or 1 if only one
input file)

--fullmsg-needed=MIN omit full message terms appearing in less than MIN different messages (de-
fault 1)

--substr-needed=MIN omit substring-only terms appearing in less than MIN different messages (de-
fault 2)

--locs-needed=MIN omit terms appearing in less than MIN different original program locations (de-
fault 2)

--sort=ORDER output sort order(s): frequency, dictionary, length (default is all orders in the
above priority)

--source-language=LANG the source language code (default ‘en’)

-v, --invert invert the source and target languages for terminology

Examples

You want to generate a terminology file for Pootle that will be used to provide suggestions for translating Pootle itself:

poterminology Pootle/po/pootle/templates/*.pot .

This results in a ./pootle-terminology.pot output file with 23 terms (from “file” to “does not exist”) –
without any translations.

The default output file can be added to a Pootle project to provide terminology matching suggestions for that project;
alternately a special Terminology project can be used and it will provide terminology suggestions for all projects that
do not have a pootle-terminology.po file.

Generating a terminology file containing automatically extracted translations is possible as well, by using PO files
with translations for the input files:

poterminology Pootle/po/pootle/fi/*.po --output fi/pootle-terminology.po --sort
→˓dictionary

Using PO files with Finnish translations, you get an output file that contains the same 23 terms, with translations of
eight terms – one (“login”) is fuzzy due to slightly different translations in jToolkit and Pootle. The file is sorted in
alphabetical order (by source term, not translated term), which can be useful when comparing different terminology
files.

Even though there is no translation of Pootle into Kinyarwanda, you can use the Gnome UI terminology PO file as a
source for translations; in order to extract only the terms common to jToolkit and Pootle this command includes the
POT output from the first step above (which is redundant) and require terms to appear in three different input sources:

poterminology Pootle/po/pootle/templates/*.pot pootle-terminology.pot \
Pootle/po/terminology/rw/gnome/rw.po --inputs-needed=3 -o terminology/rw.po

1.4. Tools 79

http://docs.translatehouse.org/projects/pootle/en/latest/features/terminology.html#terminology

Translate Toolkit Documentation, Release 3.0.0

Of the 23 terms, 16 have Kinyarwanda translations extracted from the Gnome UI terminology.

For a language like Spanish, with both Pootle translations and Gnome terminology available, 18 translations (2 fuzzy)
are generated by the following command, which initializes the terminology file from the POT output from the first
step, and then uses --update to specify that the pootle-es.po file is to be used both for input and output:

cp pootle-terminology.pot glossary-es.po
poterminology --inputs=3 --update glossary-es.po \

Pootle/po/pootle/es/*.po Pootle/po/terminology/es/gnome/es.po

Reduced terminology glossaries

If you want to generate a terminology file containing only single words, not phrases, you can use -t/--term-words
to control this. If your input files are very large and/or you have a lot of input files, and you are finding that poter-
minology is taking too much time and memory to run, reducing the phrase size from the default value of 3 can be
helpful.

For example, running poterminology on the subversion trunk with the default phrase size can take quite some time
and may not even complete on a small-memory system, but with --term-words=1 the initial number of terms is
reduced by half, and the thresholding process can complete:

poterminology --progress=none -t 1 translate

1297 terms from 64039 units in 216 files
254 terms after thresholding
254 terms after subphrase reduction

The first line of output indicates the number of input files and translation units (messages), with the number of unique
terms present after removing C and Python format specifiers (e.g. %d), XML/HTML <elements> and &entities; and
performing stoplist elimination.

The second line gives the number of terms remaining after applying threshold filtering (discussed in more detail below)
to eliminate terms that are not sufficiently “common” in the input files.

The third line gives the number of terms remaining after eliminating subphrases that did not occur independently. In
this case, since the term-words limit is 1, there are no subphrases and so the number is the same as on the second line.

However, in the first example above (generating terminology for Pootle itself), the term “not exist” passes the stoplist
and threshold filters, but all occurrences of this term also contained the term “does not exist” which also passes the
stoplist and threshold filters. Given this duplication, the shorter phrase is eliminated in favor of the longer one, resulting
in 23 terms (out of 25 that pass the threshold filters).

Reducing output terminology with thresholding options

Depending on the size and number of the source files, and the desired scope of the output terminology file, there are
several thresholding filters that can be adjusted to allow fewer or more terms in the output file. We have seen above
how one (--inputs-needed) can be used to require that terms be present in multiple input files, but there are also
other thresholds that can be adjusted to control the size of the output terminology file.

–inputs-needed

This is the most flexible and powerful thresholding control. The default value is 2, unless only one input file (not
counting an --update argument) is provided, in which case the threshold is 1 to avoid filtering out all terms and
generating an empty output terminology file.

80 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

By copying input files and providing them multiple times as inputs, you can even achieve “weighted” thresholding, so
that for example, all terms in one original input file will pass thresholding, while other files may be filtered. A simple
version of this technique was used above to incorporate translations from the Gnome terminology PO files without
having it affect the terms that passed the threshold filters.

–locs-needed

Rather than requiring that a term appear in multiple input PO or POT files, this requires that it have been present in
multiple source code files, as evidenced by location comments in the PO/POT sources.

This threshold can be helpful in eliminating over-specialized terminology that you don’t want when multiple PO/POT
files are generated from the same sources (via included header or library files).

Note that some PO/POT files have function names rather than source file names in the location comments; in this case
the threshold will be on multiple functions, which may need to be set higher to be effective.

Not all PO/POT files contain proper location comments. If your input files don’t have (good) location comments and
the output terminology file is reduced to zero or very few entries by thresholding, you may need to override the default
value for this threshold and set it to 0, which disables this check.

The setting of the --locs-needed comment has another effect, which is that location comments in the output
terminology file will be limited to twice that number; a location comment indicating the number of additional locations
not specified will be added instead of the omitted locations.

–fullmsg-needed & –substr-needed

These two thresholds specify the number of different translation units (messages) in which a term must appear; they
both work in the same way, but the first one applies to terms which appear as complete translation units in one or more
of the source files (full message terms), and the second one to all other terms (substring terms). Note that translations
are extracted only for full message terms; poterminology cannot identify the corresponding substring in a translation.

If you are working with a single input file without useful location comments, increasing these thresholds may be
the only way to effectively reduce the output terminology. Generally, you should increase the --substr-needed
threshold first, as the full message terms are more likely to be useful terminology.

Stop word files

Much of the power of poterminology in generating useful terminology files is due to the default stop word file that it
uses. This file contains words and regular expressions that poterminology will ignore when generating terms, so that
the output terminology doesn’t have tons of useless entries like “the 16” or “Z”.

In most cases, the default stop word list will work well, but you may want to replace it with your own version, or
possibly just supplement or override certain entries. The default poterminology stopword file contains comments that
describe the syntax and operation of these files.

If you want to completely replace the stopword list (for example, if your source language is French rather than English)
you could do it with a command like this:

poterminology --stopword-list=stoplist-fr logiciel/ -o glossaire.po

If you merely want to modify the standard stopword list with your own additions and overrides, you must explicitly
specify the default list first:

poterminology -S /usr/lib/python2.5/site-packages/translate/share/stoplist-en \
-S my-stoplist po/ -o terminology.po

1.4. Tools 81

Translate Toolkit Documentation, Release 3.0.0

You can use poterminology --help to see the default stopword list pathname, which may differ from the one shown
above.

Note that if you are using multiple stopword list files, as in the above, they will all be subject to the same case mapping
(fold “Title Case” to lower case by default) – if you specify a different case mapping in the second file it will override
the mapping for all the stopword list files.

Issues

When using poterminology on Windows systems, file globbing for input is not supported (unless you have a version of
Python built with cygwin, which is not common). On Windows, a command like poterminology -o test.po
podir/*.po will fail with an error “No such file or directory: ‘podir*.po’” instead of expanding the podir/*.po
glob expression. (This problem affects all Translate Toolkit command-line tools, not just poterminology.) You can
work around this problem by making sure that the directory does not contain any files (or subdirectories) that you do
not want to use for input, and just giving the directory name as the argument, e.g. poterminology -o test.po
podir for the case above.

When using terminology files generated by poterminology as input, a plethora of translator comments marked with
(poterminology) may be generated, with the number of these increasing on each iteration. You may wish to run
pocommentclean (or a slightly modified version of it which only removes (poterminology) comments) on the input
and/or output files, especially since translator comments are displayed as tooltips by Pootle (thankfully, they are
truncated at a few dozen characters).

Default threshold settings may eliminate all output terms; in this case, poterminology should suggest threshold option
settings that would allow output to be generated (this enhancement is tracked as issue 582).

While poterminology ignores XML/HTML entities and elements and %-style format strings (for C and Python), it
does not ignore all types of “variables” that may occur, particularly in OpenOffice.org, Mozilla, or Gnome localization
files. These other types should be ignored as well (this enhancement is tracked as issue 598).

Terms containing only words that are ignored individually, but not excluded from phrases (e.g. “you are you”) may
be generated by poterminology, but aren’t generally useful. Adding a new threshold option --nonstop-needed
could allow these to be suppressed (this enhancement is tracked as issue 1102).

Pootle ignores parenthetical comments in source text when performing terminology matching; this allows for terms
like “scan (verb)” and “scan (noun)” to both be provided as suggestions for a message containing “scan.” potermi-
nology does not provide any special handling for these, but it could use them to provide better handling of different
translations for a single term. This would be an improvement over the current approach, which marks the term fuzzy
and includes all variants, with location information in {} braces in the automatically extracted translation.

Currently, message context information (PO msgctxt) is not used in any way; this could provide an additional source
of information for distinguishing variants of the same term.

A single execution of poterminology can only perform automatic translation extraction for a single target language –
having the ability to handle all target languages in one run would allow a single command to generate all terminology
for an entire project. Additionally, this could provide even more information for identifying variant terms by comparing
the number of target languages that have variant translations.

On single files

If poterminology yields 0 terms from single files, try the following:

poterminology --locs-needed=0 --inputs-needed=0 --substr-needed=5 -i yourfile.po -o
→˓yourfile_term.po

. . . where “substr-needed” is the number of times a term should occur to be considered.

82 Chapter 1. User’s Guide

https://github.com/translate/translate/issues/582
https://github.com/translate/translate/issues/598
https://github.com/translate/translate/issues/1102

Translate Toolkit Documentation, Release 3.0.0

Stopword file format

New in version 1.2.

The default stopword file for poterminology describes the syntax of these files and provides a good default for most
applications using English source text. You can find the location of the default stopword file by looking at the output
of poterminology --help, or using the following command:

poterminology --manpage | sed -n '/STOPFILE/s/.*(\(.*\)).*/\1/p'

Overview

The basic syntax of this file is line-oriented, with the first character of each line determining its function. The order
of the lines is generally not significant (with one exception noted below), and the selection of function characters was
made so that an ASCII sort of the file would leave it in a generally logical order (except for comment lines).

Apart from comment lines (which begin with ‘#’) and empty lines (which are also ignored), there are three general
types of lines, which may appear in any order:

• case mapping specifiers

• stoplist regular expressions

• stoplist words

Case mapping specifiers

A line beginning with a ‘!’ specifies upper-/lower-case mapping for words or phrases before comparison with this
stoplist (no mapping is applied to the words or regular expressions in this file, only to the source messages). The
second character on this line must be one of the following:

• C no uppercase / lowercase mapping is performed

• F ‘Title Case” words / terms are folded to lower case (default)

• I all words are mapped to lowercase

These correspond to the equivalent --preserve-case / --fold-titlecase / --ignore-case options to
poterminology, but are completely independent and only apply to stoplist matching. You can run poterminology with
-I to map all terms to lowercase, and if the case mapping specifier in the stopword file is ‘!C’ a stoplist with “pootle”
in it will not prevent a term containing “Pootle” from passing the stoplist (and then being mapped to “pootle”).

There should only be one case mapping specifier in a stoplist file; if more than one are present, the last one will take
precedence over the others, and its mapping will apply to all entries. If multiple stoplist files are used, the last case
mapping specifier processed will apply to all entries in all files.

Stoplist regular expressions

Lines beginning with a ‘/’ are regular expression patterns – any word that matches will be ignored by itself, and any
phrase containing it will be excluded as well. The regular expression consists of all characters on the line following
the initial ‘/’ – these are extended regular expressions, so grouping, alternation, and such are available.

Regular expression patterns are only checked if the word itself does not appear in the stoplist file as a word entry. The
regular expression patterns are always applied to individual words, not phrases, and must match the entire word (i.e.
they are anchored both at the start and end).

1.4. Tools 83

Translate Toolkit Documentation, Release 3.0.0

Use regular expressions sparingly, as evaluating them for every word in the source files can be expensive. In addition
to stoplist regular expressions, poterminology has precompiled patterns for C and Python format specifiers (e.g. %d)
and XML/HTML <elements> and &entities; – these are removed before stoplist processing and it is not possible to
override this.

Stoplist words

All other lines should begin with one of the following characters, which indicate whether the word should be ignored
(as a word alone), disregarded in a phrase (i.e. a phrase containing it is allowed, and the word does not count against
the --term-words length limit), or any phrase containing it should be excluded.

• + allow word alone, allow phrases containing it

• : allow word alone, disregarded (for --term-word-length) inside phrase

• < allow word alone, but exclude any phrase containing it

• = ignore word alone, but allow phrases containing it

• > ignore word alone, disregarded (for --term-word-length) inside phrase

• @ ignore word alone, and exclude any phrase containing it

Generally ‘+’ is only needed for exceptions to regular expression patterns, but it may also be used to override an entry
in a previous stoplist if you are using multiple stoplists.

Note that if a word appears multiple times in a stoplist file with different function characters preceding it, the last
entry will take precedence over the others. This is the only exception to the general rule that order is not important in
stopword files.

Default file example

apply title-case folding to words before comparing with this stoplist
!F

The fold-titlecase setting is the default, even if it were not explicitly specified. This allows capitalized words at the start
of a sentence (e.g. “Who”) to match a stopword “who” but allows acronyms like WHO (World Health Organization)
to be included in the terminology. If you are using poterminology with source files that contain large amounts of ALL
UPPERCASE TEXT you may find the ignore-case setting to be preferable.

override regex match below for phrases with 'no'
+no

The regular expression /..? below would normally match the word ‘no’ and both ignore it as a term and exclude any
phrases containing it. The above will allow it to appear as a term and in phrases.

ignore all one or two-character words (unless =word appears below)
/..?
ignore words with parenthesis, typically function() calls and the like
/.*\(.*
ignore numbers, both cardinal (e.g. 1,234.0) and ordinal (e.g. 1st, 22nd)
/[0-9,.]+(st|nd|rd|th)?

These regular expressions ignore a lot of uninteresting terms that are typically code or other things that shouldn’t be
translated anyhow. There are many exceptions to the one or two-character word pattern in the default stoplist file, not
only with = like ‘=in’ but also ‘+no’ and ‘:on’ and ‘<ok’ and ‘>of’.

84 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

allow these words by themselves and don't count against length for phrases
:off
:on

These prepositions are common as button text and thus useful to have as terms; they also form an important part of
phrases so are disregarded for term word count to allow for slightly longer phrases including them.

allow these words by themselves, but ignore any phrases containing them
<first
<hello
<last

These are words that are worth including in a terminology, as they are common in applications, but which aren’t
generally part of idiomatic phrases.

ignore these words by themselves, but allow phrases containing them
=able
=about
=actually
=ad
=as
=at

This is the largest category of stoplist words, and these are all just rather common words. The purpose of a terminology
list is to provide specific translation suggestions for the harder words or phrases, not provide a general dictionary, so
these words are not of interest by themselves, but may well be part of an interesting phrase.

ignore these words by themselves, but allow phrases containing them, and
don't count against length for phrases
#
(possible additions to this list for multi-lingual text: >di >el >le)
#
>a
>an
>and

These very common words aren’t of interest by themselves, but often form an important part of phrases so are disre-
garded for term word count to allow for slightly longer phrases including them.

ignore these words and any phrases containing them
@ain't
@aint
@al
@are

These are “junk” words that are not only uninteresting by themselves, they generally do not contribute anything to the
phrases containing them.

pocount

pocount will count the number of strings and words in translatable files.

Supported formates include: PO and XLIFF. Almost all bilingual file formats supported by the Translate Toolkit will
work with pocount, including: TMX, TBX, Gettext .mo, Qt .qm, Wordfast .txt TM.

A number of other formats should be countable as the toolkit develops. Note that only multilingual formats based the
storage base class are supported, but that includes almost all storage formats.

1.4. Tools 85

Translate Toolkit Documentation, Release 3.0.0

Usage

pocount [options] <directory|file(s)>

Where:

directory will recurse and count all files in the specified directory
file(s) will count all files specified

Options:

-h, --help show this help message and exit

--incomplete skip 100% translated files

Output format:

--full (default) statistics in full, verbose format

--csv statistics in CSV format

--short same as –short-strings

--short-strings statistics of strings in short format – one line per file

--short-words statistics of words in short format – one line per file

Examples

pocount makes it easy to count the current state of a body of translations. The most interesting options are those that
adjust the output style and decide what to count.

Easy counting

To count how much work is to be done in you project:

pocount project/

This will count all translatable files found in the directory project/ and output the results in --full format.

You might want to be more specific and only count certain files:

pocount *.po

This will count all PO files in the current directory but will ignore any other files that ‘pocount’ can count.

You can have full control of the files to count by using some of the abilities of the Unix commandline, these may work
on Mac OS X but are unlikely to work on Windows.:

pocount $(find . -name "*.properties.po")

This will first find all files that match *.properties.po and then count them. That would make it easy to count
the state of your Mozilla translations of .properties files.

86 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Incomplete work

To count what still needs to be done, ignoring what is 100% complete you can use the --incomplete option.:

pocount --incomplete --short *.xlf

We are now counting all XLIFF files by using the *.xlf expansion. We are only counting files that are not 100%
complete and we’re outputting string counts using the --short option.

Output formats

The output options provide the following types of output

–full

This is the normal, or default, mode. It produces the most comprehensive and easy to read data, although the amount
of data may overwhelm the user. It produces the following output:

avmedia/source/viewer.po
type strings words (source) words (translation)
translated: 73465 (99%) 538598 (99%) 513296
fuzzy: 13 (0%) 141 (0%) n/a
untranslated: 53 (0%) 602 (0%) n/a
Total: 73531 539341 513296

A grand total and file count is provided if the number of files is greater than one.

–csv

This format is useful if you want to reuse the data in a spreadsheet. In CSV mode the following output is shown:

Filename, Translated Messages, Translated Source Words, Translated Target Words,
→˓Fuzzy Messages, Fuzzy Source Words, Untranslated Messages, Untranslated Source
→˓Words, Review Messages, Review Source Words
avmedia/source/viewer.po, 1, 3, 3, 0, 0, 4, 22, 1, 3

Totals are not provided in CSV mode.

–short-strings (alias –short)

The focus is on easily accessible data in a compact form. This will only count strings and uses a short syntax to make
it easy for an experienced localiser to read.:

test-po/fuzzy.po strings: total: 1 | 0t 1f 0u | 0%t 100%f 0%u

The filename is followed by a word indicating the type of count, here we are counting strings. The total give the total
string count. While the letters t, f and u represent ‘translated’, ‘fuzzy’ and ‘untranslated’ and here indicate the string
counts for each of those categories. The counts are followed by a percentage representation of the same categories.

1.4. Tools 87

Translate Toolkit Documentation, Release 3.0.0

–short-words

The output is very similar to --short-strings above:

test-po/fuzzy.po source words: total: 3 | 0t 3f 0u | 0%t 100%f
→˓0%u

But instead of counting string we are now counting words as indicated by the term ‘source words’

Bugs

• There are some miscounts related to word breaks.

• When using the short output formats the columns may not be exactly aligned. This is because the number
of digits in different columns is unknown before all input files are processed. The chosen tradeoff here was
instanteous output (after each processed file) instead of waiting for the last file to be processed.

podebug

Insert pseudo translations or debug markers into target text in XLIFF, Gettex PO and other localization files.

The pseudo translation or debug markers make it easy to reference and locate strings when your translated application
is running.

Use it to:

• Target your translations: see what files are being referenced for string appearing in your programs.

• Debug translations: if you know in what file the message occurs then you can quickly find it and fix it.

• Check that everything is translatable: any English only text needs to be analysed so that it can be localised.

• Check for Unicode compliance: by inserting Unicode text outside of the Latin range it allows you to check that
your program can handle non-Latin correctly.

Usage

podebug [options] <in> <out>

Where:

<in> is an input directory or localisation file
<out> is an output directory or localisation file, if missing output will be to standard out.

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot formats

88 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/Pseudolocalization

Translate Toolkit Documentation, Release 3.0.0

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

-f FORMAT, --format=FORMAT specify format string

--rewrite=STYLE the translation rewrite style: xxx, en, blank, chef (v1.2), unicode (v1.2)

--ignore=APPLICATION apply tagging ignore rules for the given application: kde, gtk, openoffice,
libreoffice, mozilla

Formats

A format string can have these various options:

f full filename including directory
F as %f but with .po file extension
b base of filename
B base of filename with .po file extension
d directory name
s preset OpenOffice.org modifier
c use only consonants
h hash value (since version 1.4 – see notes below)
N a set number of characters

A format string may look like this:

• %cf – the full filename without vowels

• [%10cb] – the first ten character after compressing the base of the filename and place it in square brackets
with a space before the real message

• [%5cd - %cB] – the first 5 consonants of the directory, followed by a dash then the consonants of the filename
with a .po extension. All surrounded by square brackets with a space before the translations.

• %4h. – insert a hash value of length 4

Complex format strings may make it too difficult to actually read the translation, so you are probably best served using
as short a string as possible.

Rewriting (style)

The rewriting options are designed to change the target text in various ways (c.f. the various rewriting styles available).
This is mostly valuable for debugging English text. The ‘xxx’ rewriter is useful in that it allows you to identify text
that has not localisable as that text will lack the xxx characters.

The ‘en’ rewriter can be used to prepare English hashed (see below) files for quickly finding strings that have spelling
or other errors. It can also be used to create a translated English file which can then be used for other purposes such as
British English translation.

Ignoring messages

In some applications their are translations that should not be translated (usually these are configuration options). If
you do translate them then the application will fail to compile or run.

1.4. Tools 89

Translate Toolkit Documentation, Release 3.0.0

The --ignore option allows you to specify the application for which you are producing PO debug files. In this case
it will then not mark certain of the PO entries with debug messages.

In Mozilla we do not mark lone .accesskey, .width, .height, etc since these can really be thought of as
configuration options.

Hashing

Sometimes you find an error in a string. But it is difficult to search for the occurrence of the error. In order to make it
easy to find a string in your files we can produce a hash on the strings location and other data. This produces unique
alphanumeric sequences which are prepended to the target text. Thus now in your application you have your translated
text and an alphanumeric value. Its is then easy to search for that value and find your problem string.

Usings podebug

Here are some more examples in a series of blog posts.

–rewrite=STYLE

podebug allows you to rewrite the output text in a number of ways.

xxx

The target text is surrounded by xxx as follows

msgid "English"
msgstr "xxxEnglishxxx"

This is useful when you want to identify which text is localisable. There might be text in your application which you
cannot localise this will allow you to quickly identify that text.

en

The source text is copied to the target

msgid "English"
msgstr "English"

In this way you can create translations that contain only the source text. Useful if you are preparing a roundtrip test or
want to start an English derived translation such as British English. It produces the same results as msgen but with the
advantage that you can add debug markers.

blank

This simply empties your current translations

msgid "English"
msgstr ""

90 Chapter 1. User’s Guide

http://translate.org.za/blogs/friedel/en/content/pseudolocalisation-podebug-1
http://translate.org.za/blogs/friedel/en/content/pseudolocalisation-podebug-2
http://translate.org.za/blogs/friedel/en/content/pseudolocalisation-podebug-3-interview-rail-aliev
http://linux.die.net/man/1/msgen

Translate Toolkit Documentation, Release 3.0.0

When you have a set of translation files but no template this allows you to essentially convert a PO into a POT file.
This mimics the --empty functionality of msghack.

bracket

New in version 1.4.

Places brackets around the translated text.

msgid "English"
msgstr "[English]"

This can be used in the same way as xxx to check for translatability. It is also useful with very long strings as it allows
you to check that the full string in rendered and has not been cutoff by the application.

chef

New in version 1.2.

Rewrites the source text using mock Swedish as popularised by the Swedish Chef.

msgid "English"
msgstr "Ingleesh"

This is probably only useful for some fun. It’s not guaranteed that every string will be rewritten as the mock Swedish
rules might not apply thus its not ideal for identifying untranslatable strings.

flipped

New in version 1.4.

Change the text into a version that uses equivalent Latin characters that are upside down.

msgid "English"
msgstr "uıs"

flipped can give an output that simulates RTL languages. It inserts RTL characters to try to achieve RTL-like
results. Its not perfect but will give you some sense of whether your application can do RTL. Or just use it for fun!

For really testing right-to-left GUIs, you want to make sure that the whole application is shown in RTL, not just
the strings. Test your pseudo-translated file as a translation of an RTL language like Arabic or Hebrew. In case the
application relies on other files coming from libraries (like GTK+), you might need to repeat the process for them, or
at least ensure that you have the Arabic/Hebrew .mo files for them installed.

unicode

New in version 1.2.

Rewrites the source text with Unicode characters that looks like the Latin characters that they are replacing.

msgid "English"
msgstr "ı̄ş"

1.4. Tools 91

http://linux.die.net/man/1/msghack
http://en.wikipedia.org/wiki/Swedish_Chef

Translate Toolkit Documentation, Release 3.0.0

This allows a translator or programmer to test a programs ability to use Unicode message strings. By using characters
in the Unicode range but that are related to the plain Latin characters that they replace we ensure that the messages are
still readable.

Note: Before version 1.4, the rewrite rule will also rewrite variables and XML tags, which would cause problems in
some situations. Run pofilter as a quick method to fix up incorrect changes, or upgrade to version 1.4.

posegment

posegment takes a Gettext PO or XLIFF file and segments the entries, generating a new file with revised and smaller
translation units.

This is useful for the creation of a file that can be used as a Translation Memory as you should get better matching
after you have exposed translated sentences that might occur elsewhere in your work.

Posegment won’t do very advanced sentence boundary detection and alignment, but has customisations for the punc-
tuation rules of several languages (Amharic, Afrikaans, Arabic, Armenian, Chinese, Greek, Japanese, Khmer, Oriya,
Persian). For the purpose of increasing your TM (as described below), it is already very useful. Give it a try and help
us to improve it even more for your language.

Usage

posegment [options] <input> <segmented>

Where:

<input> translations to be segmented
<segmented> translations segmented at the sentence level

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in po, pot, tmx, xlf formats

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot, tmx, xlf formats

-S, --timestamp skip conversion if the output file has newer timestamp

-P, --pot output PO Templates (.pot) rather than PO files (.po)

-l LANG, --language=LANG the target language code

--source-language=LANG the source language code (default ‘en’)

--keepspaces Disable automatic stripping of whitespace

--only-aligned Removes units where sentence number does not correspond

92 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Examples

You want to reuse all of your Pidgin translations in another Instant Messenger:

posegment pidgin-af.po pidgin-af-segmented.po

Now all of our Pidgin translation are available, segmented at a sentence level, to be used as a Translation Memory for
our other translation work.

You can do the same at a project level. Here we want to segment all of our OpenOffice.org translation work, a few
hundred files:

posegment af/ af-segmented/

We start with all our files in af which are now duplicated in af-segmented except files are now fully segmented.

Issues

• If the toolkit doesn’t have segmentation rules for your language then it will default to English which might be
incorrect.

• Segmentation does not guarantee reuse as your TM software needs to know how to segment when matching.
If you use software that doesn’t do segmentation, you can consider joining the original and the segmented files
together with msgcat, to get the best of both worlds.

• You cannot (yet) use the tool to break a file into segments, translate, and then recreate as the segmented file does
not know which parts should be joined together to recreate a file.

pocompile

Compile PO or XLIFF files into MO (Machine Object) files. MO files are installed on your computer and allow a
Gettext enabled computer to provide the translations for the application.

Usage

pocompile <po> <mo>

Where:

<po/xliff> is a standard PO file, XLIFF file or directory
<mo> is the output MO file or directory of MO files

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in xlf, po, pot formats

1.4. Tools 93

Translate Toolkit Documentation, Release 3.0.0

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in mo format

-S, --timestamp skip conversion if the output file has newer timestamp

--fuzzy use translations marked fuzzy

--nofuzzy don’t use translations marked fuzzy (default)

Examples

pocompile --fuzzy file.po file.mo

Creates a new MO file called file.mo based on the translation in the PO file file.po. By using the --fuzzy option we
use all translations including those marked fuzzy.

pocompile file.xlf file.mo

Create an MO file from an XLIFF file called file.xlf (available from version 1.1 of the toolkit).

poswap

This tool builds a new translation file with the target text (translation) of the input file(s) as source language of the
output file it creates.

This makes it possible to have French as the source file for translation, rather than English. Note that this requires no
change in the software project and is only a manipulation of the strings in the existing files. The only requirement for
this tool is a French translation.

It can also be used to convert translatable files that use logical IDs instead of source text into a format usable by human
localisers.

Usage

poswap [options] <newsource> [-t current] <new>

Where:

<newsource> is the translations (preferably 100% translated) of the preferred source language (like French)
<current> is the (optional) current English based translation in your intended target language
<new> is the intended output file / directory

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in pot format

94 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read from TEMPLATE in po, pot formats

--reverse Do the inverse operation (converting back to a normal English based file). See
the examples.

Examples

Ensure that the two po files / directories correspond 100% to the same pot file before using this.

To start a fresh Afrikaans (af) translation from Dutch (nl):

poswap nl.po nl-af.po

This initialises a new, empty file nl-af.po with Dutch as the source language.

To change the nl-af.po file back to the expected English based af.po:

poswap --reverse nl.po -t nl-af.po af.po

To translate Kurdish (ku) through French (fr):

poswap -i fr/ -t ku/ -o fr-ku/

This will take the existing (English based) Kurdish translation in ku/ and produce files in fr-ku with French as the
source language and Kurdish as the target language.

To convert the fr-ku files back to en-ku:

poswap --reverse -i fr/ -t fr-ku/ -o en-ku/

This recreates the English based Kurdish translation from the French based files previously created in fr-ku/.

Issues

• Behaviour is undetermined if the two files don’t match 100%. If PO files are based in the same template, there
should be no problem.

• We should probably be doing fuzzy matching in future to ease the migration over the lifetime of a changing
French translation.

poclean

This is a rudimentary tool to produce a clean file from an unclean file (Trados/Wordfast) by stripping out the tw4win
indicators.

Usage

poclean <input> <output>

1.4. Tools 95

Translate Toolkit Documentation, Release 3.0.0

Where:

<input> is the text versions of the unclean RTF files
<output> is the intended output file / directory

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in pot format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-S, --timestamp skip conversion if the output file has newer timestamp

Examples

To create a text version of the unclean RTF file, you need UnRTF, available here: project site or here (windows).

unrtf translation.rtf --text > translation.po

You might need to convert the encoding of the file, with iconv, for example:

iconv -f latin1 -t utf-8 translation.po > new_translation.po

Now you can clean the file with poclean

poclean new_translation.po clean_translation.po

pretranslate

Merge existing translations from an old translation file to a new one as well as fill any missing translations from
translation memory via fuzzy matching.

This functionality used to be part of pot2po and corresponds to “msgmerge” from the gettext package.

pretranslate works on PO and XLIFF files.

Usage

pretranslate [options] <input> <output>

Where:

<input> is the translation file or directory to be pretranslated
<output> is the translation file or a directory where the pretranslated version will be stored

96 Chapter 1. User’s Guide

http://www.gnu.org/software/unrtf/unrtf.html
http://gnuwin32.sourceforge.net/packages/unrtf.htm

Translate Toolkit Documentation, Release 3.0.0

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

--manpage output a manpage based on the help

--progress=PROGRESS show progress as: dots, none, bar, names, verbose

--errorlevel=ERRORLEVEL show errorlevel as: none, message, exception, traceback

-i INPUT, --input=INPUT read from INPUT in pot format

-x EXCLUDE, --exclude=EXCLUDE exclude names matching EXCLUDE from input paths

-o OUTPUT, --output=OUTPUT write to OUTPUT in po, pot formats

-t TEMPLATE, --template=TEMPLATE read old translations from TEMPLATE

-S, --timestamp skip conversion if the output file has newer timestamp

--tm=TM The file to use as translation memory when fuzzy matching

-s MIN_SIMILARITY, --similarity=MIN_SIMILARITY The minimum similarity for inclusion
(default: 75%)

--nofuzzymatching Disable all fuzzy matching

Examples

pretranslate -t zu-1.0.1 -tm zu_tm.po zu-2.0.2 zu-2.0.2-translated

Here we are pretranslating the PO or XLIFF files in zu-2.0.2 using the old translations in zu-1.0.1 and fuzzy matches
from the zu_tm.po compendium. the result is stored in zu-2.0.2-translate

Unlike pot2po pretranslate will not change anything in the input file except merge translations, no reordering or
changes to headers.

Merging

It helps to understand when and how pretranslate will merge. The default is to follow msgmerge’s behaviour but we
add some extra features with fuzzy matching:

• If everything matches we carry that across

• We can resurrect obsolete messages for reuse

• If we cannot find a match we will first look through the current and obsolete messages and then through any
global translation memory

• Fuzzy matching makes use of the Levenshtein distance algorithm to detect the best matches

Performance

Fuzzy matches are usually of good quality. Installation of the python-Levenshtein package will speed up fuzzy match-
ing. Without this a Python based matcher is used which is considerably slower.

1.4. Tools 97

https://pypi.python.org/pypi/python-Levenshtein

Translate Toolkit Documentation, Release 3.0.0

Levenshtein distance

The levenshtein distance is used for measuring the “distance” or similarity of two character strings. Other similarity
algorithms can be supplied to the code that does the matching.

This code is used in pot2po, tmserver and Virtaal. It is implemented in the toolkit, but can optionally use the fast
C implementation provided by python-Levenshtein if it is installed. It is strongly recommended to have python-
levenshtein installed.

To exercise the code the classfile “Levenshtein.py” can be executed directly with:

$ python Levenshtein.py "The first string." "The second string"

Note: Remember to quote the two parameters.

The following things should be noted:

• Only the first MAX_LEN characters are considered. Long strings differing at the end will therefore seem to
match better than they should. A penalty is awarded if strings are shortened.

• The calculation can stop prematurely as soon as it realise that the supplied minimum required similarity cannot
be reached. Strings with widely different lengths give the opportunity for this shortcut. This is by definition of
the Levenshtein distance: the distance will be at least as much as the difference in string length. Similarities
lower than your supplied minimum (or the default) should therefore not be considered authoritative.

Shortcommings

The following shortcommings have been identified:

• Cases sensitivity: ‘E’ and ‘e’ are considered different characters and according differ as much as ‘z’ and ‘e’.
This is not ideal, as case differences should be considered less of a difference.

• Diacritics: ‘ê’ and ‘e’ are considered different characters and according differ as much as ‘z’ and ‘e’. This is
not ideal, as missing diacritics could be due to small input errors, or even input data that simply do not have the
correct diacritics.

• Similar but different words: Words that have similar characters, but are different, could increase the similarity
beyond what is wanted. The sentences “It is though.” and “It is dough.” differ markedly semantically, but score
similarity of almost 85%. A possible solution is to do an additional calculation based on words, instead of
characters.

• Whitespace: Differences in tabs, newlines, and space usage should perhaps be considered as a special case.

• tmserver – a Translation Memory server, can be queried over HTTP using JSON

• poterminology – extracts potential terminology from your translation files

• pocount – Count words and strings in PO, XLIFF and other types of translatable files

• podebug – Add debug strings to messages

• posegment – Break a PO or XLIFF files into sentence segments, useful for creating a segmented translation
memory

• pocompile – create an MO (Machine Object) file from a PO or XLIFF file

• poswap – uses a translation of another language that you would rather use than English as source language

• poclean – produces a clean file from an unclean file (Trados/Wordfast) by stripping out the tw4win indicators

98 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/Levenshtein_distance
http://virtaal.org
https://pypi.python.org/pypi/python-Levenshtein

Translate Toolkit Documentation, Release 3.0.0

• pretranslate – fill any missing translations from translation memory via fuzzy matching.

• Levenshtein distance – edit distance algorithms for translation memory matching

1.5 Scripts

1.5.1 Mozilla L10n Scripts

Introduction

This page describes the purpose and usage of scripts available in the Translate Toolkit specifically for making the
translation of Mozilla products easier.

Mozilla’s move from CVS to Mercurial made a lot of these scripts necessary. For more information about Mozilla
l10n from CVS, see the moz-l10n-builder page.

All of these scripts are available on Subversion from here.

We are currently generating POT files for most major betas, RCs and releases of Firefox and Thunderbird. They are
available here: http://l10n.mozilla.org/pootle/pot/

As a start you might want to just use these POT files and gradually learn more about the processes described below.
Contact us for more help on using these.

Requirements

• The Translate Toolkit (>=1.3)

• All scripts in the tools/mozilla directory (from the project sources) should be executable and in your
PATH.

build_ff3.1_langs.sh

Description

This is a simple bash script that embodies most of the Mozilla l10n process and does the following:

1. Update Mozilla sources

2. Update language files from Mozilla’s L10n Mercurial repository.

3. Replace old l10n en-US files with a fresh copy from the updated source tree.

4. Create new POT files from the en-US l10n files.

5. Create archives of the POT files.

6. For each language:

1. Update existing PO files if the checked out from a CVS, Subversion or Mercurial repository.

2. Migrate PO files to new POT files.

3. Create Mozilla l10n files for the language based on the migrated PO files.

4. Create archives of the PO files.

5. Build langpack for the language.

1.5. Scripts 99

https://github.com/translate/translate/tree/master/tools/mozilla
http://l10n.mozilla.org/pootle/pot/
http://hg.mozilla.org/l10n-central

Translate Toolkit Documentation, Release 3.0.0

This script is used on the l10n.mozilla.org server to create most (if not all) of the files available from http://l10n.
mozilla.org/pootle/. It was originally written as a stable way to provide these files and as such making it as general as
possible was not the biggest requirement. This is evident in the script’s very narrow focus.

Usage

This script takes no command-line parameters and is only configurable via the variables at the top and, failing that,
custom hacking of the script.

The variables are used in the following ways:

BUILD_DIR The base build directory from where building is done.
MOZCENTRAL_DIRThe directory containing a checkout of the Mozilla source tree http://hg.mozilla.org/mozilla-central/
HG_LANGS A space-separated list of language codes to build for.
L10N_DIR The directory where Mozilla l10n files (from l10n-central) should be collected.
PO_DIR The directory containing the externally-hosted or previously available source PO files (e.g. PO files

managed in another VCS repository). It contains a sub-directory for each language.
POPACK_DIRThe output directory for PO archives.
PORECOVER_DIRThe directory to put recovered PO files in. It contains a sub-directory for each language.
POT_INCLUDESA space-separated list of files to be included in POT archives.
POTPACK_DIRThe output directory for POT archives.
POUPDATED_DIRThe directory to use for updated PO files. It contains a sub-directory for each language.
LANGPACK_DIRThe directory to put langpacks (XPIs) in.
FF_VERSIONThe version of Firefox that is being built for. This is used in the file names of archives.

Note: It is strongly recommended that you mirror the directory structure specified by the default values of the
*_DIR variables. For example the default value for L10N_DIR is ${BUILD_DIR}/l10n, then you should put
your l10n-central check-outs in the l10n directory under your main build directory (BUILD_DIR).

Basically, you should have an ideally separate build directory containing the following sub-directories: l10n,
mozilla-central, po, popacks, potpacks, po-updated and xpi (if used). This way the only variable
that need to be changed is BUILD_DIR.

build_tb3_langs.sh

This is the script that the build_ff3.1_langs.sh script above was actually adapted from. It is 90% similar with
the obvious exception that it is aimed at building Thunderbird 3.0 packages in stead of Firefox 3.1. Also note that this
script uses the comm-central repository in stead of mozilla-central.

buildxpi.py

Description

Creates XPI language packs from Mozilla sources and translated l10n files. This script has only been tested with
Firefox 3.1 beta sources.

It is basically the scripted version of the process described on Mozilla’s “Creating a language pack” page.

This script is used by build_ff3.1_langs.sh to build language packs in its final step.

100 Chapter 1. User’s Guide

http://l10n.mozilla.org/pootle/
http://l10n.mozilla.org/pootle/
http://hg.mozilla.org/mozilla-central/
https://developer.mozilla.org/en-US/docs/Creating_a_Language_Pack

Translate Toolkit Documentation, Release 3.0.0

Note: This script uses the .mozconfig file in your home directory. Any existing .mozconfig is renamed to
.mozconfig.bak during operation and copied back afterwards.

Usage

buildxpi.py [<options>] <lang> [<lang2> ...]

Example:

buildxpi.py -L /path/to/l10n -s /path/to/mozilla-central -o /path/to/xpi_output af ar

Options:

-h, --help show this help message and exit

-L L10NBASE, --l10n-base=L10NBASE The directory containing the <lang> subdirectory.

-o OUTPUTDIR, --output-dir=OUTPUTDIR The directory to copy the built XPI to (default: cur-
rent directory).

-p MOZPRODUCT, --mozproduct=MOZPRODUCT The Mozilla product name (default:
“browser”).

-s SRCDIR, --src=SRCDIR The directory containing the Mozilla l10n sources.

-d, --delete-dest Delete output XPI if it already exists.

-v, --verbose Be more noisy

get_moz_enUS.py

Description

A simple script to collect the en-US l10n files from a Mozilla source tree ('comm-central’ or
'mozilla-central’) by traversing the product’s l10n.ini file.

Usage

get_moz_enUS.py [options]

Options:

-h, --help show this help message and exit

-s SRCDIR, --src=SRCDIR The directory containing the Mozilla l10n sources.

-d DESTDIR, --dest=DESTDIR The destination directory to copy the en-US locale files to.

-p MOZPRODUCT, --mozproduct=MOZPRODUCT The Mozilla product name.

--delete-dest Delete the destination directory (if it exists).

-v, --verbose Be more noisy

1.5. Scripts 101

Translate Toolkit Documentation, Release 3.0.0

moz-l10n-builder

This is the pre-Mercurial build script originally written by Dwayne Bailey. This is the script that all the others on this
page replaces for post-CVS Mozilla l10n.

Note: This script is not applicable to the l10n process of any Mozilla products after the move to Mercurial.

For more information about this script see its dedicated page.

moz_l10n_builder.py

This script was intended to be a simple and direct port of the moz-l10n-builder script from above. It has pro’s
and cons in comparison to the original, but is very similar for the most part. So for more information about this script,
see the original script’s page.

1.5.2 moz-l10n-builder

Take a set of Mozilla (Firefox, Thunderbird, SeaMonkey, etc.) localisation and migrate them to the latest Mozilla
source, building XPIs and repackaging hte Windows .exe file as needed.

Please also check the page on creating a language pack on the Mozilla wiki, to stay abreast of the latest Mozilla way
of doing things.

Note: This page is only applicable to Mozilla products with its source hosted in CVS. This includes Firefox versions
before 3.1 and Thunderbird versions before 3.0.

For information about working with the new source trees in Mercurial, see the Mozilla L10n Scripts page.

Prerequisites

• Translation update component and building XPIs

– Translate Toolkit

– Existing Mozilla translations in PO format

– A checkout of Mozilla sources updated to the correct BRANCH or RELEASE

• Building Windows executables

– Firefox or Thunderbird en-US .exe file e.g. Firefox 2.0 en-US

– upx for executable compression

– Nullsoft installer to package the installer.

– 7zip for various compression

– Linux: WINE to run the Nullsoft installer

• Directory structure under the directory you want to run moz-l10n-builder in:

102 Chapter 1. User’s Guide

https://developer.mozilla.org/en/docs/Creating_a_Language_Pack
https://developer.mozilla.org/en-US/docs/Developer_Guide/Source_Code/CVS
https://developer.mozilla.org/en/docs/CVS_Tags
http://releases.mozilla.org/pub/mozilla.org/firefox/releases/
http://releases.mozilla.org/pub/mozilla.org/firefox/releases/2.0/win32/en-US/Firefox%20Setup%202.0.exe
http://upx.sourceforge.net/
http://nsis.sourceforge.net/Main_Page
http://www.7-zip.org/
http://www.winehq.org/

Translate Toolkit Documentation, Release 3.0.0

l10n/ Contains Mozilla l10n files for available/needed language(s)
mozilla/ The Mozilla source tree
po/ Contains your PO files (output from moz2po)
potpacks/ Where POT-archives go

Note these instructions are for building on Linux, they may work on Windows. All software should be available
through your distribution. You will need to use Wine to install the Nullsoft installer and may need to sort out some
path issues to get it to run correctly.

Latest Version

moz-l10n-builer is not currently distributed as part of the toolkit. You can get the latest version from Git and you will
also need this minor patch to the mozilla source code.

Usage

moz-l10n-builder [language-code|ALL]

Where:

language-code build only the supplied languages, or build ALL if specified or if no option is supplied

Your translations will not be modified.

Operation

moz-l10n-builder does the following:

• Updates the mozilla/ directory

• Creates POT files

• Migrates your translations to this new POT file

• Converts the migrated POT files to .dtd and .properties files

• Builds XPI and .exe files

• Performs various hacks to cater for the anomalies of file formats

• Outputs a diff of you migrated PO files and your newly generated Mozilla l10n/ files

Bugs

Currently it is too Translate.org.za specific and not easily configurable without editing. It is also not intelligent enough
to work our that you want Firefox vs Thunderbird generation. A lot of this functionality should be in the Mozilla
source code itself. We hope over time that this might happen.

1.5.3 phase

phase is a script that allows you to perform a number of tasks on a set of PO files that have been broken into phases.
You can create a ZIP file for a phase, run checks against a phase, review a phase, edit files in a phase, etc. All the tasks
that would be involved in sending work to various translators, receiving work, checking it and committing to CVS.

1.5. Scripts 103

https://raw.github.com/translate/translate/master/tools/mozilla/moz-l10n-builder
https://raw.github.com/translate/translate/master/tools/mozilla/mozilla-l10n.patch

Translate Toolkit Documentation, Release 3.0.0

Prerequisites

• An environment that will run bash

• diff

• cvs

Latest Version

phase is not currently distributed as part of the toolkit. You can get the latest version from Git

Usage

phase <command> [options]

Mostly the usage follows the format of:

phase <command> <language-dir> <phaselist> <phase-name>
phase <command> <language-dir> <phase-name>

A full list of commands and options can be seen by running:

phase --help

Commands

These are the commands that you can use:

• makephaselist <new-phase-list-name> – creates a phase list

• listphases <phase-list> – lists the different phases that appear in the phase-list file

• listfiles <phase-list> <phase-name> – list all files for the given phase in the phase-list file

• checkphaselist <language-dir> <phase-list> – checks to see which files are not included in the phaselist

• countpo <language-dir> <phase-list> <phase-name> – counts PO file in the given phase

• countpot <template-dir> <phase-list> <phase-name> – counts POT file in the given phase

• missingpo <language-dir> <phase-list> <phase-name> – lists files that have not been returned for a phase

• packpot <template-dir> <phase-list> <phase-name> – packs all POT files for a given phase into a ZIP file

• packpo <language-dir> <phase-list> <phase-name> – packs all PO files for a given phase into a ZIP file

• packall <template-dir> <phase-list> – packs all phases found in the phase list

• packallpo <language-dir> <phase-list> – packs all phases found in the phase list for the given language

• countmismatch <language-dir> <template-dir> <phase-list> <phase-name> – compares the source word count
between PO and POT to determine if there are any file errors.

• editpo <language-dir> <phase-list> <phase-name> – edit the PO files in a phase

• editpochecks <language> <phase-name> – edit the PO checks output by checkpo

• editconflicts <language-dir> <phase-list> <phase-name> – edit the extracted conflict items

104 Chapter 1. User’s Guide

http://linux.die.net/man/1/bash
http://linux.die.net/man/1/diff
http://linux.die.net/man/1/cvs
https://raw.github.com/translate/translate/master/tools/phase

Translate Toolkit Documentation, Release 3.0.0

• checkpo <language-dir> <phase-list> <phase-name> [pofilter options] – run pofilter checks against the given
phase

• mergepo <language> <phase-name> – merge the checks back into the main language directory

• conflictpo <language-dir> <phase-list> <phase-name> [poconflict options] – run poconflict checks against the
given phase

• diffpo <language-dir> <phase-list> <phase-name> – perform a cvs diff for the phase

• cvslog <language-dir> <phase-list> <phase-name> – perform a cvs log against files in the phase

• lastlog <language-dir> <phase-list> <phase-name> – retrieves the last cvs log entry for each file in a phase

• cvsadd <languages-dir> <phase-list> <phase-name> – CVS adds files and directories that are not already in
CVS

• diffpo <language-dir> <phase-list> <phase-name> – perform a cvs diff for the phase

• reviewpo <language-dir> <phase-list> <phase-name> [pofilter options] – extract items marked for review for
the given phase

• editreviews <language-dir> <phase-list> <phase-name> – edit the extracted review items

• countreviews <language-dir> <phase-list> <phase-name> – count the number of strings and words under review

• checkinpo <language-dir> <phase-list> <phase-name> – cvs checkin the files in the given phase

• creategsi <language-dir> <en-US.gsi> <traget-language> – creates a BZ2 GSI/SDF file for the language against
the en-US GSI file

• reviewsinout <language> <phase-name> – counts the number of review files returned vs sent and shows which
are missing

• reviewsdiff <language> <phase-name> – create a diff between what was sent for review and what was returned

Bugs

There are probably lots mostly the bug is that the command line options are pretty inconsistent

1.5.4 pocompendium

Takes a directory of translated PO files and creates a single PO files called a PO compendium. This compendium can
be used to review word choice conflicts or as input during a merge using pomigrate2.

Prerequisites

GNU Gettext:

• msgattrib

• msgcat

• msghack (may not be present on your installation of Gettext, but is only required for the invert command)

• msgfilter

1.5. Scripts 105

http://linux.die.net/man/1/msgattrib
http://linux.die.net/man/1/msgcat
http://linux.die.net/man/1/msghack
http://linux.die.net/man/1/msgfilter

Translate Toolkit Documentation, Release 3.0.0

Usage

pocompendium [options] output.po <-d po-directory(ies)|po-file(s)>

Where:

output.po the name of the output PO compendium
po-directory(ies) one or more directories to use as input for the compendium
po-file(s) one or more PO files to use as input for the compendium

Options:

-v, --invert swap the msgid and msgstr in the input PO files

-e, --errors only return those msg blocks that have conflicts

-i, --ignore-case drops all msgstr’s to lowercase

-st, -tilde, --strip-accel-amp remove all & style accelerator markers

-sa, -amp, --strip-accel-tilde remove all ~ style accelerator markers

-su, --strip-accel-under remove all _ style accelerator markers

Examples

• Compendium creation — create a compendium with all your translations to use as input during a message merge
either when migrating an existing project or starting a new one.

• Conflicting translations — use --errors to find where you have translated an English string differently. Many
times this is OK but often it will pick up subtle spelling mistakes or help you to migrate older translations to a
newer choice of words

• Conflicting word choice — use --invert and --errors to get a compendium file that show how you have
used a translated word for different English words. You might have chosen a word that is valid for both of the
English expressions but that in the context of computers would cause confusion for the user. You can now easily
identify these words and make changes in the underlying translations.

Narrowing Results

PO files treat slight changes in capitalisation, accelerator, punctuation and whitespace as different translations. In cases
2) and 3) above it is sometimes useful to remove the inconsistencies so that you can focus on the errors in translation
not on shifts in capitals. To this end you can use the following:

--ignore-case, --strip-accel-amp, --strip-accel-tilde, --strip-accel-under

Operation

pocompendium makes use of the Gettext tool msgcat to perform its task. It traverses the PO directories and cat’s all
found PO files into the single compendium output file. It then uses msgattrib to extract only certain messages, msghack
to invert messages and msgfilter to convert messages to lowercase.

Bugs

There are some absolute/relative path name issues

106 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

1.5.5 pocommentclean

pocommentclean will remove all translator comments from a directory of PO files.

Prerequisites

• sed

Usage

pocommentclean [--backup] <po>

Where:

po is a directory of existing PO files that you want to clean

Options:

--backup Create a backup file for each PO file converted, .po.bak

Operation

Using sed pocommentclean will delete all lines starting with # but which are not standard Gettext PO format lines. So
it won’t delete developer comments (#.), obsolete messages (#~), flags (#,) or locations (#:).

Bugs

pocommentclean cannot clean individual PO files, it only cleans directories

1.5.6 pomigrate2

pomigrate2 aims to move an existing translation to a new version based on updated PO Template files automatically
without user intervention. Therefore it is ideal for when you are migrating many languages or migrating from related
but divergent products e.g. Mozilla to Firefox.

Prerequisites

GNU Gettext:

• msginit

• msgcat

• msgmerge

1.5. Scripts 107

http://linux.die.net/man/1/sed
http://linux.die.net/man/1/msginit
http://linux.die.net/man/1/msgcat
http://linux.die.net/man/1/msgmerge

Translate Toolkit Documentation, Release 3.0.0

Usage

pomigrate [options] <from> <to> <new templates>

Where:

from is a directory of existing PO files
to is the directory where the migrated PO files will be stored
new templates this is the directory that contains the PO Template files

Options:

-F, --use-fuzzy-matching use fuzzy algorithms when merging to attempt to match strings

-C, --use-compendium create and use a compendium built from the migrating files

-C, --use-compendium=COMPENDIUM use an external compendium during the migration

--no-wrap do not wrap long lines

--locale set locale for newly born files

-q, --quiet suppress most output

-p, --pot2po use pot2po instead of msgmerge to migrate

Operation

pomigrate2 makes use of the Gettext tools msgmerge or Translate Toolkit’s pot2po to perform its merging tasks.

It firstly finds all files with the same name and location in the <from> directory as in the <template> directory and
copies these to the <to> directory. If there is no file in the <from> directory to match one needed by the <template>
directory then it will msgcat all files in the <from> directory with the same name and copy them to the correct
destination in the <to> directory. If all of that fails then msginit is used to initialise any missing PO files.

Lastly all the files in <to> are merged using msgmerge or pot2po. This process updates the files to match the layout
and messages in <templates>. Optionally, by using --use-compendium, a compendium of all the translations in
<from> can be created to be used in the final merge process.

1.5.7 popuretext

Extracts all the source text from a directory of POT files or the target text from a directory of PO files, removing PO
headers and optionally the accelerator keys.

If you want to use other tools to analyse the text within a translation project, then this is the tool for you. For example,
you can use it to calculate word frequencies to create an initial glossary based on the pure source text.

Prerequisites

• GNU Gettext

• sed

108 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Usage

popuretext <-P pot-dir|po-dir> <file.txt> [accelerator]

Where:

pot-dir a directory containing POT files
po-dir a directory containing PO files
file.txt file that contains the output text
accelerator optional: accelerator marker to be removed from the text

Examples

popuretext -P pot pot.txt '&'

Extract all the source text from the pot directory and place it in the pot.txt file removing all occurrences of the &
accelerator.

popuretext af af.txt

Extract all target text from the Afrikaans files in the af directory, placing the extracted text in af.txt. In this case we
are not filtering any accelerator characters.

1.5.8 poreencode

Takes a directory of existing PO files and converts them to a given encoding.

Prerequisites

GNU Gettext

Usage

poreencode <encoding> <PO directory>

Where:

encoding is the encoding you would like to convert to e.g. UTF-8
PO directory is a directory of existing PO files

It is best to backup files before the conversion or to perform it against CVS which prevents a potential loss of data.

Operation

poreencode makes use of the Gettext tool msgconv to perform its task. It traverses the PO directory and finds all PO
file. It uses msgconv to convert the PO file from its existing encoding to the new encoding.

1.5. Scripts 109

http://linux.die.net/man/1/msgconv

Translate Toolkit Documentation, Release 3.0.0

Bugs

Like most Gettext tools they do a little bit more than documented, msgconv will decide which strings are in fact fuzzy
and delete fuzzy marking – not a lot but you do need to diff (this probably related to #, fuzzy entries that are not placed
in the place Gettext expects them).

1.5.9 posplit

Takes an existing PO file and splits it into three components: translated, untranslated and fuzzy. This is useful for
reviewing translations or for extracting good translations from a compendium file.

Note that the input file is removed by the script (until version 1.9.1). The generated output files can be combined again
with msgcat.

Prerequisites

GNU Gettext

Usage

posplit ./file.po

Where:

file.po is an existing PO file or PO compendium

Bugs

• Some relative path bugs thus the need for ./ before file.po.

• Until version 1.9.1, the original input file was removed, issue 2006.

The scripts are for working with and manipulating PO files. Unlike the tools which are written in Python, the scripts
are written in bash. Some of them are packaged since version 1.0 of the Toolkit, but you might need to download
them from version control and do a manual installation .

• moz-l10n-builder – Create Mozilla XPIs and rebuild Windows installers from existing translations

• Mozilla L10n Scripts – Build Mozilla products Firefox and Thunderbird

• phase – Helps manage a project divided into phases of work, including sending, checking, etc

• pocompendium – Creates various types of PO compendium (i.e. combines many PO files into a single PO file)

• pocommentclean – Remove all translator comments from a PO file

• pomigrate2 – Migrate older PO files to new POT files

• popuretext – Extracts all the source text from a directory of POT files

• poreencode – Converts PO files to a new character encoding

• posplit – Split a PO file into translate, untranslated and fuzzy files

110 Chapter 1. User’s Guide

https://github.com/translate/translate/issues/2006

Translate Toolkit Documentation, Release 3.0.0

1.6 Use Cases

1.6.1 Migrating your translations

You very often need to migrate older translations to newer template or POT files. There are a number of Gettext tools
that can manage this but they do not handle the situation where files have been renamed and moved. The pomigrate2
script allows us to migrate between versions where there has been considerable change.

This migration HOWTO takes you through the steps in a generic fashion so that you can apply it to any of your
projects. We use OpenOffice.org as an example for clarity. Our task in the examples is to migrate old translation for
OpenOffice.org 1.1.3 to OpenOffice.org 2.0.

Requirements

You will need:

• pomigrate2

• pocompendium

• A text editor

• A PO editing tool

Preparing the new POT files

We need the new POT files. Either download these from the project or generate them using moz2po, oo2po or the
other tools of the Translate Toolkit. The POT files are templates for the destination files that we will be creating.

oo2po -P en-US.sdf ooo-20-pot

This will create new POT files in ooo-20-pot.

Checking your old PO files for errors

We will be migrating your old PO files into the new POT files. This is a good opportunity to check for encoding errors
and inconsistencies.

We use pocompendium to check for encoding errors:

pocompendium check.po -d ooo-113-old

This will create a compendium PO files, check.po, from all the PO files in the directory ooo-113-old, where ooo-113-
old contains all your old translations. pocompendium is a wrapper around various Gettext tools, encoding errors will
appear as errors from those tools.

Use your text editor to find and correct these errors. If you do not correct these now they will migrate to your new
version. Once encoding errors are fixed they’re usually gone for good, so it is time well spent.

Optional: Checking your old PO files for consistency

Note: Note this step is optional, a more detailed explanation is given in Checking for inconsistencies in your transla-
tions.

1.6. Use Cases 111

Translate Toolkit Documentation, Release 3.0.0

We now look at consistency within the translations. The first check extracts situations were the same English string
was translated in two different ways:

pocompendium --ignore-case --accel-amp --errors check.po -d ooo-113-old

In check.po you will find all situations where the same English text was translated differently. We use --accel-amp
to remove accelerator markers (you’ll change this depending on the one used by the project – we can do & _ or ~).
Now view check.po in a PO editor or text editor. You will need to correct each inconsistency in the source PO files,
using check.po as the guide. Many of the errors are usually spelling mistakes. You can regenerate check.po from time
to time until all inconsistencies are justified or removed.

Then we check for words in your language that are used for more than one English concept. You don’t for instance
want the same word for Cancel and Delete. For this we invert the compendium:

pocompendium --invert --ignore-case --accel-amp --errors check.po -d ooo-113-old

We now have a file similar to the previous one except your language appears in the msgid and the English appears in
the msgstr. Look for inconsistencies that would cause problems for the user and correct them in the source files.

Migrate

You are now ready to migrate using pomigrate2. You have created your destination POT files and all your PO files are
clean and ready to migrate.

pomigrate2 ooo-113-old ooo-20-new ooo-20-pot

This will take all translations from ooo-113-old and migrate them to ooo-20-new using ooo-20-pot as templates. By
default pomigrate2 migrates without any fancy text matching, there are options to allow for fuzzy matching and the
use of a compendium. Read the pomigrate2 help page to find out more about these options.

Techie: what does pomigrate2 do to your file?

This section is for those insanely curious about what pomigrate will do to their files. You don’t need to understand this
section :-)

• Init stage

– If a file has not changed location between old and new then it is simply copied across

– If it has moved then we try to find a file by the same name and move ours there. If there are multiple files
by the same name, then we join them together and copy them

– If a file does not exist then we initialise it

• Update stage

– We now update our translations using msgmerge or pot2po

– If you asked for a compendium, we will build one from the existing files and update using it and optionally
other external compendiums

That’s it. At the end you should have every file that needs translation updated to the latest template files. Files that
moved should still be preserved and not lost. Files that where renamed will still be translated if you used a compendium
otherwise they will be untranslated.

112 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

How well did you do

Congratulations! Your files are now migrated.

You might want to see how much of your old work was reusable in the new version:

pocount ooo-20-new

This will use pocount to count the words in your new files and you can compare the number of translate and untrans-
lated messages from your old version.

Conclusion

Your files have now been migrated and are ready for updating. If files have been moved or renamed, and you used a
compendium, then most likely you have most of that work translated.

1.6.2 Checking your files with PO filter

pofilter allows you to check your PO or XLIFF files for certain common errors. This quick-start guide takes you
through the process of using this tool, making corrections and merging your correction back into your translations.

The toolkit also other tools that can assist with quality assurance.

Quickstart

Use any preferred text editor wherever vim is used.

1. Select filter(s): pofilter -l

2. Run filter(s): pofilter -i existing_files/ -o errors/ [-t specific tests]
[--excludefilter don't perform specific tests]

3. Delete items you don’t want changed, set fuzzy if needed, delete if not needed: vim errors/*.po

4. Merge changes back: pomerge -i errors/ -o existing_files/ -t existing_files/ (will
overwrite existing files)

5. Create a patch for the changes: cvs diff -u existing_files/ > x.diff

6. Check to see that the updates are what you want: vim x.diff

7. Commit changes: cvs ci existing_files/

Detailed Description

pofilter runs a number of checks against your translation files. Any messages that fail are output to a set of new files
(in the same structure as the source/input files). You then edit these new/output files to correct any errors. Once you
are satisfied with your corrections these corrected files are then merged back into the original files using pomerge.

Extracting Errors

pofilter will run all tests unless you use the -t or --excludefilter options. There are over 38 tests and pofilter
can itself provide you with a current list of all the available checks:

1.6. Use Cases 113

Translate Toolkit Documentation, Release 3.0.0

pofilter -l

We want to run the: accelerators, escapes, variables and xmltags tests as these are the ones most likely to break
programs at runtime. We are also working with OpenOffice.org PO files created using oo2po so we want to ensure
that we set the accelerator key marker and variables definitions correctly:

pofilter -t accelerators -t escapes -t variables -t xmltags --openoffice existing_
→˓files errors

Any messages that fail one of the 4 checks will be placed in files in errors. We also used the --openoffice option
to ensure that the tool is aware of the OpenOffice.org accelerator marker (~) and the OpenOffice.org variable styles
(OpenOffice.org has over 10 variable styles). You can also specify other styles of project including GNOME, KDE or
Mozilla.

You can also specify whether you want fuzzy entries included and checked, by specifying the --fuzzy parameter.
By default this is off because fuzzy strings are usually known to be broken and will be reviewed by translators anyway.

Similarly you can include items marked for review by specifying --review or --ingnorereview. By default
review items are included. This is not part of the standard Gettext format. We have allowed entries like this when we
want to communicate to someone what error we have picked up:

(review) - wrong word for gallery chosen

You can run pofilter without the -t option. This runs all the checks. This can be confusing if you have a lot of errors
as you easily lose focus. One strategy is to run each test individually. This allows you to focus on one problem at a
time across a number of files. It is much easier to correct end punctuation on its own then to correct many different
types of errors. For a small file it is probably best to run all of the test together.

By using the --autocorrect option you can automatically correct some very common errors. Use with caution
though. This option assumes you use the same punctuation style as the source text.

Edit the files

Once the errors have been marked you can edit them with any text editor or PO editor e.g. Virtaal. You will be editing
the files in the errors directory. Only messages that failed one of the tests will be present. If no messages failed then
there will be no error PO file for the source PO file. Only critical errors are marked fuzzy – all others are simply
marked with the pofilter marker. Critical errors are marked fuzzy as this allows you to simply merge them back into
you PO files and then rely on the fact that all po2* tools will ignore a message marked fuzzy. This allows you to
quickly eliminate messages that can break builds.

To edit run:

vi `find errors -name "*.po"`
virtaal `find errors -name "*.po"`

or similar command.

The pofilter marker helps you determine what error was discovered:

(pofilter) <test> - <explanation of test error>

Use the test description to help you determine what is wrong with the message. Remember that all your changes will
be ported back into the PO files. So if you leave a string fuzzy in the error files, it will become fuzzy in the main files
when you merge the corrected file back into the main file. Therefore delete anything you do not want to migrate back
when you merge the files. Delete the test comments and fuzzy markings as needed. Leave them in if you want another
translator to see them.

114 Chapter 1. User’s Guide

http://virtaal.org

Translate Toolkit Documentation, Release 3.0.0

The computer can get it wrong, so an error that pofilter finds may in fact not be an error. We’d like to hear about these
false positives so that we can improve the checks. Also if you have some checks that you have added or ideas for better
checks, then let us know.

Merging your corrections back into the originals

After correcting the errors in the PO files its time to merge these corrections back into the originals using pomerge.

pomerge -t existing_files -i errors -o files_without_errors

If -t and -o are the same directory, the corrections will be merged into the existing files. Do this only if you are using
some kind of version control system so that you can check the changes made by pomerge.

Checking the corrections

We have done this against CVS but you could run a normal diff between a good copy and your modifications. Thus
we assume in the last step that we merged the corrections into the existing translations:

pomerge -t existing_files -i errors -o existing_files

Now we check the changes using cvs diff :

cvs diff -u existing_files > x.diff

This creates a unified diff (one with + and - lines so you can see what was added and what was removed) in the file
x.diff:

vim x.diff

Check the diff file in any editor, here we use vim. You should check to see that the changes you requested are going
in and that something major did not go wrong. Also look to see if you haven’t left any lines with “# (pofilter): test
description” which should have been deleted from the error checking PO files. Also check for stray fuzzy markers that
shouldn’t have been added. You will have to make corrections in the files in existing_files not in errors.

When you are happy that the changes are correct run:

cvs ci existing_files

Congratulations you have helped eliminate a number of errors that could give problems when running the application.
Now you might want to look at running some of the other tests that check for style and uniformity in translation.

1.6.3 Using csv2po

csv2po allows you to create CSV files from PO files. This allows you to send translation work to translators who do
not or cannot use PO Editors but who can use a Spreadsheet.

Quickstart

1. pofilter --fuzzy --review -t untranslated <po-dir> <po-filtered-dir> (this
step is optional)

2. divide into sections

1.6. Use Cases 115

Translate Toolkit Documentation, Release 3.0.0

3. po2csv <po-dir|po-filtered-dir> <csv-out>

4. edit in Excel or OpenOffice.org Calc

5. csv2po --charset=windows-1250 -t templates <csv-in> <po-in> (you must work
against a template directory, the charset option corrects problems with characters sets)

6. /commands/phase – to do basic checks sort out encoding issues

7. pomerge --mergeblank=no -t <po-dir> <po-in> <po-dir>

8. git diff — check the changes

9. git add & git commit — commit changes

Detailed Description

po2csv allows you to send CSV files, which can be edited in any spreadsheet, to a translator. This document outlines
the process to follow from the raw po files -> CSV files -> back to PO. We also look at a case where you may have
submitted a subset of the PO files for translation and you need to integrate these.

Creating a subset

This step is optional.

To send a translator only those messages that are untranslated, fuzzy or need review run:

pofilter --isfuzzy --isreview -t untranslated <po-dir> <po-filtered-dir>

Divide into sections

You might want to divide the work into sections if you are apportioning it to different translators. In that case create
new directories:

e.g. po-filtered-dir-1 po-filtered-dir-2
or po-filtered-dir-bob po-filtered-dir-mary

Copy files from po-filtered-dir to po-filtered-dir-N in a way that balance the work or apportions the amounts you want
for each translator. Try to keep sections together and not break them up to much e.g. Give one translator all the
OpenOffice.org Calc work don’t split it between two people – this is just a simple measure to ensure constancy.

Now continue as normal and convert to CSV and perform word counts for each separate directory.

Creating the CSV files

po2csv <po-dir|po-filtered-dir> <csv-out>

This will create a set of CSV files in csv-out which you can compress using zip.

Creating a word count

Professional translators work on source word counts. So we create a word count to go with the file:

116 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

pocount `find po-dir|po-filtered-dir -name "*.po"`

We work on source words regardless of whether the string is fuzzy or not. You might want to get a lower rate for work
on fuzzy strings.

Place the word count file in both the PO and CSV directory to avoid the problem of finding it later. Check the number
to make sure you haven’t inadvertently including something that you didn’t want in.

Package the CSV files

zip -r9 work.zip <csv-out>

Translating

Translators can use most Spreadsheets. Excel works well. However there are a few problems with spreadsheets:

• Encoding – you can sort that out later

• Strings that start with ‘ – most spreadsheets treat cells starting with ‘ as text and gobble up the ‘. A work around
is to escape those like this ‘. po2csv should do this for you.

• Autocorrect – Excel changes . . . to a single character and does other odd things. pofilter will help catch these
later.

• Sentences with + – or +- will create errors and the translators will have to escape them as + - +-

• Sentences that only contain numbers can get broken: “1.” will be converted to “1”

Converting Excel spreadsheets to CSV file

You can, and should, keep your files as CSV files. However, many translators are not the best wizzes at using their
spreadsheet. In this case many files will have been changed to XLS files. To convert them by hand is tedious and error
prone. Rather make use of xlHtml which can do all the work for you.

xlhtml -xp:0 -csv file.xls > file.csv

Converting CSV back to PO

Extract the CSV files here we assume they are in csv-in:

csv2po --charset=windows-1250 -t <templates> <csv-in> <po-in>

This will create new PO files in po-in based on the CSV files in the csv-in and the template PO files in templates. You
shouldn’t run the csv2po command without templates as this allows you to preserve the original file layout. Only run
it without -t if you are dealing with a partial part of the PO that you will merge back using a pomerge.

Note: Running csv2po using the input PO files as templates give spurious results. It should probably be made to
work but doesn’t

1.6. Use Cases 117

http://freecode.com/projects/xlhtml/

Translate Toolkit Documentation, Release 3.0.0

Note: You might have encoding problems with the returned files. Use the --charset option to convert the file
from another encoding (all PO files are created using UTF-8). Usually Windows user will be using something like
WINDOWS-1250. Check the file after conversion to see that characters are in fact correct if not try another encoding.

Checking the new PO files

Use pofilter to run checks against your new files. Read Checking your files with PO filter to get a good idea of how to
use the tool.

Removing fuzzies

When you merge work back that you know is good you want to make sure that it overrides the fuzzy status of the
existing translations, in order to do that you need to remove the “#, fuzzy” markers.

This is best performed against CVS otherwise who knows what changed.

po-in-dir=your-incoming-po-files
po-dir=your-existing-po-files

for pofile in `cd $po-in-dir; find . -name "*.po"`
do

egrep -v "^#, fuzzy" < $po-dir/$pofile > $po-dir/${pofile}.unfuzzy && \
mv $po-dir/${pofile}.unfuzzy $po-dir/$pofile

done

Merging PO files into the main PO files

This step would not be necessary if the CSV contained the complete PO file. It is only needed when the translator has
been editing a subset of the whole PO file.

pomerge --mergeblank=no -t po-dir -i po-in -o po-dir

This will take PO files from po-in merge them with those in po-dir using po-dir as the template – i.e. overwriting files
in po-dir. It will also ignore entries that have blank msgstr’s i.e. it will not merge untranslated items. The default
behaviour of pomerge is to take all changes from po-in and apply them to po-dir by overriding this we can ignore all
untranslated items.

There is no option to override the status of the destination PO files with that of the input PO. Therefore all your entries
that were fuzzy in the destination will still be fuzzy even thought the input was corrected. If you are confident that all
your input is correct then relook at the previous section on removing fuzzies.

1.6.4 Creating OpenOffice.org POT files

This quick start guide shows you how to create the PO Template files for your OpenOffice.org translation.

Quick Start

1. Download the latest POT and GSI files

2. oo2po -P <gsi> <new-pots>

118 Chapter 1. User’s Guide

ftp://ftp.linux.cz/pub/localization/openoffice.org/devel/pot

Translate Toolkit Documentation, Release 3.0.0

Detailed Description

Download the latest POT and GSI files

The POT files produced by Pavel Janik contain the associated en-US.sdf file that you need to create your own languages
SDF file. This is the same file that produces the POT files. So to begin translating you don’t need to go further than
this.

• Download the latest POT and GSI files

However, you will need this file if you need to use some of the other features of oo2po such as changing the source
language from English.

Produce the POT files using oo2po

oo2po -P <gsi> <new-pots>
oo2po -P en-US.gsi pot

This takes the en-US.gsi file and creates POT files in the pot directory. The -P option ensures that .pot files are created
instead of .po file.

If you want to create one large .pot file instead of a lot of small ones, you should use the:

oo2po -P --multifile=onefile en-US.gsi pot

option as described in oo2po.

Produce a POT files with French source text

You will need to have access to a French GSI file. The following commands will create a set of POT files with French
as the source language:

oo2po -P --source-language=fr fr.gsi pot-fr

This will take translations from fr.gsi and create a set of POT files in pot-fr. These POT files will have French as the
source language. You need to make sure that fr.gsi is in fact up to date.

1.6.5 Checking for inconsistencies in your translations

Over time language changes, hopefully not very quickly. However, if your language is new to computers the change
might be rapid. So now your older translations have different text to your new translations. In this use case we look at
how you can bring alignment back to your translations.

Other cases in which you can expect inconsistencies:

• Multiple translators are involved

• Translations are very old

• You prepared this set of translations with translations from multiple sources

• You changed terminology at some stage in the translation

• You did not do a formal glossary development stage

1.6. Use Cases 119

ftp://ftp.linux.cz/pub/localization/openoffice.org/devel/pot

Translate Toolkit Documentation, Release 3.0.0

What we won’t be able to achieve

We cannot find grammatical errors and we won’t be able to find all cases of words, etc

Scenario

You are translating Mozilla Firefox into Afrikaans. The files are stored in af. You have the following issues:

• Your current translator is good but took over from a team of three

• Terminology is well defined but not well used by the old translators

We’ll look at the translations first from the English, or source text, point of view. Then we will look at it from the
Afrikaans point of view. The first will pick up where we have translated the same English word differently in Afrikaans
i.e. an inconsistency. While the second will determine if we use the same English word for different English words,
possibly this will confuse a user.

Step 1: Extracting conflicting target text translations

poconflicts -I --accelerator="&" af af-conflicts

From our existing translation in af we extract conflicts and place them in af-conflicts. We are ignoring case with -I so
that Save as is considered the same as Save As. The --accelerator options allows us to ignore accelerators
so that File is the sane as &File which is also the same as Fi&le

If we browse into af-conflicts we will see a flat structure of words with conflicts.

$ cd af-conflicts
$ ls
change.po disc.po functionality.po letter.po overwrite.po
→˓ restored.po
changes.po document.po gb.po library.po page.po
→˓ restore.po
character.po dots.po graphic.po light.po pager.po
→˓ retry.po
chart.po double.po grayscale.po limit.po percent.po
→˓ return.po
check.po down.po grid.po line.po pies.po
→˓ right.po
circle.po drawing.po group.po
etc...

These are normal PO files which you can edit in any PO editor or text editor. If we look at the first file change.po
we can see that the source text Change was translated as Verander and Wysig. The translators job is now to correct
these PO files, ignoring instances where the difference is in fact correct.

Once all fixes have been made we can merge our changes back into the original files.

Step 2: Merging our corrections back into the original files

Our files in af-conflicts are in a flat structure. We need to structure them into the hierarchy of the existing PO files.

porestructure af-conflicts af-restructured

120 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

The entries that where in the files in af-conflicts have been placed in af-restructured, they now appear in the correct
place in the directory structure and also appear in the correct file. We are now ready to merge.

pomerge -t af -i af-restructure -o af

Using the existing files in af we merge the corrected and restructured file from af-restructure and place them back
into af. Note: use a different output directory if you do not want to overwrite your existing files. All your conflict
corrections are now in the correct PO file in af.

You might want to run Step 1 again to make sure you didn’t miss anything or introduce yet another problem.

Next we look at the inverted conflict problem.

Step 3: Extracting conflicts of meaning

If you have used the same Afrikaans word for two different English words then you could have created a conflict of
meaning. For instance in our Xhosa translations the word Cima was used for both Delete and Cancel. Clearly
this is a serious issue. This step will allow us to find those errors and take action.

poconflicts -v -I --accelerator="&" af af-conflicts-invert

We use the same command line as in Step 1 but add -v to allow us to invert the match. We are also now outputting to
af-conflicts-invert to make things clear.

This time the PO files that are created have Afrikaans names

$ cd af-conflicts-invert
$ ls
dataveld.po grys.po lisensieooreenkoms.po paragraaf.po
→˓ sny.po
datumgekoop.po hallo.po lysinhoud.po pasmaak.po
→˓ soek.po
datum.po hiperboliese.po maateenheid.po persentasie.po
→˓ sorteer.po
deaktiveer.po hoekbeheer.po maatskappynaam.po posadres.po
→˓ sorteervolgorde.po
etc...

We edit these as usual. You need to remember that you will see a normal PO file but that you are looking at how the
translation might be confusing to a user. If you see the same Afrikaans translation for two different English terms but
there is no conflict of meaning or no alternative then leave it as is. You will find a lot of these instances so the results
are less dramatic then the results from a normal conflict analysis.

Lastly follow Step 2 to restructure and merge these conflicts back into your translations

Conclusion

You’ve now gone a long way to improving the quality of your translations. Congratulations! You might want to take
some of what you’ve learnt here to start building a terminology list that can help prevent some of the issues you have
seen.

1.6.6 Creating a terminology list from your existing translations

If you did not create a terminology list when you started your translation project or if you have inherited some old
translations you probably now want to create a terminology list.

1.6. Use Cases 121

Translate Toolkit Documentation, Release 3.0.0

A terminology list or glossary is a list of words and phrases with their expected translation. They are useful for
ensuring that your translations are consistent across your project.

With existing translations you have embedded a list of valid translation. This example will help you to extract the
terms. It is only the first step you will need to review the terms and must not regard this as a complete list. And of
course you would want to take your corrections and feed them back into the original translations.

Quick Overview

This describes a multi-stage process for extracting terminology from translation files. It is provided for historical
interest and completeness, but you will probably find that using poterminology is easier and will give better results
than following this process.

• Filter our phrases of more than N words

• Remove obviously erroneous phrases such as numbers and punctuation

• Create a single PO compendium

• Extract and review items that are fuzzy and drop untranslated items

• Create a new PO files and process into CSV and TMX format

Get short phrases from the current translations

We will not be able to identify terminology within bodies of text, we are only going to extract short bit of text i.e. ones
that are between 1 and 3 words long.

pogrep --header --search=msgid -e '^\w+(\s+\w+){0,2}$' zulu zulu-short

We use --header to ensure that the PO files have a header entry (which is important for encoding). We are searching
only in the msgid and the regular expression we use is looking for a string with between 1 and 3 words in it. We are
searching through the folder zulu and outputting the result in zulu-short

Remove any translations with issues

You can for instance remove all entries with only a single letter. Useful for eliminating all those spurious accelerator
keys.

pogrep --header --search=msgid -v -e "^.$" zulu-short zulu-short-clean

We use the -v option to invert the search. Our cleaner potential glossary words are now in zulu-short-clean. What
you can eliminate is only limited by your ability to build regular expressions but yu could eliminate:

• Entries with only numbers

• Entries that only contain punctuation

Create a compendium

Now that we have our words we want to create a single files of all terminology. Thus we create a PO compendium:

~/path/to/pocompendium -i -su zulu-gnome-glossary.po -d zulu-short-clean

122 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

You can use various methods but our bash script is quite good. Here we ignore case, -i, and ignore the underscore
(_) accelerator key, -su, outputting the results in.

We now have a single file containing all glossary terms and the clean up and review can begin.

Split the file

We want to split the file into translated, untranslated and fuzzy entries:

~/path/to/posplit ./zulu-gnome-glossary.po

This will create three files:

• zulu-gnome-glossary-translated.po – all fully translated entries

• zulu-gnome-glossary-untranslated.po – messages with no translation

• zulu-gnome-glossary-fuzzy.po – words that need investigation

rm zulu-gnome-glossary-untranslated.po

We discard zulu-gnome-glossary-untranslated.po since they are of no use to us.

Dealing with the fuzzies

The fuzzies come in two kinds. Those that are simply wrong or needed updating and those where there was more then
one translation for a given term. So if someone had translated ‘File’ differently across the translations we’d have an
entry that was marked fuzzy with the two options displayed.

pofilter -t compendiumconflicts zulu-gnome-glossary-fuzzy.po zulu-gnome-glossary-
→˓conflicts.po

These compendium conflicts are what we are interested in so we use pofilter to filter them from the other fuzzies.

rm zulu-gnome-glossary-fuzzy.po

We discard the other fuzzies as they where probably wrong in the first place. You could review these but it is not
recommended.

Now edit zulu-gnome-glossary-conflicts.po to resolve the conflicts. You can edit them however you like
but we usually follow the format:

option1, option2, option3

You can get them into that layout by doing the following:

sed '/#, fuzzy/d; /\"#-#-#-#-# /d; /# (pofilter) compendiumconflicts:/d; s/\\n"$/, "/
→˓' zulu-gnome-glossary-conflicts.po > tmp.po
msgcat tmp.po > zulu-gnome-glossary-conflicts.po

Of course if a word is clearly wrong, misspelled etc. then you can eliminate it. Often you will find the “problem”
relates to the part of speech of the source word and that indeed there are two options depending on the context.

You now have a cleaned fuzzy file and we are ready to proceed.

1.6. Use Cases 123

Translate Toolkit Documentation, Release 3.0.0

Put it back together again

msgcat zulu-gnome-glossary-translated.po zulu-gnome-glossary-conflicts.po > zulu-
→˓gnome-glossary.po

We now have a single file zulu-gnome-glossary.po which contains our glossary texts.

Create other formats

It is probably good to make your terminology available in other formats. You can create CSV and TMX files from
your PO.

po2csv zulu-gnome-glossary.po zulu-gnome-glossary.csv
po2tmx -l zu zulu-gnome-glossary.po zulu-gnome-glossary.tmx

For the terminology to be usable by Trados or Wordfast translators they need to be in the following formats:

• Trados – comma delimited file source,target

• Wordfast – tab delimited file source[tab]target

In that format they are now available to almost all localisers in the world.

FIXME need scripts to generate these formats.

1.6.7 The work has only just begun

The lists you have just created are useful in their own right. But you most likely want to keep growing them, cleaning
and improving them.

You should as a first step review what you have created and fix spelling and other errors or disambiguate terms as
needed.

But congratulations a Terminology list or Glossary is one of your most important assets for creating good and consis-
tent translations and it acts as a valuable resource for both new and experienced translators when they need prompting
as to how to translate a term.

1.6.8 Running the tools on Microsoft Windows

Since the toolkit is written in Python, it should work perfectly on Windows.

Add the toolkit to your path

Windows 95/98

You might need to add the installation directory of the translate toolkit to your path

path "C:\Program Files\translate-toolkit\"

This will work for one session, but will be lost when you reboot again. Therefore you might want to add it to the
autoexec.bat file.

124 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Windows 2000/XP

You can add to the path permanently. Check this useful guide. You should add the following to your path:

C:\Programs Files\translate-toolkit\

If you have the Gettext tools installed, add it to your path as well:

C:\Program Files\GnuWin32\bin\

Change Windows file to Unix file

Some programs in Windows will add CRLFs to the file which is considered rather poor practice for l10ns that require
Unix files. To fix a text file, drag and drop it to the dos2unix.exe utility from http://www.bastet.com/

1.6.9 Cleanup translator comments

Translate Toolkit 1.1 saw source comments being converted to developer comments instead of translator comments.

This use case shows you how to get rid of the old translator comments.

The Change

We used to put all source comments into translator comments.

Some Comment

But now place them in developer comments.

#. Some Comment

This ensures that these source comments are updated to the newest versions from the source files, which is a good
thing. Translator comments survive these updates, just like you want, while developer comments are discarded.

If you don’t clean up your PO files you will now end up with:

Some Comment
#. Some Comment

Thus a duplicated comment. Fortunately you only need to clean your PO files once.

Removing old translator comments

Note: This will remove all your translator comments. So if you have some that you actually want to keep then you
will need to manual editing

Removal is simple using pocommentclean:

pocommentclean my-po-dir

1.6. Use Cases 125

http://www.computerhope.com/issues/ch000549.htm
http://gnuwin32.sourceforge.net/packages/gettext.htm
http://www.bastet.com/

Translate Toolkit Documentation, Release 3.0.0

Which will clean all your PO files in my-po-dir

pocommentclean is simply a nice wrapper for this sed command:

sed -i "/^#$/d;/^#[^\:\~,\.]/d" $(find po -name "*.po")

This will delete all lines starting with # that are not used by PO for locations (#:), automatic/developer comments (#.),
state (#,) and obsolete (#~).

You can now safely commit your changes and begin your migrations using pot2po of pomigrate2

1.6.10 Creating Mozilla POT files

You can do this using Mozilla source from CVS or Mercurial

Using Mercurial

Since Firefox 3.1 and Thunderbird 3.0, Mozilla has switched to using Mercurial for version control. See the Mozilla’s
L10n on Mercurial page for instructions on how to checkout and update your Mozilla sources and l10n files.

You can use get_moz_enUS.py to extract an en-US directory from the source tree:

get_moz_enUS.py -s mozilla-central/ -d l10n/ -p browser

This will move the correct en-US files to l10n/en-US. You can now create POT files as follows:

moz2po -P l10n/en-US l10n/pot

This will create the POT files in l10n/pot using the American English files from en-US. You now have a set of
POT files that you can use for translation or updating your existing PO files.

There are also other scripts that can help with creating and updating POT and PO files for Mozilla localisation.

Using CVS

Firefox versions before 3.1 and Thunderbird versions before 3.0 still has its source in CVS. Check out files from the
Mozilla repository. If you don’t want to checkout all files do:

make -f client.mk l10n-checkout

The English files are in the mozilla/ module, while the translated files all reside in the l10n/ module. They have
different structure but not enough to kill you.

Once you have checked out mozilla/ you will need to get the correct files for en-US. To do this we will create
en-US as a pseudo language.

make -f tools/l10n/l10n.mk create-en-US

This will move the correct en-US files to l10n/en-US. You can now create POT files as follows:

moz2po -P l10n/en-US l10n/pot

This will create the POT files in l10n/pot using the American English files from en-US. You now have a set of
POT files that you can use for translation or updating your existing PO files.

126 Chapter 1. User’s Guide

https://developer.mozilla.org/docs/Localizing_with_Mercurial

Translate Toolkit Documentation, Release 3.0.0

1.6.11 Document translation

Translating documents can be quite different from translating software interfaces. Many issues specific to software
localisation might not be relevant in documents, such as accelerators, translation length, constructed phrases, etc.
However, document translation has several other issues that is good to be aware of.

Preparing for translation

Ideally a document should be prepared for translation. A good source document will make translation easier. Possi-
bilities:

• Proofread the document (spelling, grammar, clarity)

• Use consistent terminology

• Read “writing for translation”

• For structured documents, use proper structure like headings and subheadings instead of using style only.

Translation

A lot can be said about translation in general, but this is only meant to give you some tips.

Be to be aware of issues arising out of translation memory. You could possibly have exact matches (identical string
translated before), or In Context Exact (ICE) matches, where some translation tools will specifically indicate that
the translation is identical, but also that the surrounding text from the paragraph is the same. It could also indicate
agreement with regards to domain, file, date, etc.

Post-processing

After generating the translated document, you very likely need to do some post processing. Things to consider:

• Ensuring correct translation in cases where context might not have been obvious during translation

• Document layout, page layout

• Fonts or other styling changes

• Style of generated content, such as numbers

• Generated sections, such as Table of contents, list of figures, index, variables

• Migrating an older version of your translations to the latest templates

• Checking for technical errors in your translations

• Translating using only a spreadsheet (a look at the whole roundtrip from PO to CSV and back)

• Creating OpenOffice.org POT files

• Checking for inconsistencies in your translations

• Creating a terminology list from your existing translations

• Running the tools on Microsoft Windows

• Using phase for the complete translation roundtrip

• Cleanup translator comments

• Creating Mozilla POT files

1.6. Use Cases 127

http://www.multilingualwebmaster.com/library/writing-TR.html

Translate Toolkit Documentation, Release 3.0.0

• Document translation

1.7 Translation Related File Formats

These are the different storage formats for translations and files associated with translations that are supported by the
toolkit. See also Standards conformance for standards conformance.

The Translate Toolkit implements a set of classes for handling translation files which allows for a uniform API which
covers other issues such as quoting and escaping of text.

1.7.1 Primary translation formats

XLIFF

XLIFF[*] is the OASIS standard for translation.

References

• XLIFF Standard

• OASIS XLIFF Technical Committee website

Flavours

XLIFF also has documents that specify the conversion from various standard source documents and localisation for-
mats.

• PO – For conformance to the po2xliff spec, see xliff2po.

– Draft XLIFF 1.2 Representation Guide for Gettext PO

• HTML – not implemented

– Draft XLIFF 1.2 Representation Guide for HTML

• Java (includes .properties and Java resource bundles) – not implemented

– Draft XLIFF 1.2 Representation Guide for Java Resource Bundles

• ICU Resource Bundles – not officially being developed by XLIFF – Proposed representation guide

Standard conformance

Done

• File creation and parsing

• API can create multiple files in one XLIFF (some tools only read the first file)

• source-language attribute

• trans-unit with

– note: addnote() and getnotes()

128 Chapter 1. User’s Guide

https://www.oasis-open.org/
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff
http://docs.oasis-open.org/xliff/v1.2/xliff-profile-po/xliff-profile-po-1.2.html
http://docs.oasis-open.org/xliff/v1.2/xliff-profile-html/xliff-profile-html-1.2.html
http://docs.oasis-open.org/xliff/v1.2/xliff-profile-java/xliff-profile-java-v1.2.html
http://www.icu-project.org/repos/icu/icuhtml/trunk/design/locale/xliff-profile-icuresourcebundle-1.2.htm

Translate Toolkit Documentation, Release 3.0.0

– state

* fuzzy: isfuzzy() and markfuzzy()

* translated: marktranslated()

* approved

* needs-review-translation: isreview(), markreviewneeded()

– id: setid()

– context-group: createcontextgroup()

• context groups

• alt-trans

XLIFF and other tools

Here is a small report on XLIFF support by Windows programs.

PO Files

PO files use the file format of the Gettext tools.

See also:

Gettext manual

Supported Features

• Headers

• Language header (since gettext version 0.17)

• Plural forms and plural form handling

• Message context

msgctxt "noun"
msgid "View"
msgstr ""

• Normal comments

this is another comment

• Automatic comments

#. comment extracted from the source code

• Source location comments

#: sourcefile.xxx:35

• Typecomments

1.7. Translation Related File Formats 129

http://translate.sourceforge.net/wiki/guide/tools/xliff_support_by_ms_windows_programs
http://www.gnu.org/software/gettext/

Translate Toolkit Documentation, Release 3.0.0

#, fuzzy

• Msgidcomments, also known as KDE style comments as they are used by KDE for message disambiguation and
comments to translators.

Note: Support for this is being phased out in favor of msgctxt.

msgid "_: comment\n"
"translation"

• Obsolete messages

#~ msgid "Blah"
#~ msgstr "Bleeh"

• Previous msgid

#| msgid "previous message"

• Previous msgctxt

#| msgctxt "previous context"

1.7.2 Other translation formats

CSV

CSV (Comma Separated Values) is a simple file format for general data interchange. It can be used in the toolkit for
simple data interchange, and can be edited with most spreadsheet programs. There is no formal specification for the
CSV file format, but more information can be acquired from Comma-Separated Values

Conformance

CSV files were initially used to convert from and to po files, and therefore contained three columns as follows:

Col-
umn

Description

loca-
tion

A column with the location of the original msgid (in other words, a line in a programming source file, as
indicated in the #: comments of PO files).

source The source text (or msgid)
target The target text (or msgstr)

Tabs and newlines are maintained, although it is not clear how easy it is to edit these things in a spreadsheet.

Quoting is a problem, because the different spreadsheet programs handle these things differently. Notably, Microsoft’s
excel handles single quotes slightly differently. In future, it might be worthwhile to handle excel CSV as a different
format from other CSV files. An entry like ‘mono’ is ambiguous as it is not sure whether this refers simply to the word
mono or to the entry ‘mono’ quoted with single quotes. (Example from Audacity pot file)

130 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/Comma-separated_values

Translate Toolkit Documentation, Release 3.0.0

INI Files

Also known as initialisation files. These are in some cases used to store translations.

Conformance

The toolkit uses iniparse, an INI file parser that preserves layout and follows the .ini format as supported by the Python
language.

Dialects

The format supports two dialects:

• default: standard iniparse handling of INI files

• inno: follows Inno escaping conventions

References

Further information is available on .ini files:

• Wikipedia INI file format article

• Unofficial specification

Mozilla and Java properties files

The Translate Toolkit can manage Java .properties files with the prop2po and po2prop tool. As part of the Mozilla
localisation process, the moz2po tool handles the properties files along with the other files. The tools can also handle
Skype .lang files. Some related formats with their own documentation:

• Mac OSX strings

• Adobe Flex properties files.

Features

• Fully manage Java escaping (Mozilla non-escaped form is also handled)

• Preserves the layout of the original source file in the translated version

New in version 1.12.0.

• Mozilla accelerators – if a unit has an associated access key entry then these are combined into a single unit

Not implemented

• We don’t allow filtering of unchanged values. In Java you can inherit translations, if the key is missing from a
file then Java will look to other files in the hierarchy to determine the translation.

1.7. Translation Related File Formats 131

https://pypi.org/project/iniparse/
http://www.innosetup.com/files/istrans/
http://en.wikipedia.org/wiki/INI_file
http://www.cloanto.com/specs/ini/

Translate Toolkit Documentation, Release 3.0.0

Examples

editmenu.label = "Edit"
saveas.label = "Save As"

References

• Java Properties Class’s load() describes the properties format.

• http://www.oracle.com/webfolder/technetwork/jsc/dtd/properties.dtd – alternate XML based property represen-
tation

Mozilla DTD format

Mozilla makes use of a .dtd file to store many of its translatable elements, the moz2po converter can handle these.

References

• XML specification

Features

• Comments – these are handled correctly and integrated with the unit

• Accelerators – if a unit has an associated access key entry then these are combined into a single unit

• Translator directive – all LOCALIZATION NOTE items such as DONT_TRANSLATE are handled and such
items are discarded

• Entities – some entities such as & or " are expanded when reading DTD files and escaped when
writing them, so that translator see and type & and " directly

Issues

• We don’t expand some character entities like <, & – this doesn’t break anything but it would be nicer
to see © rather than ©

OpenOffice.org GSI/SDF format

OpenOffice.org uses an internal format called SDF to manage localisation text. The toolkit can successfully manage
all features of this format converting it to XLIFF or PO format with the oo2po and oo2xliff tools.

Features

• Handles all translatable text from the SDF

• Can also use ‘x-comments’ ‘language’ found in the SDF to provide translator comments

132 Chapter 1. User’s Guide

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load(java.io.Reader)
http://www.oracle.com/webfolder/technetwork/jsc/dtd/properties.dtd
http://www.w3.org/TR/REC-xml/

Translate Toolkit Documentation, Release 3.0.0

PHP

Many PHP programs make use of a localisable string array. The toolkit supports the full localisation of such files with
php2po and po2php.

Conformance

Our format support allows:

• Single and double quoted strings (both for keys and values)

<?php
$variable = 'string';
$messages["language"] = 'Language';
define('item', "another string");

• PHP simple variable syntax

<?php
$variable = 'string';
$another_variable = "another string";

• PHP square bracket array syntax

<?php
$messages['language'] = 'Language';
$messages['file'] = "File";
$messages["window"] = 'Window';
$messages["firewall"] = "Firewall";

• PHP array syntax

New in version 1.7.0.

<?php
// Can be 'array', 'Array' or 'ARRAY'.
$lang = array(

'name' => 'value',
'name2' => "value2",
"key1" => 'value3',
"key2" => "value4",

);

• PHP define syntax

New in version 1.10.0.

<?php
define('item', 'string');
define('another_item', "another string");
define("key", 'and another string');
define("another_key", "yet another string");

• PHP short array syntax

New in version 2.3.0.

1.7. Translation Related File Formats 133

http://en.wikipedia.org/wiki/PHP
http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single
http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double
http://php.net/manual/en/language.types.array.php

Translate Toolkit Documentation, Release 3.0.0

<?php
$variable = [

"foo" => "bar",
"bar" => "foo",

];

• Heredoc

New in version 2.3.0.

<?php
$variable = <<<EOT
bar
EOT;

• Nowdoc

New in version 2.3.0.

<?php
$variable = <<<'EOD'
Example of string
spanning multiple lines
using nowdoc syntax.
EOD;

• Escape sequences (both for single and double quoted strings)

<?php
$variable = 'He said: "I\'ll be back"';
$another_variable = "First line \n second line";
$key = "\tIndented string";

• Multiline entries

<?php
$lang = array(

'name' => 'value',
'info' => 'Some hosts disable automated mail sending

on their servers. In this case the following features
cannot be implemented.',

'name2' => 'value2',
);

• Various layouts of the id

<?php
$string['name'] = 'string';
$string[name] = 'string';
$string['name'] = 'string';

• Comments

Changed in version 1.10.0.

<?php
Hash one-line comment
$messages['language'] = 'Language';

(continues on next page)

134 Chapter 1. User’s Guide

http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc
http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.nowdoc
http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single
http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

// Double slash one-line comment
$messages['file'] = 'File';

/*
Multi-line
comment

*/
$messages['help'] = 'Help';

• Whitespace before end delimiter

New in version 1.10.0.

<?php
$variable = 'string' ;

$string['name'] = 'string' ;

$lang = array(
'name' => 'value' ,

);

define('item', 'string');

• Nested arrays with any number of nesting levels

New in version 1.11.0.

<?php
$lang = array(

'name' => 'value',
'datetime' => array(

'TODAY' => 'Today',
'YESTERDAY' => 'Yesterday',
'AGO' => array(

0 => 'less than a minute ago',
2 => '%d minutes ago',
60 => '1 hour ago',

),
'Converted' => 'Converted',
'LAST' => 'last',

),
);

• Whitespace in the array declaration

New in version 1.11.0.

<?php
$variable = array (

"one" => "this",
"two" => "that",

);

• Blank array declaration, then square bracket syntax to fill that array

New in version 1.12.0.

1.7. Translation Related File Formats 135

Translate Toolkit Documentation, Release 3.0.0

<?php
global $messages;
$messages = array();

$messages['language'] = 'Language';
$messages['file'] = 'File';

• Unnamed arrays:

New in version 2.2.0.

<?php
return array(

"one" => "this",
);

• Array entries without ending comma:

New in version 2.3.0.

<?php
$variable = array(

"one" => "this",
"two" => "that"

);

• Array entries with space before comma:

New in version 2.3.0.

<?php
$variable = array(

"one" => "this",
"two" => "that" ,

);

• Nested arrays declared on the next line:

New in version 2.3.0.

<?php
$variable = array(

"one" =>
array(

"two" => "dous",
),

);

• Nested arrays with blank entries:

New in version 2.3.0.

<?php
$variable = array(

"one" => array(
"" => "",
"two" => "dous",

),
);

136 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

• Strings with slash asterisk on them:

New in version 2.3.0.

<?php
$variable = array(

'foo' => 'Other value /* continued',
);

• Array entries with value on next line:

New in version 2.3.0.

<?php
$variable = array(

'foo' =>
'bar',

);

• Array defined in a single line:

New in version 2.3.0.

<?php
$variable = array('item1' => 'value1', 'item2' => 'value2', 'item3' => 'value3'
→˓);

• Keyless arrays:

New in version 2.3.0.

<?php
$days = array('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
→˓'Saturday');

• Nested arrays without key for a nested array:

New in version 2.3.0.

<?php
$lang = array(array("key" => "value"));

• Concatenation of strings and variables:

New in version 2.3.0.

<?php
$messages['welcome'] = 'Welcome ' . $name . '!';
$messages['greeting'] = 'Hi ' . $name;

• Assignment in the same line a multiline comment ends:

New in version 2.3.0.

<?php
/*

Multi-line
comment

*/ $messages['help'] = 'Help';

• Keyless arrays assigned to another array:

1.7. Translation Related File Formats 137

Translate Toolkit Documentation, Release 3.0.0

<?php
$messages['days_short'] = array('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat');

• Laravel plurals are supported in the LaravelPHPFile class:

<?php
return [

'apples' => 'There is one apple|There are many apples',
];

Non-Conformance

The following are not yet supported:

• There are currently no known limitations.

Qt .ts

The Qt toolkit uses a .ts file format to store translations which are traditionally edited using Qt Linguist.

References

The format is XML and seems to only have been documented properly since Qt 4.3

• Current DTD Specification for Qt 5, older versions; Qt 4.3

• http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt

Complete

Note that ts2po uses and older version and does not support all of these features. Virtaal, Pootle and other users of the
new ts class support the following:

• Context

• Message: status (unfinished, finished, obsolete), source, translation, location

• Notes: comment, extracomment, translatorcomment (last two since Toolkit 1.6.0)

• Plurals: numerusform

TODO

Note: A new parser has been added to the toolkit in v1.2. This allows Virtaal, pocount and other users to work with
v1.1 of the .ts format. This corrects almost all of the issues listed below. The converter ts2po continues to use the older
storage class and thus continue to experience some of these problems.

• Compliance with above DTD

• byte: within various text areas

138 Chapter 1. User’s Guide

http://doc.qt.io/qt-5/linguist-ts-file-format.html
http://doc.qt.io/archives/4.3/linguist-ts-file-format.html
http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt
http://virtaal.org
http://pootle.translatehouse.org
http://virtaal.org

Translate Toolkit Documentation, Release 3.0.0

• translation: obsolete (currently handled with comments in conversion to PO. But should be able to convert
Obsolete PO back into obsolete TS. This might mean moving this format properly onto the base class).

• lengthvariants

• *comment: various new comment fields

• old*: ability to store previous source and comments

Validate

These might work but need validation

• Encoding handling for non-UTF-8 file encodings

Windows RC files

New in version 1.2.

Windows .rc files, or resource files, are used to store translatable text, dialogs, menu, etc. for Windows applications.
The format can be handled by the Translate Toolkit rc2po and po2rc.

Conformance

The actual specification of .rc files is hard to come by. The parser was built using WINE .rc files as a reference. This
was done as WINE is a good target for .rc translations. We are confident though that the extraction will prove robust
for all .rc files.

Useful resource

• RC converter

• ReactOS translation instructions

Supported elements

• DIALOG, DIALOGEX: All translatables

• MENU: POPUP, MENUITEM

• STRINGTABLE

• LANGUAGE: We only parse the first language tag, further LANGUAGE section are ignored

Bugs

• There may be problems with very deeply nested MENU’s

• LANGUAGE elements cannot yet be updated in po2rc (Issue 360)

1.7. Translation Related File Formats 139

http://en.wikipedia.org/wiki/Wine_%28software%29
http://www.soft-gems.net:8080/browse/RC-Converter
http://www.reactos.org/wiki/index.php/Translating_introduction
https://github.com/translate/translate/issues/360

Translate Toolkit Documentation, Release 3.0.0

Mac OSX strings

New in version 1.8.

Mac OSX .strings files are used for some Cocoa / Carbon application localization, such as for the iPhone, iPod, and
OSX. They are somewhat similar to Java properties, and therefore prop2po and po2prop are used for conversion.

References

• Localising string resources

• Manual creation of .strings files

• String format specifiers

Adobe Flex properties files

New in version 1.8.

Adobe Flex applications use Java properties encoded in UTF-8. The prop2po and po2prop commands are used for
conversion.

References

• Description for Adobe Flex properties files

Haiku catkeys

New in version 1.8.

Localisation for the Haiku operating system is done with a file format called catkeys. It is a bilingual file format.

The is a tab separated value (TSV) file, where each line represents a translatable unit. A line consists of four elements:

Col-
umn

Description

source The source text (in English)
con-
text

The context of where the source text is used.

re-
marks

An additional remark by the developer, that gives a hint to the translator. Within the context of this toolkit,
this is stored as the note of the unit.

target The target text

The first line of the file is the header file, with four tab separated values:

• The version (currently: 1)

• The name of the language in lower case (for example: catalan)

• The signature (for example: x-vnd.Haiku-StyledEdit)

• A checksum (32 bit unsigned integer)

The checksum is calculated by an algorithm that hashes the source, context and remark values of all units. The target
text is not relevant for the checksum algorithm.

140 Chapter 1. User’s Guide

https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingResources/Strings/Strings.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Strings/Articles/formatSpecifiers.html
http://help.adobe.com/en_US/Flex/4.0/UsingSDK/WS2db454920e96a9e51e63e3d11c0bf69084-7f2d.html
http://www.haiku-os.org/

Translate Toolkit Documentation, Release 3.0.0

Links

• Some notes about the format

• Some example files

Android string resources

Android programs make use of localisable string resources.

Note: The toolkit supports this format, but still doesn’t provide any converter.

References

• Android Resource files reference

• Android String resources reference

• Localizing Android Applications tutorial

• Reference for translatable attribute

.NET Resource files (.resx)

.Net Resource (.resx) files are a monolingual file format used in Microsoft .Net Applications. The .resx resource file
format consists of XML entries, which specify objects and strings inside XML tags. It contains a standard set of header
information, which describes the format of the resource entries and specifies the versioning information for the XML
used to parse the data. Following the header information, each entry is described as a name/value pair.

Comments can be added per string using the optional <comment> field. As only one comment field is available, both
translator and developer comments are stored in the same place. Translator comments are automatically wrapped with
brackets and prefixed with ‘Translator Comment:’ during the po2resx process to make it easy to distinguish comment
origin inside the .resx files.

Example:

<data name="key">
<value>hello world</value>
<comment>Optional developer comment about the string [Translator Comment:

→˓Optional translator comment]</comment>
</data>

resx2po and po2resx are used for conversion.

References

• Resources in .Resx File Format

• ASP.NET Web Page Resources Overview

1.7. Translation Related File Formats 141

http://www.haiku-os.org/blog/pulkomandy/2009-09-24_haiku_locale_kit_translator_handbook
http://cgit.haiku-os.org/haiku/tree/data/catalogs/
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://developer.android.com/guide/topics/resources/resources-i18n.html
http://developer.android.com/guide/topics/resources/available-resources.html#stringresources
http://www.linux-mag.com/id/7794
http://tools.android.com/recent/non-translatablestrings
http://msdn.microsoft.com/en-us/library/ekyft91f%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms227427.aspx

Translate Toolkit Documentation, Release 3.0.0

Mozilla .lang files

Mozilla’s custom .lang format is used for some of their websites.

References

• .lang specification

• www.mozilla.org repository of translations

• CSV

• INI Files (including Inno Setup .isl dialect)

• Java Mozilla and Java properties files (also Mozilla derived properties files)

• Mozilla Mozilla DTD format

• OpenOffice.org OpenOffice.org GSI/SDF format (Also called SDF)

• PHP translation arrays

• Qt Linguist Qt .ts (both 1.0 and 1.1 supported, 1.0 has a converter)

• Symbian localization files

• Windows Windows RC files files

• Mac OSX Mac OSX strings files (also used on the iPhone) (from version 1.8)

• Adobe Adobe Flex properties files files (from version 1.8)

• Haiku Haiku catkeys (from version 1.8)

• Android string resources (supports storage, not conversion)

• .NET Resource files (.resx) .NET Resource files (.resx)

• Mozilla .lang files

1.7.3 Translation Memory formats

TMX

TMX is the LISA OSCAR standard for translation memories.

Standard conformance

Summary: TMX version 1.4 conformance to Level 1, except that no markup is stripped.

• All required header fields are supplied.

• The adminlang field in the header is always English.

• None of the optional header fields are supplied.

• We assume that only two languages are used (source and single target language).

• No special consideration for segmentation.

• Currently text is treated as plain text, in other words no markup like HTML inside messages are stripped or
interpreted as it should be for complete Level 1 conformance.

142 Chapter 1. User’s Guide

https://github.com/mozilla-l10n/langchecker/wiki/.lang-files-format
https://github.com/mozilla-l10n/langchecker/wiki/.lang-files-format
https://github.com/mozilla-l10n/www.mozilla.org
http://www.gala-global.org/lisa-oscar-standards
http://www.gala-global.org/oscarStandards/tmx/tmx14b.html

Translate Toolkit Documentation, Release 3.0.0

Wordfast Translation Memory

The Wordfast format, as used by the Wordfast translation tool, is a simple tab delimited file.

The storage format can read and write Wordfast TM files.

Conformance

• Escaping – The format correctly handles Wordfast &'XX; escaping and will unescape and escape seamlessly.

• Soft-breaks – these are not managed and are left as escaped

• Replaceables – these are not managed

• Header – Only basic updating and reading of the header is implemented

• Tab-separated value (TSV) – the format correctly handles the TSV format used by Wordfast. There is no quoting,
Windows newlines are used and the \t is used as a delimiter (see issue 472)

• TMX

• Wordfast Translation Memory: TM

• Trados: .txt TM (from v1.9.0 – read only)

1.7.4 Glossary formats

OmegaT glossary

New in version 1.5.1.

OmegaT allows a translator to create a terminology list of glossary files. It uses this file to provide its glossary matches
to the OmegaT users.

Format specifications

The glossary files is a tab delimited files with three columns:

1. source

2. target

3. comment

The files is stored in the system locale if the files extension is .txt or in UTF-8 if the file extension is .utf8.

Conformance

The implementation can load files in UTF-8 or the system encoding.

Issues

• There has not been extensive testing on system encoded files and there are likely to be issues in these files for
encodings that fall outside of common ASCII characters.

• Files with additional columns are read correctly but cannot be written.

1.7. Translation Related File Formats 143

http://en.wikipedia.org/wiki/Wordfast
https://github.com/translate/translate/issues/472

Translate Toolkit Documentation, Release 3.0.0

Qt Phrase Book (.qph)

New in version 1.2.

Qt Linguist allows a translator to collect common phrases into a phrase book. This plays a role of glossary lookup as
opposed to translation memory.

Conformance

There is no formal definition of the format, although it follows a simple structure

<!DOCTYPE QPH><QPH>
<phrase>
<source>Source</source>
<target>Target</target>
<definition>Optional definition</definition>

</phrase>
</QPH>

Missing features

There are no missing features in our support in the toolkit. The only slight difference are:

• We don’t focus on adding and removing items, just updating and reading

• Comments are not properly escaped on reading, they might be on writing

• An XML header is output on writing while it seems that no files in the wild contain an XML header.

• The <definition> is aimed at users, the toolkits addnote feature focuses on programmer, translators, etc
comments while there is really only one source of comments in a .qph. This causes duplication on the offline
editor.

TBX

TBX is the LISA OSCAR standard for terminology and term exchange.

For information on more file formats, see Standards conformance.

References

• Standard home page

• Specification

• ISO 30042 – TBX is an approved ISO standard

• Additional TBX resources

You might also be interested in reading about TBX-Basic – a simpler, reduced version of TBX with most of the useful
features included.

Additionally notes and examples about TBX are available in Terminator TBX conformance notes which might help
understanding this format.

Also you might want to use TBXChecker in order to check that TBX files are valid. Check the TBXChecker explana-
tion.

144 Chapter 1. User’s Guide

http://www.gala-global.org/lisa-oscar-standards
http://www.gala-global.org/lisa-oscar-standards
http://www.gala-global.org/oscarStandards/tbx/tbx_oscar.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45797
http://www.tbxconvert.gevterm.net/
http://www.gala-global.org/oscarStandards/tbx/tbx-basic.html
http://terminator.readthedocs.org/en/latest/tbx_conformance.html
http://sourceforge.net/projects/tbxutil/
http://www.tbxconvert.gevterm.net/tbx_checker_explanation.html
http://www.tbxconvert.gevterm.net/tbx_checker_explanation.html

Translate Toolkit Documentation, Release 3.0.0

Conformance

Translate Toolkit TBX format support allows:

• Basic TBX file creation

• Creating a bilingual TBX from CSV using csv2tbx

• Using <tig> tags only

• Simple extraction of Parts of Speech and definitions

Non-Conformance

The following are not yet supported:

• id attribute for <termEntry> tags

• Multiple languages

• Multiple translations in the same language

• Cross references

• Context

• Abbreviations

• Synonyms

• <ntig> tag, read and write

Other features can be picked from the Terminator TBX conformance notes which also include examples and notes
about the TBX format.

Universal Terminology eXchange (UTX)

New in version 1.9.

UTX is implemented by the Asia-Pacific Association for Machine Translation

Resources

• UTX site

• Current Specification (implementation is based on UTX 1.0 which is no longer available)

Conformance

The Translate Toolkit implementation of UTX can correctly:

• Handle the header. Although we don’t generate the header at the moment

• Read any of the standard columns and optional columns. Although we can access these extra columns we don’t
do much with them.

Adjustments and not implemented features where the spec is not clear:

• We do not implement the “#.” comment as we need clarity on this

1.7. Translation Related File Formats 145

http://terminator.readthedocs.org/en/latest/tbx_conformance.html
http://www.aamt.info/english/utx/index.htm
http://www.aamt.info/english/utx/#Download

Translate Toolkit Documentation, Release 3.0.0

• The “<space>” override for no part of speech is not implemented

• The spec calls for 2 header lines, while examples in the field have 2-3 lines. We can read as many as supplied
but assume the last header line is the column titles

• We remove # from all field line entries, some examples in the field have #tgt as a column name

• OmegaT glossary (from v1.5.1)

• Qt Phrase Book (.qph)

• TBX

• Universal Terminology eXchange (UTX) (from v1.9.0)

1.7.5 Formats of translatable documents

HTML

The Translate Toolkit is able to process HTML files using the html2po converter.

Conformance

• Can identify almost all HTML elements and attributes that are localisable.

• The localisable and localised text in the PO/POT files is fragments of HTML. Therefore, reserved characters
must be represented by HTML entities:

– Content from HTML elements uses the HTML entities & (&), < (<), and > (>).

– Content from HTML attributes uses the HTML entities " (“) or ' (‘).

• Leading and trailing tags are removed from the localisable text, but only in matching pairs.

• Can cope with embedded PHP, as long as the documents remain valid HTML. If you place PHP code inside
HTML attributes, you need to make sure that the PHP doesn’t contain special characters that interfere with the
HTML.

References

• Reserved characters

• Using character entities

Flat XML

The Translate Toolkit is able to process flat XML files using the flatxml2po converter.

Flat XML (eXtensible Markup Language) is a simple monolingual file format similar to a very basic form of the
Android string resources format. Flat in this context means a single level of elements wrapped in the root-element
with no other structuring.

146 Chapter 1. User’s Guide

https://developer.mozilla.org/en-US/docs/Glossary/Entity
http://www.w3.org/International/questions/qa-escapes
http://en.wikipedia.org/wiki/XML

Translate Toolkit Documentation, Release 3.0.0

Conformance

• Single-level XML with attributes identifying a resource:

<root>
<str key="hello_world">Hello World!</str>
<str key="resource_key">Translated value.</str>

</root>

• Customizable element- and attribute-names (including namespaces):

<dictionary xmlns="urn:translate-toolkit:flat-xml-dictionary">
<entry name="hello_world">Hello World!</entry>
<entry name="resource_key">Translated value.</entry>

</dictionary>

• Value whitespace is assumed to be significant (equivalent to setting xml:space="preserve"):

<root>
<str key="multiline">The format assumes xml:space="preserve".

There is no need to specify it explicitly.

This assumption only applies to the value element; not the root element.</str>
</root>

• Non-resource elements and attributes are preserved (assuming the same file is also used when converting back
to XML):

<root>
<str key="translate_me">This needs to be translated</str>
<const name="the_answer" hint="this isn't translated">42</const>
<str key="important" priority="100">Some important string</str>

</root>

• Indentation can be customized to match an existing and consistent style:

<root>
<str key="indent">This file uses 8 spaces for indent</str>
<str key="tab_works">Tabs can also be used; but this is limited to the

→˓Python API at this point</str>
<str key="linerized">No indent (all in one line) is also supported</str>
<str key="note_on_eof">End-of-file *always* has a LF to satisfy VCS</str>

</root>

Note: To avoid potential issues and extraneous changes in diffs, this format always forces an ending linefeed
by default for compatibility with various Version control systems (such as Git).

Non-Conformance

While the format is flexible, not all features are supported:

• Mixed element/attribute names (as well as different namespaces for root- and value-element) and nested struc-
tures additional child elements. This format intentionally focuses on a simple structure that can be used by other
languages (such as XSLT).

1.7. Translation Related File Formats 147

http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/Git
http://en.wikipedia.org/wiki/XSLT

Translate Toolkit Documentation, Release 3.0.0

• Comments are preserved on roundtrips, but are not carried over into the resulting PO Files.

• XML Fragments and non-wellformed XML.

References

• XML specification

iCalendar

Support for iCalendar (*.ics) files. This allows calendars to be localised.

The format extracts certain properties from VEVENT objects. The properties are limited to textual entries that would
need to be localised, it does not include entries such as dates and durations that would indeed change for various
locales.

Resources

• rfc2445 – Internet Calendaring and Scheduling Core Object Specification (iCalendar)

• iCal spec in a simple adaptation of the rfc that makes it easy to refer to all sections, items and attributes.

• VObject – the python library used to read the iCal file.

• iCalender validator

• iCalendar

• Components and their properties

Conformance

We are not creating iCal files, simply extracting localisable information and rebuilding the file. We rely on VObject to
ensure correctness.

The following data is extracted:

• VEVENT:

– SUMMARY

– DESCRIPTION

– LOCATION

– COMMENTS

No other sections are extracted.

Notes

LANGUAGE: not a multilingual solution

It is possible to set the language attribute on an entry e.g.:

148 Chapter 1. User’s Guide

http://www.w3.org/TR/REC-xml/
http://en.wikipedia.org/wiki/ICalendar
http://tools.ietf.org/html/rfc2445
http://www.kanzaki.com/docs/ical/
http://eventable.github.io/vobject/
http://severinghaus.org/projects/icv/
http://en.wikipedia.org/wiki/ICalendar
https://upload.wikimedia.org/wikipedia/commons/c/c0/ICalendarSpecification.png

Translate Toolkit Documentation, Release 3.0.0

SUMMARY:LANGUAGE=af;New Year's Day

However since only one SUMMARY entry is allowed this does not allow you to specify multiple entries which would
allow a single multilingual file. With that in mind it is not clear why the LANGUAGE attribute is allowed, the examples
they give are for LOCATION entries but that is still not clearly useful.

Development Notes

If we use LANGUAGE at all it will be to ensure that we specify that an entry is in a given language.

JSON

New in version 1.9.0.

JSON is a common format for web data interchange.

Example:

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "fax",
"number": "646 555-4567"

}
]

}

Following JSON dialects are supported

• Plain JSON files.

• i18next

• Web Extension i18n

• go-i18n

• ARB

YAML

New in version 2.0.0.

YAML is a common format for web data interchange. The two variants of YAML files are supported:

1.7. Translation Related File Formats 149

http://en.wikipedia.org/wiki/JSON
https://github.com/nicksnyder/go-i18n
https://github.com/google/app-resource-bundle/wiki/ApplicationResourceBundleSpecification
http://en.wikipedia.org/wiki/YAML

Translate Toolkit Documentation, Release 3.0.0

• Plain YAML files.

• Ruby YAML localization files with root node as language. This variant supports plurals as well.

Non-Conformance

The following are not yet supported (in most cases these are properly parsed, but not saved in round trip):

• Booleans:

foo: True

OpenDocument Format

This page summarises the support for the OpenDocument format (ODF) in the Translate Toolkit. This currently
involves only the odf2xliff and xliff2odf converters.

The Translate Toolkit aims to support version 1.1 of the ODF standard, although it should work reasonably well with
older or newer files to the extent that they are similar.

Our support is implemented to classify tags as not containing translatable text, or as being inline tags inside translatable
tags. This approach means that new fields added in future versions will automatically be seen as translatable and should
still be extracted successfully, even if the currently released versions of the Translate Toolkit are not aware of their
existence.

• Currently used and classified tags

More complex tag uses are still needed to extract 100% correctly in some complex cases. For more information, see
the list of issues from testing.

Simple Text Documents

The Translate Toolkit can process simple Text files. This is very useful for translating installation files and READMEs.
The processing of these files is performed by the txt2po converter.

In some cases you will need to adjust the source text for the conversion management to work well. This is because the
text file format support considered units to be space separated blocks of text.

Example

Heading
=======

Paragraph One

Paragraph Two:

* First bullet

* Second bullet

This example will result in three units. The first will include the underline in the header. The third will include all the
bullet points in one paragraph together with the paragraph lead in.

150 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/OpenDocument
https://github.com/translate/translate/blob/master/translate/storage/odf_shared.py#L23
http://translate.sourceforge.net/wiki/odf/testing

Translate Toolkit Documentation, Release 3.0.0

Wiki Syntax

The Translate Toolkit can manage Wiki syntax pages. This is implemented as part of the text format and the conversion
is supported in txt2po.

Those who edit wikis will appreciate that wiki text is simply a normal text document edited using a form of wiki
syntax. Whether the final storage is a database or a flat file the part that a user edits is a simple text file.

The format does not support all features of the wiki syntax and will simply dump the full form if it doesn’t understand
the text. But structures such as headers and lists are understood and the filter can remove these are correctly add them.

Supported Wiki Formats

The following is a list of the wikis supported together with a list of the items that we can process:

• dokuwiki – heading, bullet, numbered list

• MediaWiki – heading, bullet, numbered list

Possible uses

As part of a localisation process for a wiki this format and the filters could be used to provide a good localisation of
existing wiki content.

With further enhancement the tool could probably be capable of converting from one wiki syntax to another, but that
is of course not its main aim

Additional notes on MediaWiki

Media wiki can also export in XML format, see http://en.wikipedia.org/wiki/Special:Export and http://www.
mediawiki.org/wiki/Manual:Parameters_to_Special:Export this however exports in XML so not directly usable by
txt2po.

For importing please see http://en.wikipedia.org/wiki/Help:Import this is disabled on most wikis so not directly usable
currently.

Subtitles

New in version 1.4.

The translation of subtitles are supported in the toolkit with the commands sub2po and po2sub.

The following formats are supported for subtitles:

• MicroDVD

• MPL2

• MPsub

• SubRip (.srt)

• SubViewer 2.0 (.sub)

• TMPlayer

• Sub Station Alpha

1.7. Translation Related File Formats 151

http://wiki.splitbrain.org/wiki:dokuwiki
http://www.mediawiki.org/wiki/MediaWiki
http://en.wikipedia.org/wiki/Special:Export
http://www.mediawiki.org/wiki/Manual:Parameters_to_Special:Export
http://www.mediawiki.org/wiki/Manual:Parameters_to_Special:Export
http://en.wikipedia.org/wiki/Help:Import
http://en.wikipedia.org/wiki/SubRip
http://en.wikipedia.org/wiki/SubViewer

Translate Toolkit Documentation, Release 3.0.0

• Advanced Sub Station Alpha

YouTube supports a number of formats

Implementation details

Format support is provided by Gaupol a subtitling tool. Further enhancement of format support in Gaupol will directly
benefit our conversion ability.

Usage

It must be noted that our tools provide the ability to localise the subtitles. This in itself is useful and allows a translator
to use their existing localisation tools. But this is pure localisation and users should be aware that they might still need
to post edit their work to account for timing, limited text space, limits in the ability of viewers to keep up with the text.

For most cases simply localising will be good enough. But in some cases the translated work might need to be reviewed
to fix any such issues. You can use Gaupol to perform those reviews.

• HTML

• Flat XML (single-level XML)

• iCalendar

• JSON

• YAML

• OpenDocument – all ODF file types

• Text – plain text with blocks separated by whitespace

• Wiki – DokuWiki and MediaWiki supported

• Subtitles – various formats (v1.4)

1.7.6 Machine readable formats

Gettext .mo

The Gettext .mo (Machine Object) file is a compiled Gettext PO file. In execution Gettext enabled programs retrieve
translations from the .mo file. The file contains arrays for the English and the translations, an optional hash can speed
up the access to the translations.

Conformance

The toolkit can create .mo files from PO or XLIFF files, handling plurals and msgctxt. It can also read .mo files,
allowing counting, etc and also allowing the .mo files to act as a translation memory.

Changed in version 1.2: The hash table is also generated (the Gettext .mo files works fine without it). Due to slight
differences in the construction of the hashing, the generated files are not identical to those generated by msgfmt, but
they should be functionally equivalent and 100% usable. Issue 326 tracked the implementation of the hashing. The
hash is platform dependent.

152 Chapter 1. User’s Guide

https://support.google.com/youtube/answer/2734698?hl=en&ref_topic=2734694
http://home.gna.org/gaupol/
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/DokuWiki
http://en.wikipedia.org/wiki/MediaWiki
https://github.com/translate/translate/issues/326

Translate Toolkit Documentation, Release 3.0.0

Qt .qm

A .qm file is a compiled Qt linguist file. In many ways it is similar to Gettext, in that it uses a hashing table to lookup
the translated text. In older version they store only the hash and the translation which doesn’t make the format useful
for recovering translated text.

Conformance

The toolkit can read .qm files correctly. There are some unimplemented aspects of the message block, but these seem
to be legacy features and require examples to be able to implement the feature.

The .qm implementation cannot write a .qm file, thus you are only able to use this format in a read-only context:
counting messages (pocount), reading in messages for a TM or using it as a source format for a converter e.g. a
possible qm2xliff converter.

TODO

• Writing

– Hash algorithm

• Gettext Gettext .mo

• Qt Qt .qm (read-only)

1.7.7 In development

1.7.8 Unsupported formats

Formats that we would like to support but don’t currently support:

Wireless Markup Language

This page documents the support for WML and is used for planning our work on it.

This is implemented as a generic XML document type that is handled similarly to the way the developers/projects/odf
project handles ODF documents.

• Wordfast:

– Glossary tab-delimited “source,target,comment” i.e. like OmegaT but unsure if any extension is required.

• Apple:

– AppleGlot

– .plist – see issue 633 and plistlib for Python

• Adobe:

– FrameMaker’s Maker Interchange Format – MIF (See also python-gendoc, and Perl MIF module)

– FrameMaker’s Maker Markup Language (MML)

• Microsoft

– Word, Excel, etc (probably through usage of OpenOffice.org)

1.7. Translation Related File Formats 153

http://en.wikipedia.org/wiki/Wireless_Markup_Language
http://translate.sourceforge.net/wiki/developers/projects/odf
http://www.wordfast.net/index.php?lang=engb&whichpage=specifications#glo
ftp://ftp.apple.com/developer/tool_chest/localization_tools/appleglot/appleglot_3.2_usersguide.pdf
https://github.com/translate/translate/issues/633
https://docs.python.org/2/library/plistlib.html
http://help.adobe.com/en_US/FrameMaker/8.0/mif_reference.pdf
http://lino.sourceforge.net/src/100.html
http://search.cpan.org/~rst/FrameMaker-MifTree-0.075/lib/FrameMaker/MifTree.pm
http://www.adobe.com/support/downloads/detail.jsp?ftpID=137

Translate Toolkit Documentation, Release 3.0.0

– OOXML (at least at the text level we don’t have to deal with much of the mess inside OOXML). See also:
Open XML SDK v1

– Rich Text Format (RTF) see also pyrtf-ng

– Open XML Paper Specification

• XML related

– Generic XML

– DocBook (can be handled by KDE’s xml2pot)

– SVG

• DITA

• PDF see spec, PDFedit

• LaTeX – see plasTeX, a Python framework for processing LaTeX documents

• unoconv – Python bindings to OpenOffice.org UNO which could allow manipulation of all formats understood
by OpenOffice.org.

• Trados:

– TTX (Reverse Engineered DTD, other discussion)

– Multiterm XML TSV to MiltiTerm conversion script or XLST

– .tmw

– .txt (You can interchange using TMX) Format explanation with some examples.

• Tcl: .msg files. Good documentation

• Installers:

– NSIS installer: Existing C++ implementation

– WiX – MSI (Microsoft Installer) creator. Localization instructions, more notes on localisation. This is a
custom XML format, another one!

• catgets/gencat: precedes gettext, looking in man packages is the best information I could find. Also LSB requires
it. There is some info about the source (msgfile) format on GNU website

• Wireless Markup Language

• GlossML

• Deja Vu External View: Instructions sent to a translator, Description of external view options and process

1.7.9 Unlikely to be supported

These formats are either: too difficult to implement, undocumented, can be processed using some intermediate format
or used by too few people to justify the effort. Or some combination or these issues.

Standards conformance

This page links to pages documenting standard conformance for different standards or file formats.

154 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/OOXML
http://go.microsoft.com/fwlink/?LinkId=120908
http://en.wikipedia.org/wiki/Rich_Text_Format
http://code.google.com/p/pyrtf-ng/
http://en.wikipedia.org/wiki/Open_XML_Paper_Specification
http://en.wikipedia.org/wiki/DocBook
http://linux.die.net/man/1/xml2pot
http://www.w3.org/TR/SVG/
http://en.wikipedia.org/wiki/Darwin_Information_Typing_Architecture
http://en.wikipedia.org/wiki/Portable_Document_Format
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://pdfedit.cz/en/index.html
http://en.wikipedia.org/wiki/LaTeX
http://plastex.sourceforge.net/plastex/index.html
http://dag.wiee.rs/home-made/unoconv/
http://www.tracom.de/04/EN/techdoccenter/download/TRADOS_TTX-DTD.zip
http://timsfoster.wordpress.com/2005/07/05/beds-mattresses-and-open-standards/
http://syntax.biz.pl/multiterm.html
http://translationzone.eu/mtxml2txt.html
http://translate.google.com/translate?js=y&prev=_t&hl=en&ie=UTF-8&layout=1&eotf=1&u=http%3A%2F%2Fwww.diemohrs.de%2Ftipps2_neu.html&sl=auto&tl=en
http://slaci.komarom.net/roli/Trados/TRADOS%206.5.5.439%20Freelance%20+%20TRADOS%20MultiTerm%20iX%206.0.1.209/TRADOS%206.5.5.439%20Freelance/Program%20Files/TRADOS/T65_FL/Samples/TW4Win/
http://www.google.com/codesearch?hl=en&q=show:XvsRBDCljVk:M2kzUbm70Ts:D5EHICz0aaQ&sa=N&ct=rd&cs_p=http://www.scilab.org/download/4.0/scilab-4.0-src.tar.gz&cs_f=scilab-4.0/tcl/scipadsources/msg_files/AddingTranslations.txt
http://trac.vidalia-project.net/browser/vidalia/trunk/src/tools
http://wix.mindcapers.com/wiki/Localization
http://www.mail-archive.com/wix-users@lists.sourceforge.net/msg15489.html
http://pubs.opengroup.org/onlinepubs/009695399/utilities/gencat.html
http://www.linuxbase.org/navigator/browse/cmd_single.php?cmd=list-by-name&Cname=gencat
http://www.linuxbase.org/navigator/browse/cmd_single.php?cmd=list-by-name&Cname=gencat
http://www.gnu.org/software/libc/manual/html_node/The-message-catalog-files.html#The-message-catalog-files
http://www.maxprograms.com/glossml/glossml.pdf
http://dvx.atril.com/docs/DVX/InstructionsExternalView.pdf
http://simmer-lossner.com/lib/presentations/External_Proofreading_for_DVX.pdf

Translate Toolkit Documentation, Release 3.0.0

LISA and OASIS standards

• TMX

• XLIFF

• TBX

Other formats

• Gettext PO

• Gettext .mo

• CSV

• Qt Linguist

• Qt .qph and .qm files

• Wordfast translation memory

• OmegaT glossary

Searching and matching

• Levenshtein distance

Base classes

NOTE: This page is mostly useful for developers as it describes some programming detail of the toolkit.

For the implementation of the different storage classes that the toolkit supports, we want to define a set of base classes
to form a common API for all formats. This will simplify implementation of new storage formats, and enable easy
integration into external tools, such as Pootle. It will also mean less duplication of code in similar storage formats.

These ideas explained here should be seen as drafts only.

Requirements

The base classes should be rich enough in functionality to enable users of the base classes to have access to all or most
of the features that are available in the formats. In particular, the following are considered requirements:

• Seamless and hidden handling of escaping, quoting and character sets

• Parsing a file when given a file name or file contents (whole file in a string)

• Writing a file to disk

• Getting and setting source and target languages

• Accessing units, and determining if they are translatable, translated, a unique identifier for the unit in the file,
etc.

• Support for plural units that can vary between different languages (as the PO format allows with msgid_plural,
etc.)

Other possibilities:

1.7. Translation Related File Formats 155

Translate Toolkit Documentation, Release 3.0.0

• Support for variable number of languages in the format. Examples: .txt and .properties support one language,
PO supports two, TMX supports many.

• Support for “multifiles”, in other words a file that contain other entities that corresponds to files in other formats.
Examples: ZIP and XLIFF. In reality this is only used by some of the converters. This isn’t present in the base
class yet.

All these do not mean that all formats must support al these features, but in the formats that do support these features,
it must be accessible through the base class, and it must be possible to interrogate the storage format through the base
class to know which features it supports.

The classes

A file contains a number of translation units, and possibly a header. Each translation unit contains one or more strings
corresponding to each of the languages represented in that unit.

Message/string (multistring)

This class represents a single conceptual string in a single language. It must know its own requirements for escaping
and implement it internally. Escaped versions are only used for internal representation and only exposed for file
creation and testing (unit tests, for example).

Note that when storing different plural forms of the same string, they should be stored in this class. The main object is
the singular string, and all of the string forms can be accessed in a list at x.strings. Most of the time the object can be
dealt with as a single string, only when it is necessary to deal with plural forms do the extra strings have to be taken
into account.

Any string from a plural unit must be a multistring.

Translation unit

This class represents a unit of one or several related messages/strings. In most formats the contained strings will be
translations of some original message/string. It must associate a language value with each message/string. It must
know how to join all contained messages/strings to compile a valid representation. For formats that support at least
two languages, the first two languages will serve as “source” and “target” languages for the common case of translating
from one language into another language.

Some future ideas:

As the number of languages can be seen as one “dimension” of the translation unit, plurality can be seen as a second
dimension. A format can thus be classified according to the dimensionality that it supports, as follows:

• .properties files supports one language and no concept of plurals. This include most document types, such as
.txt, HTML and OpenDocument formats.

• Old style PO files supported two languages and no plurals.

• New style PO files support two languages and any number of plurals as required by the target language. The
plural forms are stored in the original or target strings, as extra forms of the string (See message/string class
above).

• TMX files support any number of languages, but has no concept of plurality.

Comments/notes are supported in this class. Quality or status information (fuzzy, last-changed-by) should be stored.
TODO: see if this should be on unit level or language level.

156 Chapter 1. User’s Guide

Translate Toolkit Documentation, Release 3.0.0

Store

This class represents a whole collection of translation units, usually stored in a single file. It supports the concept of
a header, and possibly comments at file level. A file will not necessarily be contained alone in single file on disc. See
“multifile” below.

Multifile

This abstraction is only used by a few converters.

This class represents a storage format that contains other files or file like objects. Examples include ZIP, XLIFF, and
OpenOffice SDF files. It must give access to the contained files, and possibly give access to the translation units
contained in those files, as if they are contained natively.

Additional Notes

Dwayne and I (Andreas) discussed cleaning up the storage base class. A lot of what we discussed is related to the
above. A quick summary:

• Implement a new base class.

– Flesh out the API, clean and clear definitions.

– Document the API.

• We need to discuss the class hierarchy, e.g.:

base
-- po
-- text
-- xml

-- xhtml
-- lisa

-- xliff
-- tmx
-- tbx

• Clean up converters.

– Parsing of file content needs to happen only in the storage implementation of each filetype/storage type.
Currently parsing happens all over the place.

– Currently there are separate conversion programs for each type and direction to convert to, e.g. po2xliff
and xliff2po (24 commands with lots of duplicate code in them). Ideally conversion should be as simple
as:

>>> po_store = POStore(filecontent)
>>> print(bytes(po_store))
msgid "bleep"
msgstr "blorp"

>>> xliff_store = XliffStore(po_store)
>>> print(bytes(xliff_store))
<xliff>
<file>
<trans-unit>
<source>bleep</source>

(continues on next page)

1.7. Translation Related File Formats 157

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

<target>blorp</target>
</trans-unit>

</file>
</xliff>

Note that the xliffstore is being instantiated using the postore object. This works because all the data in any translation
store object is accessible via the same well-defined base API. A concept class implementing the above code snippet
has already been written.

• Move certain options into their respective storage classes.

– e.g. the --duplicates option can move into po.py

• Store the meta data for a storage object.

– Can be implemented as separate sqlite file that accompanies the real file.

– Features not directly supported by a file format can be stored in the metadata file.

• A storage object should know all information pertaining to itself.

– e.g. “am I monolingual?”

• We should discuss how to make an object aware that it is monolingual, bilingual or multilingual.

– Maybe through mixin-classes?

– How will the behaviour of a monolingual store differ from a bilingual store?

Quoting and Escaping

Different translation formats handle quoting and escaping strings differently. This is meant to be a common page
which outlines the differences

PO format

Strings are quoted using double quotes. For long strings multiline quotes are done by opening and closing the quotes
on each line. Usually in this case the first line is left blank. The splitting of strings over lines is transparent i.e. it does
not imply line breaks in the translated strings.

Escaping is done with a backslash. An escaped double quote (\") corresponds to a double quote in the original string.
\n for newline, \t for tabs etc are used. Backslashes can be escaped to give a native backslash.

See also escaping in the translation guide.

Example:

msgid ""
"This is a long string with a \n newline, a \" double quote, and a \\ backslash."
"There is no space between the . at the end of the last sentence "
"and the T at the beginning of this one."

DTD format

Strings are quoted using either double or single quotes. The quoting character may not occur within the string. There
is no provision for escaping. XML entities can be used e.g. ' can be used to denote a single quote within the
single-quoted string.

158 Chapter 1. User’s Guide

http://translate.sourceforge.net/wiki/guide/translation/escaping

Translate Toolkit Documentation, Release 3.0.0

Some DTD files seem to have backslash-escapes, but these are anomalies: see discussion thread on Mozilla l10n-dev

Mozilla properties format

Note that this section does not describe the Java properties files, even though they are quite similar.

It seems that the literal string \n (a backslash followed by the character ‘n’) and \t and \r cannot be encoded in
properties files. This is the assumption of the toolkit.

1.7. Translation Related File Formats 159

http://groups.google.com/group/mozilla.dev.l10n/browse_thread/thread/58256c1f59c22798/b4bac2de4182f3e0

Translate Toolkit Documentation, Release 3.0.0

160 Chapter 1. User’s Guide

CHAPTER 2

Developer’s Guide

If you are a developer interested in using the Translate Toolkit for building new tools, make sure to read through this
part.

2.1 Translate Styleguide

The Translate styleguide is the styleguide for all Translate projects, including Translate Toolkit, Pootle, Virtaal and
others. Patches are required to follow these guidelines.

This Styleguide follows PEP 8 with some clarifications. It is based almost verbatim on the Flask Styleguide.

2.1.1 Python

These are the Translate conventions for Python coding style.

General

Indentation

4 real spaces, no tabs. Exceptions: modules that have been copied into the source that don’t follow this guideline.

Maximum line length

79 characters with a soft limit for 84 if absolutely necessary. Try to avoid too nested code by cleverly placing break,
continue and return statements.

161

https://www.python.org/dev/peps/pep-0008
http://flask.pocoo.org/docs/styleguide/

Translate Toolkit Documentation, Release 3.0.0

Continuing long statements

To continue a statement you can use backslashes (preceded by a space) in which case you should align the next line
with the last dot or equal sign, or indent four spaces:

MyModel.query.filter(MyModel.scalar > 120) \
.order_by(MyModel.name.desc()) \
.limit(10)

my_long_assignment = MyModel.query.filter(MyModel.scalar > 120) \
.order_by(MyModel.name.desc()) \
.limit(10)

this_is_a_very_long(function_call, 'with many parameters') \
.that_returns_an_object_with_an_attribute

If you break in a statement with parentheses or braces, align to the braces:

this_is_a_very_long(function_call, 'with many parameters',
23, 42, 'and even more')

If you need to break long strings, on function calls or when assigning to variables, try to use implicit string continua-
tion:

this_holds_a_very_long_string("Very long string with a lot of characters "
"and words on it, so many that it is "
"necessary to break it in several lines to "
"improve readability.")

long_string_var = ("Very long string with a lot of characters and words on "
"it, so many that it is necessary to break it in "
"several lines to improve readability.")

For lists or tuples with many items, break immediately after the opening brace:

items = [
'this is the first', 'set of items', 'with more items',
'to come in this line', 'like this'

]

Blank lines

Top level functions and classes are separated by two lines, everything else by one. Do not use too many blank lines to
separate logical segments in code. Example:

def hello(name):
print('Hello %s!' % name)

def goodbye(name):
print('See you %s.' % name)

class MyClass:
"""This is a simple docstring"""

(continues on next page)

162 Chapter 2. Developer’s Guide

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

def __init__(self, name):
self.name = name

@property
def annoying_name(self):

return self.name.upper() + '!!!!111'

Strings

• Double quotes are suggested over single quotes, but always try to respect the surrounding coding style. This is
overruled by escaping which you should always try to avoid.

Good.
str1 = "Sauron's eye"
str2 = 'Its name is "Virtaal".'

Bad.
str3 = 'Sauron\'s eye'
str4 = "Its name is \"Virtaal\"."

String formatting

While str.format() is more powerful than %-formatting, the latter has been the canonical way of formatting strings
in Python for a long time and the Python core team has shown no desire to settle on one syntax over the other. For
simple, serial positional cases (non-translatable strings), the old “%s” way of formatting is preferred. For anything
more complex, including translatable strings, str.format is preferred as it is significantly more powerful and often
cleaner.

Good
print("Hello, {thing}".format(thing="world"))
print("Hello, {}".format("world"))
print("%s=%r" % ("hello", "world")) # non-translatable strings

Bad
print("%s, %s" % ("Hello", "world")) # Translatable string.
print("Hello, %(thing)s" % {"thing": "world"}) # Use {thing}.

Imports

Like in PEP 8, but:

• Imports should be grouped in the following order:

1) __future__ library imports

2) Python standard library imports

3) Third party libraries imports

4) Translate Toolkit imports

5) Current package imports, using explicit relative imports (See PEP 328)

2.1. Translate Styleguide 163

https://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0328/#guido-s-decision

Translate Toolkit Documentation, Release 3.0.0

• A blank line must be present between each group of imports (like in PEP8).

• Imports on each group must be arranged alphabetically by module name:

– Shortest module names must be before longer ones: from django.db import ... before from
django.db.models import

• import ... calls must precede from ... import ones on each group:

– On each of these subgroups the entries should be alphabetically arranged.

– No blank lines between subgroups.

• On from ... import

– Use a CONSTANT, Class, function order, where the constants, classes and functions are in alphabet-
ical order inside of its respective groups.

– If the import line exceeds the 80 chars, then split it using parentheses to continue the import on the next
line (aligning the imported items with the opening parenthesis).

from __future__ import absolute_import

import re
import sys.path as sys_path
import time
from datetime import timedelta
from os import path

from lxml.html import fromstring

from translate.filters import checks
from translate.storage import versioncontrol
from translate.storage.aresource import (EOF, WHITESPACE, AndroidFile,

AndroidUnit, android_decode,
android_encode)

from . import php2po

Properties

• Never use lambda functions:

Good.
@property
def stores(self):
return self.child.stores

Bad.
stores = property(lambda self: self.child.stores)

• Try to use @property instead of get_* or is_* methods that don’t require passing any parameter:

Good.
@property
def terminology(self):
...

(continues on next page)

164 Chapter 2. Developer’s Guide

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

@property
def is_monolingual(self):
...

Also good.
def get_stores_for_language(self, language):
...

Bad.
def get_terminology(self):
...

def is_monolingual(self):
...

• Always use @property instead of property(...), even for properties that also have a setter or a deleter:

Good.
@property
def units(self):
...

Also good.
@property
def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, value): # Note: Method must be named 'x' too.
self._x = value

@x.deleter
def x(self): # Note: Method must be named 'x' too.
del self._x

Bad.
def _get_units(self):
...

units = property(_get_units)

Also bad.
def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

2.1. Translate Styleguide 165

Translate Toolkit Documentation, Release 3.0.0

Expressions and Statements

General whitespace rules

• No whitespace for unary operators that are not words (e.g.: -, ~ etc.) as well on the inner side of parentheses.

• Whitespace is placed between binary operators.

Good.
exp = -1.05
value = (item_value / item_count) * offset / exp
value = my_list[index]
value = my_dict['key']

Bad.
exp = - 1.05
value = (item_value / item_count) * offset / exp
value = (item_value/item_count)*offset/exp
value=(item_value/item_count) * offset/exp
value = my_list[index]
value = my_dict ['key']

Slice notation

While PEP 8 calls for spaces around operators a = b + c this results in flags when you use a[b+1:c-1] but
would allow the rather unreadable a[b + 1:c - 1] to pass. PEP 8 is rather quiet on slice notation.

• Don’t use spaces with simple variables or numbers

• Use brackets for expressions with spaces between binary operators

Good.
a[1:2]
a[start:end]
a[(start - 1):(end + var + 2)] # Brackets help group things and don't hide the
→˓slice
a[-1:(end + 1)]

Bad.
a[start: end] # No spaces around :
a[start-1:end+var+2] # Insanely hard to read, especially when your expressions
→˓are more complex
a[start - 1:end + 2] # You lose sight of the fact that it is a slice
a[- 1:end] # -1 is unary, no space

Note: String slice formatting is still under discussion.

Comparisons

• Against arbitrary types: == and !=

• Against singletons with is and is not (e.g.: foo is not None)

166 Chapter 2. Developer’s Guide

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Translate Toolkit Documentation, Release 3.0.0

• Never compare something with True or False (for example never do foo == False, do not foo instead)

Negated containment checks

• Use foo not in bar instead of not foo in bar

Instance checks

• isinstance(a, C) instead of type(A) is C, but try to avoid instance checks in general. Check for
features.

If statements

• Use () brackets around complex if statements to allow easy wrapping, don’t use backslash to wrap an if state-
ment.

• Wrap between and, or, etc.

• Keep not with the expression

• Use () alignment between expressions

• Use extra () to eliminate ambiguity, don’t rely on an understanding of Python operator precedence rules.

Good.
if length >= (upper + 2):

...

if (length >= 25 and
string != "Something" and
not careful):
do_something()

Bad.
if length >= upper + 2:

...

if (length...
and string !=...

Naming Conventions

Note: This has not been implemented or discussed. The Translate code is not at all consistent with these conventions.

• Class names: CamelCase, with acronyms kept uppercase (HTTPWriter and not HttpWriter)

• Variable names: lowercase_with_underscores

• Method and function names: lowercase_with_underscores

• Constants: UPPERCASE_WITH_UNDERSCORES

• precompiled regular expressions: name_re

2.1. Translate Styleguide 167

Translate Toolkit Documentation, Release 3.0.0

Protected members are prefixed with a single underscore. Double underscores are reserved for mixin classes.

To prevent name clashes with keywords, one trailing underscore may be appended. Clashes with builtins are allowed
and must not be resolved by appending an underline to the name. If your code needs to access a shadowed builtin,
rebind the builtin to a different name instead. Consider using a different name to avoid having to deal with either type
of name clash, but don’t complicate names with prefixes or suffixes.

Function and method arguments

• Class methods: cls as first parameter

• Instance methods: self as first parameter

2.2 Documentation

We use Sphinx to generate our API and user documentation. Read the reStructuredText primer and Sphinx documen-
tation as needed.

2.2.1 Special roles

We introduce a number of special roles for documentation:

• :issue: – links to a toolkit issue Github.

– :issue:`234` gives: issue 234

– :issue:`broken <234>` gives: broken

• :opt: – mark command options and command values.

– :opt:`-P` gives -P

– :opt:`--progress=dots` gives --progress=dots

– :opt:`dots` gives dots

• :man: – link to a Linux man page.

– :man:`msgfmt` gives msgfmt

2.2.2 Code and command line highlighting

All code examples and format snippets should be highlighted to make them easier to read. By default Sphinx uses
Python highlighting of code snippets (but it doesn’t always work). You will want to change that in these situations:

• The examples are not Python e.g. talking about INI file parsing. In which case set the file level highlighting
using:

.. highlight:: ini

• There are multiple different code examples in the document, then use:

.. code-block:: ruby

before each code block.

• Python code highlighting isn’t working, then force Python highlighting using:

168 Chapter 2. Developer’s Guide

http://sphinx-doc.org/
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/contents.html
https://github.com/translate/translate/issues/234
https://github.com/translate/translate/issues/234
http://linux.die.net/man/1/msgfmt

Translate Toolkit Documentation, Release 3.0.0

.. code-block:: python

Note: Generally we prefer explicit markup as this makes it easier for those following you to know what you intended.
So use .. code-block:: python even though in some cases this is not required.

With command line examples, to improve readability use:

.. code-block:: console

Add $ command prompt markers and # comments as required, as shown in this example:

$ cd docs
$ make html # Build all Sphinx documentation
$ make linkcheck # Report broken links

2.2.3 User documentation

This is documentation found in docs/ and that is published on Read the Docs. The target is the end user so our
primary objective is to make accessible, readable and beautiful documents for them.

2.2.4 Docstrings

Docstring conventions: All docstrings are formatted with reStructuredText as understood by Sphinx. Depending on
the number of lines in the docstring, they are laid out differently. If it’s just one line, the closing triple quote is
on the same line as the opening, otherwise the text is on the same line as the opening quote and the triple quote
that closes the string on its own line:

def foo():
"""This is a simple docstring."""

def bar():
"""This is a longer docstring with so much information in there
that it spans three lines. In this case the closing triple quote
is on its own line.
"""

Please read PEP 257 (Docstring Conventions) for a general overview, the important parts though are:

• A docstring should have a brief one-line summary, ending with a period. Use Do this, Return that rather
than Does ..., Returns

• If there are more details there should be a blank line between the one-line summary and the rest of the text. Use
paragraphs and formatting as needed.

• Use reST field lists to describe the input parameters and/or return types as the last part of the docstring.

• Use proper capitalisation and punctuation.

• Don’t restate things that would appear in parameter descriptions.

def addunit(self, unit):
"""Append the given unit to the object's list of units.

(continues on next page)

2.2. Documentation 169

https://www.python.org/dev/peps/pep-0257
http://sphinx-doc.org/domains.html#info-field-lists

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

This method should always be used rather than trying to modify the
list manually.

:param Unit unit: Any object that inherits from :class:`Unit`.
"""
self.units.append(unit)

Parameter documentation: Document parameters using reST field lists as follows:

def foo(bar):
"""Simple docstring.

:param SomeType bar: Something
:return: Returns something
:rtype: Return type
"""

Cross referencing code: When talking about other objects, methods, functions and variables it is good practice to
cross-reference them with Sphinx’s Python cross-referencing.

Other directives: Use paragraph-level markup when needed.

Note: We still need to gather the useful ones that we want you to use and how to use them. E.g. how to talk about a
parameter in the docstring. How to reference classes in the module. How to reference other modules, etc.

Module header: The module header consists of a utf-8 encoding declaration, copyright attribution, license block and
a standard docstring:

#
... LICENSE BLOCK...

"""A brief description"""

Deprecation: Document the deprecation and version when deprecating features:

from translate.misc.deprecation import deprecated

@deprecated("Use util.run_fast() instead.")
def run_slow():

"""Run fast

.. deprecated:: 1.5
Use :func:`run_fast` instead.

"""
run_fast()

2.2.5 Comments

General:

• The # symbol (pound or hash) is used to start comments.

• A space must follow the # between any written text.

170 Chapter 2. Developer’s Guide

http://sphinx-doc.org/domains.html#info-field-lists
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://sphinx-doc.org/markup/para.html#paragraph-level-markup

Translate Toolkit Documentation, Release 3.0.0

• Line length must be observed.

• Inline comments are preceded by two spaces.

• Write sentences correctly: proper capitalisation and punctuation.

Good comment with space before and full sentence.
statement # Good comment with two spaces

#Bad comment no space before
statement # Bad comment, needs two spaces

Docstring comments: Rules for comments are similar to docstrings. Both are formatted with reStructuredText. If a
comment is used to document an attribute, put a colon after the opening pound sign (#):

class User:
#: the name of the user as unicode string
name = Column(String)
#: the sha1 hash of the password + inline salt
pw_hash = Column(String)

2.3 Building

2.3.1 UNIX

2.3.2 Windows

Requirements

• Innosetup

• py2exe

Consult the README in the source distribution for the build dependencies.

Building Python packages with C extensions under Windows

In order to build modules which have C extensions, you will need either the Visual Studio C++ compiler or MinGW.

Make sure that your Visual Studio C++ or MinGW program path is part of your system’s program path, since the
Python build system requires this.

To build and install a package with MinGW, you need to execute:

python setup.py build -c mingw32 install

from the command line.

To build a Windows installer when using MinGW, execute:

python setup.py build -c mingw32 bdist_wininst

2.3. Building 171

http://www.jrsoftware.org/isinfo.php
http://www.py2exe.org/
http://sourceforge.net/projects/mingw/files/MSYS/Extension/

Translate Toolkit Documentation, Release 3.0.0

Building

Simply execute:

python setup.py innosetup

The generated file can be found under translate-toolkit-<version>\Output (where <version> is the
software version).

2.4 Testing

Our aim is that all new functionality is adequately tested. Adding tests for existing functionality is highly recom-
mended before any major reimplementation (refactoring, etcetera).

We use py.test for (unit) testing. You need at least pytest >= 2.2.

To run tests in the current directory and its subdirectories:

$ py.test # runs all tests
$ py.test storage/test_dtd.py # runs just a single test module

We use several py.test features to simplify testing, and to suppress errors in circumstances where the tests cannot
possibly succeed (limitations of tests and missing dependencies).

2.4.1 Skipping tests

Pytest allows tests, test classes, and modules to be skipped or marked as “expected to fail” (xfail). Generally you
should skip only if the test cannot run at all (throws uncaught exception); otherwise xfail is preferred as it provides
more test coverage.

importorskip

Use the builtin _pytest.runner.importorskip function to skip a test module if a dependency cannot be
imported:

from pytest import importorskip
importorskip("vobject")

If vobject can be imported, it will be; otherwise it raises an exception that causes pytest to skip the entire module rather
than failing.

skipif

Use the skipif decorator to mark tests to be skipped unless certain criteria are met. The following skips a test if the
version of mymodule is too old:

import mymodule

@pytest.mark.skipif("mymodule.__version__ < '1.2'")
def test_function():

...

172 Chapter 2. Developer’s Guide

http://pytest.org/
https://docs.pytest.org/en/latest/skipping.html#skipif

Translate Toolkit Documentation, Release 3.0.0

You can apply this decorator to classes as well as functions and methods.

It is also possible to skip an entire test module by creating a pytestmark static variable in the module:

mark entire module as skipped for py.test if no indexer available
pytestmark = pytest.mark.skipif("noindexer")

xfail

Use the xfail decorator to mark tests as expected to fail. This allows you to do the following:

• Build tests for functionality that we haven’t implemented yet

• Mark tests that will fail on certain platforms or Python versions

• Mark tests that we should fix but haven’t got round to fixing yet

The simplest form is the following:

from pytest import pytest.mark

@mark.xfail
def test_function():

...

You can also pass parameters to the decorator to mark expected failure only under some condition (like skipif), to
document the reason failure is expected, or to actually skip the test:

@mark.xfail("sys.version_info >= (3,0)") # only expect failure for Python 3
@mark.xfail(..., reason="Not implemented") # provide a reason for the xfail
@mark.xfail(..., run=False) # skip the test but still regard it as xfailed

2.4.2 Testing for Warnings

deprecated_call

The builtin deprecated_call() function checks that a function that we run raises a DeprecationWarning:

from pytest import deprecated_call

def test_something():
deprecated_call(function_to_run, arguments_for_function)

recwarn

The recwarn plugin allows us to test for other warnings. Note that recwarn is a funcargs plugin, which means that
you need it in your test function parameters:

def test_example(recwarn):
do something
w = recwarn.pop()
w.{message,category,filename,lineno}
assert 'something' in str(w.message)

2.4. Testing 173

https://docs.pytest.org/en/latest/skipping.html#xfail
https://docs.pytest.org/en/latest/reference.html#pytest.deprecated_call
http://pytest.org/latest/recwarn.html

Translate Toolkit Documentation, Release 3.0.0

2.5 Command Line Functional Testing

Functional tests allow us to validate the operation of the tools on the command line. The execution by a user is
simulated using reference data files and the results are captured for comparison.

The tests are simple to craft and use some naming magic to make it easy to refer to test files, stdout and stderr.

2.5.1 File name magic

We use a special naming convention to make writing tests quick and easy. Thus in the case of testing the following
command:

$ moz2po -t template.dtd translations.po translated.dtd

Our test would be written like this:

$ moz2po -t $one $two $out

Where $one and $two are the input files and $out is the result file that the test framework will validate.

The files would be called:

File Function Variable File naming conven-
tions

test_moz2po_help.sh Test script • test_${command}_${description}.sh

test_moz2po_help/one.dtd Input $one ${testname}/${variable}.${extension}
test_moz2po_help/two.po Input $two ${testname}/${variable}.${extension}
test_moz2po_help/out.dtd Output $out ${testname}/${variable}.${extension}
test_moz2po_help/stdout.txt Output $stdout ${testname}/${variable}.${extension}
test_moz2po_help/stderr.txt Output $stderr ${testname}/${variable}.${extension}

Note: A test filename must start with test_ and end in .sh. The rest of the name may only use ASCII alphanumeric
characters and underscore _.

The test file is placed in the tests/ directory while data files are placed in the tests/data/${testname}
directory.

There are three standard output files:

1. $out - the output from the command

2. $stdout - any output given to the user

3. $stderr - any error output

The output files are available for checking at the end of the test execution and a test will fail if there are differences
between the reference output and that achieved in the test run.

You do not need to define reference output for all three, if one is missing then checks will be against /dev/null.

There can be any number of input files. They need to be named using only ASCII characters without any punctuation.
While you can give them any name we recommend using numbered positions such as one, two, three. These are
converted into variables in the test framework so ensure that none of your choices clash with existing bash commands
and variables.

174 Chapter 2. Developer’s Guide

Translate Toolkit Documentation, Release 3.0.0

Your test script can access variables for all of your files so e.g. moz2po_conversion/one.dtdwill be referenced
as $one and output moz2po_conversion/out.dtd as $out.

2.5.2 Writing

The tests are normal bash scripts so they can be executed on their own. A template for a test is as follows:

#!/bin/bash

Import the test framework
source $(basename $0)/test.inc.sh

You can put any extra preperation here

Your actual command line to test No need for redirecting to /dev/stdout as
the test framework will do that automatically
myprogram $one $two -o $out

Check that the results of the test match your reference resulst
check_results # does start_check and diff_all

OR do the following
start_checks - begin checking
has_stdout|has_stderr|has $file - checks that the file exists we don't care for
→˓content
startswith $file|startswith_stderr|startswith_stdout - the output starts with some
→˓expression
startswithi $file|startswithi_stderr|startswithi_stdout - case insensitive
→˓startswith
end_checks

For simple tests, where we diff output and do the correct checking of output files, simply use check_results.
More complex tests need to wrap tests in start_checks and end_checks.

start_checks
has $out
containsi_stdout "Parsed:"
end_checks

You can make use of the following commands in the start_checks scenario:

2.5. Command Line Functional Testing 175

Translate Toolkit Documentation, Release 3.0.0

Command Description
has $file $file was output and it not empty
has_stdout stdout is not empty
has_stderr stderr is not empty
startswith $file “String” $file starts with “String”
startswithi $file “String” $file starts with “String” ignoring case
startswith_stdout “String” stdout starts with “String”
startswithi_stdout “String” stdout starts with “String” ignoring case
startswith_stderr “String” stderr starts with “String”
startswithi_stderr “String” stderr starts with “String” ignoring case
contains $file “String” $file contains “String”
containsi $file “String” $file contains “String” ignoring case
contains_stdout “String” stdout contains “String”
containsi_stdout “String” stdout contains “String” ignoring case
contains_stderr “String” stderr contains “String”
containsi_stderr “String” stderr contains “String” ignoring case
endswith $file “String” $file ends with “String”
endswithi $file “String” $file ends with “String” ignoring case
endswith_stdout “String” stdout ends with “String”
endswithi_stdout “String” stdout ends with “String” ignoring case
endswith_stderr “String” stderr ends with “String”
endswithi_stderr “String” stderr ends with “String” ignoring case

–prep

If you use the –prep options on any test then the test will change behavior. It won’t validate the results against your
reference data but will instead create your reference data. This makes it easy to generate your expected result files
when you are setting up your test.

2.6 Contributing

We could use your help. If you are interesting in contributing then please join us on our Gitter development channel.

Here are some idea of how you can contribute

• Test – help us test new candidate releases before they are released

• Debug – check bug reports, create tests to highlight problems

• Develop – add your Python developer skills to the mix

• Document – help make our docs readable, useful and complete

Below we give you more detail on these:

2.6.1 Testing

Before we release new versions of the Toolkit we need people to check that they still work correctly. If you are a
frequent user you might want to start using the release candidate on your current work and report any errors before we
release them.

Compile and install the software to see if we have any platform issues:

176 Chapter 2. Developer’s Guide

https://gitter.im/translate/pootle

Translate Toolkit Documentation, Release 3.0.0

./setup.py install

Check for any files that are missing, tools that were not installed, etc.

Run unit tests to see if there are any issues. Please report any failures.

Finally, simply work with the software. Checking all your current usage patterns and report problems.

2.6.2 Debugging

• Make sure your familiar with the bug reporting guidelines.

• Create a login for yourself at https://github.com

• Then choose an issue

Now you need to try and validate the bug. Your aim is to confirm that the bug is either fixed, is invalid or still exists.

If its fixed please close the bug and give details of how when it was fixed or what version you used to validate it as
corrected.

If you find that the bug reporter has made the incorrect assumptions or their suggestion cannot work. Then mark the
bug as invalid and give reasons why.

The last case, an existing bug is the most interesting. Check through the bug and do the following:

• Fix up the summary to make it clear what the bug is

• Create new bugs for separate issues

• Set severity level and classifications correctly

• Add examples to reproduce the bug, or make the supplied files simpler

• If you can identify the bug but not fix it then explain what needs fixing

• Move on to the next bug

2.6.3 Developing

Don’t ignore this area if you feel like you are not a hotshot coder!

You will need some Python skills, this is a great way to learn.

Here are some ideas to get you going:

• Write a test to expose some bug

• Try to fix the actual code to fix your bug

• Add a small piece of functionality that helps you

• Document the methods in especially the base class and derived classes

• Add a format type and converters

• Add more features to help our formats conform to the standards

You will definitely need to be on the Development channel

Now is the time to familiarise yourself with the developers guide.

2.6. Contributing 177

http://translate.sourceforge.net/wiki/developers/testing_guidelines#running_tests
http://translate.sourceforge.net/wiki/developers/reporting_bugs
https://github.com
https://github.com/translate/translate/issues
https://gitter.im/translate/dev

Translate Toolkit Documentation, Release 3.0.0

2.6.4 Documenting

This is the easy one. Login to the wiki and start!

The key areas that need to be looked at are:

• Do the guides to each tool cover all command line options

• Are the examples clear for the general cases

• Is the tools use clear

• In the Use cases, can we add more, do they need updating. Has upstream changed its approach

After that and always:

• Grammar

• Spelling

• Layout

2.7 Translate Toolkit Developers Guide

The goal of the translate toolkit is to simplify and unify the process of translation.

2.7.1 History

The initial toolkit was designed to convert Mozilla .dtd and .properties files into Gettext PO format. The logic was not
that PO was in any way superior but that by simplifying the translations process i.e. allowing a translator to use one
format and one tool that we could get more people involved and more translators.

The tools have now evolved to include other formats such as OpenOffice.org and the goal is still to migrate various
formats to a common format, PO and in the future XLIFF as more tools become available for that format.

These tools we group as converters. Along the way we developed other tools that allowed us to manipulate PO files
and check them for consistency. As we evolved the converter tools we have also improved and abstracted the classes
that read the various file types. In the future we hope to define these better so that we have a more or less stable API
for converters.

2.7.2 Resources

Git access

Translate Toolkit uses Git as a Version Control System. You can directly clone the translate repository or fork it at
GitHub.

git clone https://github.com/translate/translate.git

Issues

• https://github.com/translate/translate/issues

178 Chapter 2. Developer’s Guide

https://github.com/translate/translate/issues

Translate Toolkit Documentation, Release 3.0.0

Communication

• Development - no support related questions

• Help

2.7.3 Working with Bugzilla

When you close bugs ensure that you give a description and git hash for the fix. This ensures that the reporter or code
reviewer can see your work and has an easy method of finding your fix. This is made easier by GitHub’s Bugzilla
integration.

Automated Bugzilla update from commits

Github will post comments on Bugzilla bugs when the commit messages make references to the bug by its bug number.

• Bugs are recognised by the following format (which are case-insensitive):

Bug 123

• Multiple bugs can be specified by separating them with a comma, ampersand, plus or “and”:

Bug 123, 124 and 125

• Commits to all branches will be processed.

• If there is a “fix”, “close”, or “address” before the bug then that bug is closed.

Fix bug 123

2.7.4 Source code map

The source code for the tools is hosted on GitHub. This rough map will allow you to navigate the source code tree:

• convert – convert between different formats and PO format

• filters – pofilter and its helper functions (badly named, it is really a checking tool)

• storage – all base file formats: XLIFF, .properties, OpenOffice.org, TMX, etc.

• misc – various helper functions

• tools – all PO manipulation programs: pocount, pogrep, etc

• lang – modules with data / tweaks for various languages

• search – translation memory, terminology matching, and indexing / searching

• share – data files

2.7.5 Setup

The toolkit is installed by running:

./setup.py install

2.7. Translate Toolkit Developers Guide 179

https://gitter.im/translate/dev
https://gitter.im/translate/pootle
https://github.com/translate/translate

Translate Toolkit Documentation, Release 3.0.0

As root

The various setup options are yours to explore

2.7.6 General overview of the programs

Each tool in the toolkit has both a core program and a command line wrapper. For example the oo2po converter:

• oo2po – the command line tool

• oo2po.py – the core program

This is done so that the tools can be used from within the Pootle server thus reusing the toolkit easily.

Command line options

Getting lost with the command line options? Well you might want to volunteer to move some of them into configuration
files. But in terms of programming you might be confused as to where they are located. Many of the command line
options are implemented in each tool. Things such as --progress and --errorlevel are used in each program.
Thus these are abstracted in misc/optrecurse.py. While each tools unique command line options are implemented in
xxx.py.

2.7.7 Converters

The converters each have a class that handles the conversion from one format to another. This class has one important
method convertfile which handles the actual conversion.

A function convertXXX manages the conversion for the command line equivalent and essentially has at least 3 pa-
rameters: inputfile, outputfile and templatefile. It itself will call the conversion class to handle conversion of individual
files. Recursing through multiple files is handled by the optrecurse.py logic.

The converters main function handles any unique command line options.

Where we are headed is to get to a level where the storage formats themselves are more aware of themselves and their
abilities. Thus the converter could end up as one program that accepts storage format plugins to convert from anything
to almost anything else. Although our target localisation formats are PO and XLIFF only.

If you want to create a new converter it is best to look at a simple instance such as csv2tbx or txt2po and their associated
storage classes. The storage base class documentation will give you the information you need for the storage class
implementation.

2.7.8 Tools

The tools in some way copy the logic of the converters. We have a class so that we can reuse a lot of the functionality
in Pootle. We have a core function that take: input, output and templates. And we have a main function to handle the
command line version.

pocount should be converted to this but does not follow this conventions. In fact pocount should move the counting to
the storage formats to allow any format to return its own word count.

2.7.9 Checks

There’s really only one, pofilter. But there are lots of helper functions for pofilter. pofilters main task is to check for
errors in PO or XLIFF files. Here are the helper file and their descriptions.

180 Chapter 2. Developer’s Guide

Translate Toolkit Documentation, Release 3.0.0

• autocorrect.py – when using --autocorrect it will attempt some basic corrections found in this file

• checks.py – the heart. This contains: the actual checks and their error reports, and defined variables and accel-
erators for e.g, --mozilla

• decorations.py – various helper functions to identify accelerators, variables and markers

• helpers.py – functions used by the tests

• prefilters.py – functions to e.g. remove variables and accelerators before applying tests to the PO message

pofilter is now relatively mature. The best areas for contributions are:

• more tests

• language specific configuration files

• tests for the tests – so we don’t break our good tests

• defining a config files scheme to do cool stuff off of the command line. Globally enable or disable tests based
on language, etc

• some approach to retesting that would remove ‘# (pofilter)’ failure markings if the test now passes.

• ability to mark false positives

The API documentation is a good start if you want to add a new tests. To add a new language have a look at a language
you understand amongst those already implemented.

2.7.10 Storage

These are the heart of the converters. Each destination storage format is implemented in its own file. Up until toolkit
version 0.8, there was no formally defined API (the tools have been evolving and only recently stabilised), but they
generally followed this structure. These classes are defined:

• XXelement – handles the low level individual elements of the file format. e.g. PO message, CSV records, DTD
elements

• XXfile – handles the document or file level of the format. Eg a PO file, a CSV file a DTD file

– fromlines – read in a file and initialise the various elements

– tolines – convert the elements stored in XXelements and portions in XXfile to a raw file in that format

In the XML based formats e.g. TMX, XLIFF and HTML there is usually just an extended parser to manage the file
creation.

Within each storage format there are many helper functions for escaping and managing the unique features of the
actual format.

You can help by:

• abstracting more of the functions and documenting that so that we can get a better API

• adding other formats and converters e.g. .DOC, .ODF and others

• helping us move to a position where any format should convert to the base format: PO and in the future XLIFF
without having to create a specific converter wrapper.

• Ensuring that our formats conform to the standards

2.7. Translate Toolkit Developers Guide 181

Translate Toolkit Documentation, Release 3.0.0

Base Classes

From toolkit 0.9 onwards, we are moving towards basing all storage formats on a set of base classes, in the move to a
universal API. We’re also fixing things so that escaping is much more sane and handled within the class itself not by
the converters.

In base classes we have different terminology

• XXXunit = XXXelement

• XXXstore = XXXfile

We have also tried to unify terminology but this has been filtered into the old classes as far as possible.

2.8 Making a Translate Toolkit Release

This page is divided in three sections. The first one lists the tasks that must be performed to get a valid package. The
second section includes a list of tasks to get the package published and the release announced. The third one lists and
suggests some possible cleanup tasks to be done after releasing.

Note: Please note that this is not a complete list of tasks. Please feel free to improve it.

2.8.1 Create the package

The first steps are to create and validate a package for the next release.

Get a clean checkout

We work from a clean checkout to ensure that everything you are adding to the build is what is in the repository and
doesn’t contain any of your uncommitted changes. It also ensures that someone else could replicate your process.

$ git clone git@github.com:translate/translate.git translate-release
$ cd translate-release
$ git submodule update --init

Check copyright dates

Update any copyright dates in docs/conf.py:copyright and anywhere else that needs fixing.

$ git grep 2013 # Should pick up anything that should be examined

Create release notes

We create our release notes in reStructured Text, since we use that elsewhere and since it can be rendered well in some
of our key sites.

First we need to create a log of changes in the Translate Toolkit, which is done generically like this:

$ git log $previous_version..HEAD > docs/releases/$version.rst

182 Chapter 2. Developer’s Guide

Translate Toolkit Documentation, Release 3.0.0

Or a more specific example:

$ git log 1.10.0..HEAD > docs/releases/1.11.0-rc1.rst

Edit this file. You can use the commits as a guide to build up the release notes. You should remove all log messages
before the release.

Note: Since the release notes will be used in places that allow linking we use links within the notes. These should
link back to products websites (Virtaal, Pootle, etc), references to Translate and possibly bug numbers, etc.

Read for grammar and spelling errors.

Note: When writing the notes please remember:

1. The voice is active. ‘Translate has released a new version of the Translate Toolkit’, not ‘A new version of the
Translate Toolkit was released by Translate’.

2. The connection to the users is human not distant.

3. We speak in familiar terms e.g. “I know you’ve been waiting for this release” instead of formal.

We create a list of contributors using this command:

$ git log 1.10.0..HEAD --format='%aN, ' | awk '{arr[$0]++} END{for (i in arr){print
→˓arr[i], i;}}' | sort -rn | cut -d\ -f2-

Up version numbers

Update the version number in:

• translate/__version__.py

• docs/conf.py

• tests/cli/data/test_pofilter_manpage/stdout.txt

In translate/__version__.py, bump the build number if anybody used the Translate Toolkit with the previous
number, and there have been any changes to code touching stats or quality checks. An increased build number will
force a Translate Toolkit user, like Pootle, to regenerate the stats and checks.

For docs/conf.py change version and release.

Todo: FIXME - We might want to consolidate the version and release info so that we can update it in one place.

The version string should follow the pattern:

$MAJOR-$MINOR-$MICRO[-$EXTRA]

E.g.

1.10.0
0.9.1-rc1

2.8. Making a Translate Toolkit Release 183

http://virtaal.org
http://pootle.translatehouse.org
http://translatehouse.org

Translate Toolkit Documentation, Release 3.0.0

$EXTRA is optional but all the three others are required. The first release of a $MINOR version will always have a
$MICRO of .0. So 1.10.0 and never just 1.10.

Note: You probably will have to adjust the output of some of the functional tests, specifically the manpage ones, to
use the right new version.

Build the package

Building is the first step to testing that things work. From your clean checkout run:

$ mkvirtualenv build-ttk-release
(build-ttk-release)$ pip install --upgrade setuptools pip
(build-ttk-release)$ pip install -r requirements/dev.txt
(build-ttk-release)$ make build
(build-ttk-release)$ deactivate

This will create a tarball in dist/ which you can use for further testing.

Note: We use a clean checkout just to make sure that no inadvertent changes make it into the release.

Test install and other tests

The easiest way to test is in a virtualenv. You can test the installation of the new release using:

$ mkvirtualenv test-ttk-release
(test-ttk-release)$ pip install --upgrade setuptools pip
(test-ttk-release)$ pip install dist/translate-toolkit-$version.tar.gz

You can then proceed with other tests such as checking:

1. Documentation is available in the package

2. Converters and scripts are installed and run correctly:

(test-ttk-release)$ moz2po --help
(test-ttk-release)$ php2po --version
(test-ttk-release)$ deactivate
$ rmvirtualenv test-ttk-release

3. Meta information about the package is correct. This is stored in setup.py, to see some options to display
meta-data use:

$./setup.py --help

Now you can try some options like:

$./setup.py --name
$./setup.py --version
$./setup.py --author
$./setup.py --author-email
$./setup.py --url
$./setup.py --license

(continues on next page)

184 Chapter 2. Developer’s Guide

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

$./setup.py --description
$./setup.py --long-description
$./setup.py --classifiers

The actual descriptions are taken from translate/__init__.py.

2.8.2 Publish the new release

Once we have a valid package it is necessary to publish it and announce the release.

Tag and branch the release

You should only tag once you are happy with your release as there are some things that we can’t undo. You can safely
branch for a stable/ branch before you tag.

$ git checkout -b stable/2.2.x
$ git push origin stable/2.2.x
$ git tag -a 2.2.5 -m "Tag version 2.2.5"
$ git push --tags

Release documentation

We need a tagged release before we can do this. The docs are published on Read The Docs.

• https://readthedocs.org/projects/translate-toolkit/versions/

Use the admin pages to flag a version that should be published.

Note: The branches like stable/2.2.x are automatically enabled on Read the Docs using Automation Rules, so
there might be nothing to do here.

Publish on PyPI

Note: You need a username and password on Python Package Index (PyPI) and have rights to the project before you
can proceed with this step.

These can be stored in $HOME/.pypirc and will contain your username and password. Check Create a PyPI account
for more details.

Run the following to publish the package on PyPI:

$ workon build-ttk-release
(build-ttk-release)$ pip install --upgrade pyopenssl ndg-httpsclient pyasn1 twine
(build-ttk-release)$ twine upload dist/translate-toolkit-*
(build-ttk-release)$ deactivate
$ rmvirtualenv build-ttk-release

2.8. Making a Translate Toolkit Release 185

https://readthedocs.org/projects/translate-toolkit/versions/
https://pypi.python.org/pypi
https://packaging.python.org/tutorials/distributing-packages/#create-an-account

Translate Toolkit Documentation, Release 3.0.0

Create a release on Github

• https://github.com/translate/translate/releases/new

You will need:

• Tarball of the release

• Release notes in Markdown

Do the following to create the release:

1. Draft a new release with the corresponding tag version

2. Convert the major changes (no more than five) in the release notes to Markdown with Pandoc. Bugfix releases
can replace the major changes with This is a bugfix release for the X.X.X branch.

3. Add the converted major changes to the release description

4. Include at the bottom of the release description a link to the full release notes at Read the Docs

5. Attach the tarball to the release

6. Mark it as pre-release if it’s a release candidate

Update Translate Toolkit website

We use github pages for the website. First we need to checkout the pages:

$ git checkout gh-pages

1. In _posts/ add a new release posting. This is in Markdown format (for now), so we need to change the release
notes .rst to .md, which mostly means changing URL links from `xxx <link>`_ to [xxx](link).

2. Change $version as needed. See _config.yml and git grep $old_release.

3. git commit and git push – changes are quite quick, so easy to review.

Announce to the world

Let people know that there is a new version:

1. Tweet about the release.

2. Post link to release Tweet to the Translate gitter channel.

3. Update Translate Toolkit’s Wikipedia page

2.8.3 Post-Releasing Tasks

These are tasks not directly related to the releasing, but that are nevertheless completely necessary.

Bump version to N+1-alpha1

If this new release is a stable one, bump the version in master to {N+1}-alpha1. The places to be changed are
the same ones listed in Up version numbers. This prevents anyone using master being confused with a stable release
and we can easily check if they are using master or stable.

186 Chapter 2. Developer’s Guide

https://github.com/translate/translate/releases/new
http://pandoc.org/
https://gitter.im/translate/dev
http://en.wikipedia.org/wiki/Translate_Toolkit

Translate Toolkit Documentation, Release 3.0.0

Note: You probably will have to adjust the output of some of the functional tests, specifically the manpage ones, to
use the right new version.

Add release notes for dev

After updating the release notes for the about to be released version, it is necessary to add new release notes for the
next release, tagged as dev.

Other possible steps

Some possible cleanup tasks:

• Remove your translate-release checkout.

• Update and fix these releasing notes:

– Make sure these releasing notes are updated on master.

– Discuss any changes that should be made or new things that could be added.

– Add automation if you can.

We also need to check and document these if needed:

• Change URLs to point to the correct docs: do we want to change URLs to point to the $version docs rather
then latest?

• Building on Windows, building for other Linux distros.

• Communicating to upstream packagers.

2.9 Deprecation of Features

From time to time we need to deprecate functionality, this is a guide as to how we implement deprecation.

2.9.1 Types of deprecation

1. Misspelled function

2. Renamed function

3. Deprecated feature

2.9.2 Period of maintenance

Toolkit retains deprecated features for a period of two releases. Thus features deprecated in 1.7.0 are removed in 1.9.0.

2.9. Deprecation of Features 187

Translate Toolkit Documentation, Release 3.0.0

2.9.3 Documentation

Use the @deprecated decorator with a comment and change the docstring to use the Sphinx deprecation syntax.

@deprecated("Use util.run_fast() instead.")
def run_slow():

"""Run slowly

.. deprecated:: 1.9.0
Use :func:`run_fast` instead.

"""
run_fast() # Call new function if possible

2.9.4 Implementation

Deprecated features should call the new functionality if possible. This may not always be possible, such as the cases
of drastic changes. But it is the preferred approach to reduce maintenance of the old code.

2.9.5 Announcements

Note: This applies only to feature deprecation and renamed functions. Announcements for corrections are at the
coders discretion.

1. On first release with deprecation highlight that the feature is deprecated in this release and explain reasons and
alternate approaches.

2. On second relase warn that the feature will be removed in the next release.

3. On third release remove the feature and announce removal in the release announcements.

Thus by examples:

Translate Toolkit 1.9.0: The run_slow function has been deprecated and replaced by the faster and more correct
run_fast. Users of run_slow are advised to migrate their code.

Translate Toolkit 1.10.0: The run_slow function has been deprecated and replaced by run_fast and will be
removed in the next version. Users of run_slow are advised to migrate their code.

Translate Toolkit 1.11.0: The run_slow function has been removed, use run_fast instead.

188 Chapter 2. Developer’s Guide

http://sphinx-doc.org/markup/para.html#directive-deprecated

CHAPTER 3

Additional Notes

Changelog and legal information are included here.

3.1 Release Notes

The following are release notes for the Translate Toolkit releases.

These are the changes that have happened in the Translate Toolkit and which may impact you. If you use Pootle,
Virtaal or any other application that makes use of the Translate Toolkit you may want to familiarize yourself with
these changes.

3.1.1 Final releases

Translate Toolkit 3.0.0

Released on 15 June 2020

This release contains improvements and bug fixes.

Changes

Formats and Converters

• PO

– Bring line wrapping closer to gettext

• XLIFF

– Support non numeric ids on plurals in poxliff

• JSON

189

Translate Toolkit Documentation, Release 3.0.0

– Added support for ARB files

– Added support for go-i18n files

• Properties

– Added support for GWT personality

– Fix round trip of empty values without delimiter

• HTML

– A makeover of the HTML parsing to fix several issues

• PHP

– Add support for Laravel plurals

– Improve round trip of some statements

• Windows RC

– Rewritten parser using pyparsing

• l20n

– Dropped support for deprecated format

General

• Dropped support for Python 2.7.

• Python 3.5 or newer is now required.

• Minor docs improvements.

• Several cleanups in code.

• Removed deprecated interfaces:

– multistring no longer accepts encoding

– search.segment is removed

– pofile.extractpoline is removed

– simplify_to_common no longer accepts languages parameter

– getsource/setsource/gettarget/settarget methods removed from storages

• Updated requirements, lxml is no longer optional.

• Added and updated tests.

• Optional deps can be specified using pip extras.

Contributors

This release was made possible by the following people:

Michal Čihař, papeh, Yann Diorcet, Nick Schonning, Anders Kaplan, Leandro Regueiro, Javier Alfonso, Julen Ruiz
Aizpuru

And to all our bug finders and testers, a Very BIG Thank You.

190 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Translate Toolkit 2.5.1

Released on 25 April 2020

This release contains improvements and bug fixes.

Changes

Formats and Converters

• PO

– Avoid adding extra space on empty comment lines

– Several performance improvements

• Android resources

– Workaround broken plural handling for languages missing other tag

– Fix setting rich content with comments

– Fix setting target and removing markup

• YAML

– Fixed handling of empty keys

– Improved round trip preserving of comments and style

• TS

– Avoid duplicating plurals definition

– Fixed possible crash on adding new translations

• INI

– Now supported on Python 3 thanks to iniparse support for it

• JSON

– Allow usage of BOM in JSON files

• MO

– Fixed context parsing

– Fixed tests on big endian machines

• Catkeys

– The catkeys format now has support for fingerprint calculation

Languages

• Updated plural definitions to match CLDR 36.

3.1. Release Notes 191

Translate Toolkit Documentation, Release 3.0.0

General

• Kept support for Python 2.7.

• Fixed py2exe support on Python 2.7.

• Minor docs improvements.

• Minor cleanups in code.

• Updated requirements.

• Added and updated tests.

Contributors

This release was made possible by the following people:

Michal Čihař, Nick Schonning, Tomáš Chvátal, Niels Sascha Reedijk.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.5.0

Released on 18 January 2020

This release contains improvements and bug fixes.

Changes

Formats and Converters

• PO

– Avoid stripping empty lines from comments.

– Raise error on invalid file content.

– Fixed handling typecomments with non word chars.

– Fixed serializing long msgidcomments.

• Properties

– Avoid creating comment only units (issue 3928).

– Fixed saving utf-16 Java files.

• Android resources

– Document declaration is cloned when adding unit.

– Fixed parsing plurals with comment.

– Fixed setting plural with markup.

– Fixed indentation of markup in translation.

– Fixed XML entities handling.

• YAML

192 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/3928

Translate Toolkit Documentation, Release 3.0.0

– Quotes are preserved.

• TS

– ts2po converts disambiguation notes and comments.

– po2ts no longer removes consecutive linebreaks in source and translation.

• web2py

– @markmin string is no longer copied to the translation.

Languages

• Added Sicilian language checks

General

• Kept support for Python 2.7.

• Added support for Python 3.8.

• Minor docs improvements.

• Minor cleanups in code.

• Updated requirements.

• Added and updated tests.

Contributors

This release was made possible by the following people:

Michal Čihař, Leandro Regueiro, Steve Mokris, Queen Vinyl Darkscratch, Matthias, David Paleino.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.4.0

Released on 24 June 2019

This release contains improvements and bug fixes.

Changes

Formats and Converters

• PO

– Allow unicode in PO headers (issue 3896).

– Improve finding out newline format for a file.

– Strip UTF-8 BOM from input (issue 1640).

• XLIFF

3.1. Release Notes 193

https://github.com/translate/translate/issues/3896
https://github.com/translate/translate/issues/1640

Translate Toolkit Documentation, Release 3.0.0

– Adjustments on how output is indented (issue 3424).

• Properties

– Do not fail when parsing empty file.

• Android resources

– Multiple adjustments so output is closer to Android Studio’s.

• YAML

– Switched to ruamel.yaml to simplify codebase and support YAML 1.2.

– Added support for Ruby plurals.

– Fixed handling dict in list (issue 3895).

– Fixed parsing of empty YAML file.

• JSON

– Fixed serialization of JSON arrays.

– Placeholders are now kept in WebExtension dialect round trip conversion.

• RESX

– Several improvements on formatting to align with Visual Studio’s output.

• TS

– Improved tags indentation.

– Added support for new vanished type.

• Flat XML

– Added support for this new format including flatxml2po and po2flatxml converters (issue 3776).

• CSV

– No longer hardcode escape character (issue 3246).

– Rewrote default dialect to make it more flexible.

• web2py

– Updated converters code.

• Subtitles

– Initialize duration on subtitle unit __init__.

Tools

• Tmserver: Fixed execution of unit API on Python 3.

Languages

• Updated plural definitions to CLDR 35.0.

• Removed trailing semicolon in Romanian plural definition.

194 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/3424
https://github.com/translate/translate/issues/3895
https://github.com/translate/translate/issues/3776
https://github.com/translate/translate/issues/3246

Translate Toolkit Documentation, Release 3.0.0

Placeables

• Allow any character for Python mapping keys in PythonFormattingPlaceable.

API changes

• Altered storage code to have a consistent API for removenotes.

• Removed dependency on diff-match-patch.

• Removed embedded CherryPy wsgi server.

• Removed deprecated has_key implementation.

General

• Dropped no longer supported Python 3.3 and Python 3.4.

• Minor docs improvements.

• Updated requirements.

• Added and updated tests.

Contributors

This release was made possible by the following people:

Michal Čihař, Leandro Regueiro, Vinyl Darkscratch, Vitaly Novichkov, Stuart Prescott, Alex Tomkins, Darío Hereñú,
BhaaL.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.3.1

Released on 06 October 2018

This release contains improvements and bug fixes.

Changes

Formats and Converters

• PO

– Fixed parsing of files with mixed newlines n and r.

• Properties

– Fixed escaping of serialized string for Joomla dialect.

– Fixed loading of OS X strings dialect files having multiline strings.

• Android resources

– Correctly handle escaping of question mark.

3.1. Release Notes 195

Translate Toolkit Documentation, Release 3.0.0

• PHP

– Improved handling of unit name.

– Handle [] style arrays.

– Added support for return statement.

• YAML

– Consistent handling of int and bool.

– Fixed serialization of empty keys.

• JSON

– Nested values ordering is now preserved.

• TMX

– Avoid mentioning po2tmx in creation tool.

• RESX

– New unit elements are now properly indented.

• INI

– Enabled support for Python3 provided that patched iniparse library is available.

• RC

– Altered to remove r before parsing.

API changes

• Use backports.csv module on Python 2 to align the behavior with Python 3 and drop many hacks.

• Removed deprecated getoutput methods deprecated in version 2.0.0.

• Added new deprecations:

– Deprecated setsource, getsource, gettarget and settarget methods in favor of source and target properties
for all storage classes, except LISAunit and its subclasses since for those these methods do actually accept
additional arguments so can’t just be always replaced by some property.

– xliffunit: Deprecated get_rich_source in favor of rich_source property

• Defined for all unit classes the rich_source and rich_target properties without using methods. Since the old
methods were private they were directly removed without deprecating them.

General

• Refactored more converters to increase readability and use a common pattern which will allow to further refactor
repeated code

• Code cleanups and simplification

• Updated requirements

• Tests:

– Added plenty of tests

– Tests cleanups and fixes

196 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Contributors

This release was made possible by the following people:

Leandro Regueiro, Michal Čihař, BhaaL, Mark Jansen, Stuart Prescott, David Hontecillas.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.3.0

Released on 18 March 2018

This release contains improvements and bug fixes.

Changes

Formats and Converters

• PO

– Avoid escaping some characters (()/:,) that don’t need to be escaped

– Wrap lines on / like Gettext

– Lines can be wrapped at specified length

– MO units now allow to set the unit context

– Always URL-encode locations

• PHP

– Full rewrite of the PHP format using phply:

* Fixes multiple issues

* Brings support for new dialects: heredoc, nowdoc, short array syntax and nested arrays.

• YAML

– Added yaml2po and po2yaml converters

– Fixed some minor bugs

– Documented unsupported features

• JSON

– Refactored the storage classes to get rid of repeated shared code, reduce memory usage and get readable
representation of the units.

• txt

– Added --no-segmentation flag to txt2po

Tools

• Removed translate.convert.poreplace

3.1. Release Notes 197

Translate Toolkit Documentation, Release 3.0.0

General

• Improved support for Windows

• Refactored multiple converters to increase readability and use a common pattern which will allow to further
refactor repeated code

• Tests:

– Enabled testing on Windows

– Added more tests

– Plenty of tests cleanups and fixes

• Docs:

– Updated docs on installation

– Improved automatic generation of docs on factories

Contributors

This release was made possible by the following people:

Leandro Regueiro, Michal Čihař, Stuart Prescott, Nick Schonning, Johannes Marbach, andreistefan87, Alejandro
Mantecon Guillen.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.2.5

Released on 01 September 2017

This release contains improvements and bug fixes.

Changes

Formats and Converters

• XLIFF

– Fixed bug when adding new units to XLIFF store.

• JSON

– Added support for i18next JSON dialect.

– Improved WebExtension JSON dialect support.

Contributors

This release was made possible by the following people:

Michal Čihař, Leandro Regueiro, Ryan Northey.

And to all our bug finders and testers, a Very BIG Thank You.

198 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Translate Toolkit 2.2.4

Released on 31 July 2017

This release contains improvements and bug fixes.

Changes

Formats and Converters

• XLIFF

– Added support for .xliff extension in all converters and tools that support .xlf extension.

• JSON

– Added support for nested JSON.

– Added support for WebExtension JSON dialect.

• txt

– po2txt skips obsolete and non-translatable strings.

Filters and Checks

• The puncspace check now strips Bidi markers chars before processing.

• Added ReducedChecker checker to list of checkers.

API changes

• Language and country default to common_name if available.

• Added function to retrieve all language classes.

Contributors

This release was made possible by the following people:

Dwayne Bailey, Leandro Regueiro, Michal Čihař, Rimas Kudelis, Ludwig Nussel, Stuart Prescott.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.2.3

Released on 20 June 2017

This release contains improvements and bug fixes.

Changes

• Added MinimalChecker and ReducedChecker checkers.

3.1. Release Notes 199

Translate Toolkit Documentation, Release 3.0.0

Contributors

This release was made possible by the following people:

Rimas Kudelis, Leandro Regueiro.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.2.2

Released on 20 June 2017

This release contains improvements and bug fixes.

Changes

• Fixed resolving of country names translations.

Contributors

This release was made possible by the following people:

Ryan Northey, Leandro Regueiro.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.2.1

Released on 19 June 2017

This release contains many improvements and bug fixes.

Major changes

• Refactored functions for resolving language/country names translation to be memory efficient.

• Improvements for ts and subtitles formats.

• Added –preserveplaceholders argument to podebug.

• Fixed Montenegrin language name.

Detailed changes

Formats and Converters

• ts

– Write quotes as entities

– Remove not necessary encoding/decoding to UTF-8

• Subtitles

– Avoid errors when subtitle support is missing

200 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Tools

• Added –preserveplaceholders argument to podebug to avoid rewriting placeholders

Languages

• Fixed Montenegrin language name.

API changes

• Refactored functions for resolving language/country names translation to be memory efficient

General

• Use gzip for packaging

• Python 3 fixes

• Added more tests

. . . and loads of general code cleanups and of course many many bugfixes.

Contributors

This release was made possible by the following people:

Michal Čihař, Leandro Regueiro, Ryan Northey, Robbie Cole, Kai Pastor, Dwayne Bailey.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.2.0

Released on 15 June 2017

This release contains many improvements and bug fixes.

Major changes

• Avoid resolving external entities while parsing XML.

• Improvements for Android, ts and resx formats.

• Added support for PHP nested arrays.

• Added Kabyle language

3.1. Release Notes 201

Translate Toolkit Documentation, Release 3.0.0

Detailed changes

Requirements

• Updated requirements.

• Added pycountry recommended requirement for localized language names.

Formats and Converters

• XML formats

– Avoid resolving external entities while parsing.

• Properties

– Improved behavior for strings with no value.

• Android resources

– Improved newlines handling.

– Strip leading and trailing whitespace.

• PHP

– Added support for nested named arrays and nested unnamed arrays.

• ts

– Handle gracefully empty location tag.

– Encode po2ts output as UTF-8.

• resx

– Improved skeleton.

– Fixed indent of the </data> elements.

Languages

• Added Kabyle language.

API changes

• Added functions to retrieve language and country ISO names.

• If available, pycountry is used first to get language names translations.

General

• Python 3 fixes

• Added more tests

. . . and loads of general code cleanups and of course many many bugfixes.

202 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Contributors

This release was made possible by the following people:

Dwayne Bailey, Michal Čihař, Taras Semenenko, Leandro Regueiro, Rimas Kudelis, BhaaL, Muend Belqasem, Jens
Petersen.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.1.0

Released on 17 March 2017

This release contains many improvements and bug fixes.

Major changes

• Fixed RomanianChecker checks.

• Added an iOS checker style.

• Changed plural equations for Slovenian, Persian, Kazakh and Kyrgyz.

• Several fixes in formats and tools.

Detailed changes

Python 3 support

• Python 3.6 is now supported.

Requirements

• Updated and pinned requirements.

• Now recommended requirements pulls required requirements.

Formats and Converters

• All formats

– locationindex now uses first duplicate unit in case of several units having the same location in order to
keep duplicate entries in some formats when converting from PO format.

• PO

– Only add duplicate unit if msgcxt is unique, in order to be able to convert monolingual formats with
duplicate entries to PO.

• Properties

– Added support for Joomla dialect.

• ts

– Set the right context on the units.

3.1. Release Notes 203

Translate Toolkit Documentation, Release 3.0.0

• YAML

– Fixed parsing of unicode values in lists.

• HTML

– Use character offset in line for unit location in order to keep parsing repeated strings in different units.

• txt

– Use line number on unit location to keep parsing repeated strings in different units.

Filters and Checks

• Fixed RomanianChecker checks.

• Added an iOS checker style to detect iOS variables styles such as %@ and $(VAR).

Tools

• posegment no longer outputs duplicate headers,

Languages

• Changed plural equations for Slovenian, Persian, Kazakh and Kyrgyz.

API changes

• Changed management of Xapian locks to prevent database corruption.

General

• Python 3 fixes

• Removed unused code

. . . and loads of general code cleanups and of course many many bugfixes.

Contributors

This release was made possible by the following people:

Dwayne Bailey, Leandro Regueiro, Michal Čihař, Ryan Northey, Friedel Wolff, Olly Betts, Claude Paroz.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 2.0.0

Released on 27 January 2017

This release contains many improvements and bug fixes. While it contains many general improvements, it also specif-
ically contains needed changes and optimizations for the upcoming Pootle 2.8.0 and Virtaal releases.

204 Chapter 3. Additional Notes

http://pootle.translatehouse.org/
http://virtaal.translatehouse.org

Translate Toolkit Documentation, Release 3.0.0

Major changes

• Python 3 compatibility thanks to Claude Paroz

• Dropped support for Python 2.6

• Support for new l20n format

• Translate Toolkit can now easily be installed on Windows

• Changes in storage API to expose a more standardized API

Detailed changes

Python 3 support

• Translate Toolkit went through a massive code cleanup looking forward Python 3 compatibility. There might be
quirks that need to be fixed, so please test and report any issue you might find.

• Python 3.3-3.5 is now supported.

Requirements

• lxml requirement was raised to 3.5.0 in order to simplify code.

• Updated and pinned requirements

• Removed misleading extra requirements files

Formats and Converters

• PO

– msgid comments (KDE style) are only parsed from msgid now.

– Fixed parsing of PO files with first entry in unicode

– Fixed parsing of locations with percent char

• XLIFF

– Unaccepted ASCII control characters are now escaped in XLIFF

• DTD

– Newlines are now skipped when parsing (issue 3390).

– Invalid ampersands are not scrubbed anymore.

– label+accesskey is now only extracted if it is not followed by space.

• Properties

– Keys can contain delimiters if they are properly wrapped (issue 3275).

– Fix control characters escaping for utf-8 encoding.

– po2prop removes fully untranslated units if required

– po2prop skips first entry in PO file (issue 3463)

3.1. Release Notes 205

https://github.com/translate/translate/issues/new
https://github.com/translate/translate/issues/3390
https://github.com/translate/translate/issues/3275
https://github.com/translate/translate/issues/3463

Translate Toolkit Documentation, Release 3.0.0

• Mozilla .lang

– {ok} marker is now more cleanly removed

– Always output last unit followed by trailing newlines

– Added support for headers and tag comments

– MAX_LENGTH is now parsed into comment

– File line endings are now remembered, defaulting to Unix LF

• Mozilla’s l20n

– Added this new format storage class

– Added variants and traits support

– Added new converters l20n2po and po2l20n

• Android

– Unknown locales no longer produce failures.

– Simplify newlines handling as the format now handles n and newline equally (issue 3262)

– Moved all namespaces to <resources> element.

– Simplified newlines handling

• ODF

– odf2xliff now extracts all the text (issue 3239).

• ts

– XML declaration is written with double quotes.

– Self-closing for ‘location’ elements are not output anymore.

• JSON

– Output now includes a trailing newline.

– Unit ordering is maintained (issue 3394).

– Added --removeuntranslated option to po2json

• YAML

– YAML format support has been added.

• txt

– po2txt works correctly again when --threshold option is passed (issue 3499)

• ical

– Enabled this format for Python 3 too.

• TermBase eXchange (TBX)

– tbx2po converter added

– Added basic support for Parts of Speech and term definitions.

• Fixed error when writing back to the same file (issue 3419).

206 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/3262
https://github.com/translate/translate/issues/3239
https://github.com/translate/translate/issues/3394
https://github.com/translate/translate/issues/3499
https://github.com/translate/translate/issues/3419

Translate Toolkit Documentation, Release 3.0.0

Filters and Checks

• Added the ability to skip some checks for some languages in specific checkers

• accelerators check reports an error if accelerator is present for several Indic languages in
MozillaChecker checker.

• Added l20nChecker to do custom checking for Mozilla’s new l20n format.

• LibreOffice checker no longer checks for Python brace format (issue 3303).

• LibreOffice validxml check correctly matches self-closing tags.

• Numbers check now handles non latin numbers. Support for non latin numbers has been added for Arabic,
Assamese, Bengali and Persian languages.

• Fixed issue that prevented standard checks from being used in Pootle with default settings.

• Fixed missing attribute warning displayed when using GnomeChecker, LibreOfficeChecker and
MozillaChecker checkers.

• Added language specific RomanianChecker.

Tools

• posegment now correctly segments Japanese strings with half width punctuation sign (issue 3280).

• pocount now outputs csv header in one line. It also outputs using color.

• buildxpi was adjusted to current Mozilla needs

Languages

• Fixed plural form for Montenegro, Macedonian, Songhay, Tajik, Slovenian and Turkish.

• Added plural forms for Bengali (Bangladesh), Konkani, Kashmiri, Sanskrit, Silesian and Yue (Cantonese).

• Added valid accelerators for Polish.

• Renamed Oriya to Odia.

• Altered Manipuri name to include its most common name Meithei.

• Added language settings for Brazilian Portuguese.

• Added Danish valid accelerators characters (issue 3487).

• Added additional special characters for Scottish Gaelic.

Setup

• Fixed Inno Setup builds allowing to easily install Translate Toolkit on Windows using the pip installer. Com-
mands are compiled to .exe files.

• Updated installation instructions for Windows

3.1. Release Notes 207

https://github.com/translate/translate/issues/3303
https://github.com/translate/translate/issues/3280
https://github.com/translate/translate/issues/3487

Translate Toolkit Documentation, Release 3.0.0

API changes

• Dropped translate.misc.dictutils.ordereddict in favor of collections.OrderedDict.

• Added encoding handling in base TranslationStore class exposing a single API.

• Encoding detection in TranslationStore has been improved.

• Standardized UnitClass definition across TranslationStore subclasses.

• translate.misc.multistring.multistring:

– Fixed list coercion to text

– Fixed comparison regression with multistrings (issue 3404).

– Re-added str method (issue 3428).

– Fixed __hash__ (issue 3434).

API deprecation

• Passing non-ASCII bytes to the multistring class has been deprecated, as well as the encoding argument
to it. Applications should always construct multistring objects by passing characters (unicode in Python
2, str in Python 3), not bytes. Support for passing non-ASCII bytes will be removed in the next version.

• TxtFile.getoutput() and dtdfile.getoutput() have been deprecated. Either call
bytes(<file_instance>) or use the file_instance.serialize() API if you need to get
the serialized store content of a TxtFile or dtdfile instance.

General

• Dropped support for Python 2.6 since it is no longer supported by the Python Foundation. Sticking to it was
making us difficult to maintain code while we move to Python 3.

• Misc docs cleanups.

• Added more tests.

• Increased Python code health.

• Legacy, deprecated and unused code cleansing:

– Dropped code for no longer supported Python versions.

– Removed unused code from various places across codebase.

– The legacy translate.search.indexing.PyLuceneIndexer1 was removed.

– The deprecated translate.storage.properties.find_delimiter() was removed and
replaced by the translate.storage.properties.Dialect.find_delimiter() class
method.

– Python scripts are now available via console_scripts entry point, thus allowing to drop dummy files for
exposing the scripts.

. . . and loads of general code cleanups and of course many many bugfixes.

208 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/3404
https://github.com/translate/translate/issues/3428
https://github.com/translate/translate/issues/3434

Translate Toolkit Documentation, Release 3.0.0

Contributors

This release was made possible by the following people:

Claude Paroz, Leandro Regueiro, Dwayne Bailey, Michal Čihař, Taras Semenenko, Ryan Northey, Stuart Prescott, Kai
Pastor, Julen Ruiz Aizpuru, Friedel Wolff, Hiroshi Miura, Thorbjørn Lindeijer, Melvi Ts, Jobava, Jerome Leclanche,
Jakub Wilk, Adhika Setya Pramudita, Zibi Braniecki, Zdenek Juran, Yann Diorcet, Nick Shaforostoff, Jaka Kranjc,
Christian Lohmaier, beernarrd.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 1.13.0

Released on 13 May 2015

This release contains many improvements and bug fixes. While it contains many general improvements, it also specif-
ically contains needed changes for the upcoming Pootle 2.6.0 and 2.7.0 and Virtaal releases.

It is just over 6 months since the last release and there are many improvements across the board. A number of people
contributed to this release and we’ve tried to credit them wherever possible (sorry if somehow we missed you).

Highlighted improvements

Major changes

• New converters for IDML format

• Support for new .Net Resource (.resx) format

• Extensive cleanup on ODF converters

• New quality checks

Formats and Converters

• IDML

– Added the idml2po and po2idml converters.

• .Net Resource (.resx)

– Added store to represent the format and the resx2po and po2resx converters.

• Android

– Improved escape and unescape of Android resources with HTML markup.

– Fixed bug in canceling whitespaces with backslash when unescaping.

• ODF

– Removed the --engine option in odf2xliff because the itools third party library is no longer
used.

• TS

– Pretty print output the same as Qt Linguist (issue 1420)

• JSON

3.1. Release Notes 209

http://pootle.translatehouse.org/
http://virtaal.translatehouse.org
https://github.com/translate/translate/issues/1420

Translate Toolkit Documentation, Release 3.0.0

– Dump content on memory instead of copy of parsed file (issue 3249).

• PHP

– Correctly roundtrip PHP with spaces after array (issue 3231).

• Mozilla lang

– Import only real comments (starting with #), not meta tags (starting with ##).

• XLIFF

– Mark units as needing attention if sources don’t match when merging units.

– pot2po now also accepts files with .xliff extension

• po2moz

– Fixed handling of files with fullstop in filename

Quality Checks

• Added quality check for Python brace format.

• Added the ability to skip some quality checks for the he, ug, zh_CN, zh_HK and zh_TW languages.

• Expanded printf quality check to support reordering boost::format positional directives.

• Expanded docstrings to include fully detailed descriptions in order to display them on Pootle.

Tools

• Removed the unnecessary dependency on lxml in pretranslate (issue 1909)

Languages

• Language plurals:

– Fixed plural forms for ga and pt_BR languages

– Added new plural forms for new languages

• Adjusted punctuation for zh

• Corrected “Songhay” language name

General

• Fixed bug in file discovery that prevented Pootle Pootle’s terminology feature from working properly in some
scenarios.

• Docs:

– Major rewrite of releasing instructions

– Reorganized string-related guidelines on styleguide

– Other minor docs cleanups

• ODF code extensive cleanups:

210 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/3249
https://github.com/translate/translate/issues/3231
http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html
https://github.com/translate/translate/issues/1909

Translate Toolkit Documentation, Release 3.0.0

– Applied tons of PEP8 and style guide cleanups

– Removed unused code

– Removed unused test ODT file

– Added lots of docstrings

– Simplified code to ease maintainability and improve readability

• Dropped no longer working automatic publishing in PyPI and SourceForge

• Several changes to speed up Travis builds

• Unhid some tests

. . . and loads of general code cleanups and of course many many bugfixes.

Contributors

This release was made possible by the following people:

Leandro Regueiro, Dwayne Bailey, Yaron Shahrabani, Sarah Hale, Sietse Brouwer, Jerome Leclanche, Julen Ruiz
Aizpuru, Michael Andres, William Grzybowski, SirAnthony, Rafael Ferreira, Luka Kama, Francesco Lodolo,
Buganini, babycaseny.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 1.12.0

Released on 12 August 2014

This release contains many improvements and bug fixes. While it contains many general improvements, it also specif-
ically contains needed changes and optimizations for the upcoming Pootle 2.6.0 and Virtaal releases.

It is just over 6 months since the last release and there are many improvements across the board. A number of people
contributed to this release and we’ve tried to credit them wherever possible (sorry if somehow we missed you).

Highlighted improvements

Major changes

• Properties and DTD formats fix a number of issues

• Massive code cleanup looking forward Python 3 compatibility

• Important changes in development process to ease testing

Formats and Converters

• Mozilla properties

– If a unit has an associated access key entry then these are combined into a single unit

– Encoding errors are now reported early to prevent them being masked by subsequent errors

– Leading and trailing spaces are escaped in order to avoid losing them when using the converters

– The \uNN characters are now properly handled

3.1. Release Notes 211

http://pootle.translatehouse.org/
http://virtaal.translatehouse.org

Translate Toolkit Documentation, Release 3.0.0

– po2prop Now uses the source language accesskey if translation is missing

– Fixed conversion of successive Gaia plural units in prop2po

• DTD

– The & entity is automatically expanded when reading DTD files, and escaped back when writing
them

– Underscore character is now a valid character in entity names

– Nonentities at end of string are now correctly handled

– po2dtd:

* Now uses the source language accesskey if target accesskey is missing

* Doesn’t remove stray & as they probably &

• HTML

– The HTML5 figcaption tag is now localizable

– The title attribute is now localizable

– po2html now retains the untranslated attributes

• Accesskeys

– Now accesskeys are combined using the correct case

– Added support for accesskey after ampersand and space

• PHP

– Fall back to default dialect after adding every new unit

– Added support for empty array declaration when it is filled later

• Android

– Added support for plurals

– Text is now properly escaped when using markup

• Qt Linguist (.ts)

– The message id attribute is added to contextname

– Files now output the XML declaration (issue 3198)

• RC

– RC format received some bugfixes and now ignores TEXTINCLUDE sections and one line comments (//)

• XLIFF

– xliff2po now supports files with .xliff extension

• OS X .strings

– Added support for UTF-8 encoded OS X strings

• Testing

– Added new tests for the UTF-8 encoded OS X strings, Qt linguist and RC formats and the rc2po converter

212 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/3198

Translate Toolkit Documentation, Release 3.0.0

Version Control improvements

• Added support for Subversion .svn directories

Checks

• Added specific checks for LibreOffice

Tools

• The pocount tool has now a better counting algorithm for things that look like XML

Mozilla tooling fixes

• Added support to check for bad accesskeys in .properties files

• Now the Mozilla roundtrip script can be silently run

• Added a new Gaia roundtrip script

• The buildxpi --disable-compile-environment option has been restored, resulting in huge speed
improvements

General

• Extensive cleanup of setup script

• Some bugfixes for placeables

• Misc docs cleanups

• Recovered diff-match-patch to provide support for old third party consumers

• Minor change in placeables to correctly insert at an existing parent if appropriate

• Code cleanups:

– Applied tons of PEP8 and style guide cleanups

– Python 2.6 is our new minimum:

* Removed lots of code used to support old Python versions

* Dropped custom code in favor of Python standard libraries

* Updated codebase to use newer libraries

* Changed code to use newer syntax seeking Python 3 compatibility

– Updated some third party bundled software: CherryPy, BeautifulSoup4

– Added document to track licenses used by third party bundled code

– Removed TODO items. Some of them were moved to the bug tracker

• Development process:

– Added a functional test framework

– Added dozens of new unit and functional tests

3.1. Release Notes 213

Translate Toolkit Documentation, Release 3.0.0

– Expanded the tasks performed in Travis: pep8, pytest-xdist, compile all files, coveralls.io, . . .

. . . and loads of general code cleanups and of course many many bugfixes.

Contributors

This release was made possible by the following people:

Dwayne Bailey, Jerome Leclanche, Leandro Regueiro, Khaled Hosny, Javier Alfonso, Friedel Wolff, Michal Či-
hař, Heiki Ojasild, Julen Ruiz Aizpuru, Florian Preinstorfer, damian.golda, Zolnai Tamás, Vladimir Rusinov, Stuart
Prescott, Luca De Petrillo, Kevin KIN-FOO, Henrik Saari, Dominic König.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 1.11.0

Released on 22 January 2014

This release contains many improvements and bug fixes. While it contains many general improvements, it also specif-
ically contains needed changes and optimizations for the upcoming Pootle 2.5.1 and Virtaal releases.

It is just over a ten months since the last release and there are many improvements across the board. A number of
people contributed to this release and we’ve tried to credit them wherever possible (sorry if somehow we missed you).

Highlighted improvements

Major changes

• The PO format now matches Gettext more closely

• PHP format adds a number of new features

• Support for Python 2.5 has been dropped

Formats and Converters

• Gettext PO:

– cPO now handles fuzzy obsolete messages correctly

– Line wrapping improvement allow PO files to more closely match Gettext

– Optimization to increase performance

• PHP:

– Warn about duplicate entries

– Allow blank spaces in array declaration (issue 2646)

– Support nested arrays (issue 2240)

• XLIFF:

– Correctly parse XLIFF 1.2

• Properties

– Blank source text is now always translated

214 Chapter 3. Additional Notes

http://pootle.translatehouse.org/
http://virtaal.translatehouse.org
https://github.com/translate/translate/issues/2646
https://github.com/translate/translate/issues/2240

Translate Toolkit Documentation, Release 3.0.0

– Fuzzy units are discarded with –remove-untranslated

– prop2po no longer drops entries that are translated the same as the source

• TMX:

– po2tmx support comments

• Android:

– Detect untranslatable resource strings

– Various format improvements

• HTML:

– Output HTML source in po2html when a unit is fuzzy (issue 3145)

• New conversion options:

– --timestamp – skip conversion if the output file has a newer timestamp (Makefile-alike)

– --threshold – in po2* converters this allows you to specify a percentage complete threshold. If the
PO files passes this threshold then the file is output (issue 2998)

– --removeuntranslated – Extend this option to po2dtd and thus po2moz – don’t output untranslated
text (issue 1718)

Language specific fixes

• The toolkit now supports: Sakha, N’ko, Turkish, improvements for Bengali & Hindi

• Pootle special characters are now stored on Toolkit and available for other tools to use

• Rules for language ab are now available for language ab_CD

Checks

• Spelling test improvements including speed and optimization

• Reduce false positive for the filepath test in cases of self closing tags e.g.

• Lowered the accelerator check severity to reduce false positive impact

Mozilla tooling fixes

• Better decoding of some characters in DTD e.g » and &x0022 (“)

• .lang – Improved support for untranslated entries

• buildxpi:

– Can now build multiple languages at once (issue 2999)

– Set a max product version to allow the language pack to continue to work once the browser version has
moved out of Aurora channel

• Dropped native XPI building support (untested and no longer used)

• Add Mozilla plural formulas, in time we’ll handle Mozilla plurals correctly

3.1. Release Notes 215

https://github.com/translate/translate/issues/3145
https://github.com/translate/translate/issues/2998
https://github.com/translate/translate/issues/1718
https://github.com/translate/translate/issues/2999

Translate Toolkit Documentation, Release 3.0.0

General

• Dropped support for Python 2.5 since it is no longer supported by the Python Foundation. Also sticking to it
was preventing us from using features that are not supported on Python 2.5 but they are on later versions.

• Dropped psyco support – it is no longer maintained

• Use logging throughout instead of sys.stderr

• Lots of cleanups on docs: TBX, PHP, added Android and JSON docs

• Use requirements files for documenting all requirements and make it easy to install Translate Toolkit using pip

• Added some functional tests

• Improve searching to find words with hyphens

• Choose the closest repo in nested VCS

• Test suite down to zero failing tests

• Handle a broken version of python-Levenshtein

• Improve handling of escapes in wrapping

. . . and loads of internal changes to improve maintainability, remove unused imports, remove unused code and general
code cleanups, some changes to ensure future Python 3 portability and of course many many bugfixes.

Contributors

This release was made possible by the following people:

Dwayne Bailey, Leandro Regueiro, Alexander Dupuy, Friedel Wolff, Khaled Hosny, Michal Čihař, Jordi Mas, Stuart
Prescott, Trung Ngo, Ronald Sterckx, Rail Aliev, Michael Schlenker, Martin-Zack Mekkaoui, Iskren Chernev, Luiz
Fernando Ranghetti & Christian Hitz

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 1.10.0

Released on 12 March 2013

This release contains many improvements and bug fixes. While it contains many general improvements, it also specif-
ically contains needed changes for the upcoming Pootle 2.5.0.

It is just over a year since the last release so there are many improvements across the board. A number of people
contributed to this release and we’ve tried to credit them wherever possible (sorry if somehow we missed you).

Highlighted improvements

• Android format support

• Version control improvements

• Source now on Github - all our code is now on github

• Documentation - migrated all from our wiki into the code and Read The Docs

• Continuous Integration using Travis

216 Chapter 3. Additional Notes

http://pootle.translatehouse.org/

Translate Toolkit Documentation, Release 3.0.0

Most important for Pootle

• Version control improvements

• Categorize pofilter checks into critical, functional, cosmetic, etc

Formats and Converters

• Android format support [Michal Čihař]

• Mozilla .lang, many improvements

• PHP support for defintions, // comments and improved whitespace preservation

• PO: X-Merge-On header to explicitly demand a conversion strategy instead of guessing

• .properties: BOMs in messages and C style comments [Roman Imankulov]

• Mac OS String formatting improved [Roman Imankulov]

• The spaces in DTD files are now preserved. For example the spaces in <!ENTITY some.label
"definition"> around the entity name some.label are now kept.

• The matching criterion when merging units can now be specified with the X-Merge-On header. Available
values for this header are location and id. By default merges will be done by matching IDs. This supersedes
the effects of the X-Accelerator header when merging and establishes an explicit way to set the desired
matching criterion.

Version Control improvements

• Interface for adding files to a repository & Implement .add() for all VCSs.

• Caching of VC version info

• Don’t look for VCS if it’s not available

• Stop looking for VCS at a given parent

• Subversion VC tests

• Alway pass -m to ‘commit’ in Subversion to prevent blocking

Checks

• New OpenOffice variables style used in extensions

• Check for self-closing tags in the xmltags test [Seb M].

• GConf test fixes

• Terminology checker type for future terminology features

• Categorize pofilter checks into critical, functional, cosmetic, etc

• Added support for Objective-C %@ printf specifiers

3.1. Release Notes 217

Translate Toolkit Documentation, Release 3.0.0

Language specific fixes

• Correct plurals: Scottish Gaelic (gd), Irish

• Plural rules: Fulah, Brazilian Portuguese

• Punctuation rules and tests to ignore for: Burmese, Urdu, Afrikaans, Wolof

Documentation

• Moved to Git and we are now using reStructured Text and Sphinx

• Published in Read The Docs (RTD).

• Old wiki migrated to RTD.

• New clean theme for documentation and website

• API and code epydoc moved to reStructured Text.

• Translate code Style Guide written

Mozilla tooling fixes

• Mozilla specific test for dialog size settings

• Gaia properties dialect and plural handling

• Fixes and improvement to the Firefox build scripts

• Improved accesskey detection

• Improved DTD escaping for "e, %, etc

• Improvement of DTD to align with Base classes

• Support new {{xx}} variable style introduced in PDF viewer

. . . and refactoring, PEP8, test coverage and of course many many bugfixes.

Contributors

This release was made possible by the following people:

Dwayne Bailey, Friedel Wolff, Leandro Regueiro, Julen Ruiz Aizpuru, Michal Čihař, Roman Imankulov, Alexander
Dupuy, Frank Tetzel, Luiz Fernando Ranghetti, Laurette Pretorius, Jiro Matsuzawa, Henrik Saari, Luca De Petrillo,
Khaled Hosny, Dave Dash & Chris Oelmueller.

And to all our bug finders and testers, a Very BIG Thank You.

Translate Toolkit 1.9.0 Released

Released on 12 April 2011

This release contains many improvements and bug fixes. While it contains many general improvements, it also specif-
ically contains needed changes for the upcoming Pootle 2.1.6 and Virtaal 0.7.

218 Chapter 3. Additional Notes

http://pootle.translatehouse.org
http://virtaal.translatehouse.org/

Translate Toolkit Documentation, Release 3.0.0

Highlighted improvements

• Faster terminology matching

• Several small optimisations to performance and memory use

• More advanced state support (visible in pocount and Virtaal 0.7)

• Improved language detection models (+South African languages)

• Improve handling of printf variable reordering [Jacques Beaurain]

• Review of the wording of the messages of pofilter checks

• Better sentence segmentation for some non-Latin languages

• More supported formats for podebug

• Extra options for pomerge, pogrep and po2oo/xliff2oo.

The new pogrep options made this possible for GNOME.

Most relevant for Pootle

• Support for Xapian 1.2 (issue 1766) [Rimas Kudelis]

• Work around some changes introduced in Django 1.2.5/1.3

Format support

• Always use UNIX line endings for PO (even on Windows)

• XLIFF and .ts files now shows “fuzzy” only the target present

• Improved support for .ts comment as context (issue 1739)

• Support for Java properties in UTF-8 encoding

• More natural string ordering in json converter

• Improved handling of trailing spaces in Mozilla DTD files

• Removed unused support for _old_ KDE plurals in pocount

. . . and several small bugfixes

Translate Toolkit 1.8.1

Released on 19 Novermber 2010

Today the Translate team released version 1.8.1 of the Translate Toolkit. The Translate Toolkit contains many useful
tools for translation, management, and quality control. It is the technology platform for Pootle, Virtaal, and other
software.

This release contains many improvements and bug fixes. It is a recommended upgrade for users of Pootle and Virtaal.
There were over 200 commits since version 1.8.0.

This work was made possible by volunteers and our funders:

• ANLoc, funded by IDRC

3.1. Release Notes 219

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html
http://virtaal.translatehouse.org/
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/podebug.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html
http://translate.org.za/blogs/friedel/en/content/better-lies-about-gnome-localisation
https://github.com/translate/translate/issues/1766
https://github.com/translate/translate/issues/1739
http://africanlocalisation.net/

Translate Toolkit Documentation, Release 3.0.0

Highlighted improvements

File formats:

• A rewrite and major improvement of the html format and html2po converter

• New JSON format introduced

• Support for Universal Terminology Exchange (UTX) format

• Support for Java properties files encoded in UTF-8

• Improvements to CSV format, and improved compatibility with Excel exports

• Bug fixes to Qt .ts

• Support for XLIFF’s state attributes (pocount now lists detailed state statistics)

• Minor bug fixes for PHP format

Languages and quality checks:

• Support for Persian quotations

• Major performance improvements to quality checks

Pootle will regenerate all statistics with the new Translate Toolkit installed. Read about the quality checks.

Other improvements:

• Improvements to stability of Lucene text indexing (affecting Pootle)

• Parameter for po2prop to ignore untranslated strings

• Many improvements to pot2po including Qt ts support, improved handling of extra XML namespaces in XLIFF,
and performance improvements.

Further resources:

• Full feature list

• Download

• Bugs

Happy translating!

The Translate team

3.1.2 Historic releases

Translate Toolkit 1.8.0

Released on 17 August 2010

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 1.7.0

Released on 13 May 2010

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

220 Chapter 3. Additional Notes

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/utx.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/csv.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/features.html
http://sourceforge.net/projects/translate/files/Translate%20Toolkit/1.8.1/
https://github.com/translate/translate/issues

Translate Toolkit Documentation, Release 3.0.0

Translate Toolkit 1.6.0

Released on 3 March 2010

PO files now always have headers

Generated PO files now always contain headers. This will mainly affect the output of pofilter and pogrep. This should
allow better interoperability with gettext tools, and allowed for some improvement in the code. You should still be able
to use headerless files in msgmerge, although it is recommended that PO files are consistently handled with headers
wherever possible.

Translate Toolkit 1.5.3

Released on 4 February 2010

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 1.5.2

Released on 13 January 2010

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 1.5.1

Released on 8 December 2009

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 1.5.0

Released on 25 November 2009

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 1.4.1

Released on 6 November 2009

CSV column header names

The names given to CSV column headers have been changed. Early releases of csv2po would name the columns
“comment,original,translation”. This was done mostly to make it easy for non-technical translators. However, com-
ments in the command line help used terms like source and target. This release changes the column header names to
“location,source,target”, this aligns with terms used throughout the toolkit.

3.1. Release Notes 221

Translate Toolkit Documentation, Release 3.0.0

If you have CSV file generated by older versions of the toolkit then a header entry of “comment,original,translation”
will be turned into a unit instead of being ignored. You can either change your CSV file to use the headers “loca-
tion,source,target” or delete the header row completely. Once this is done the files will work as expected.

Translate Toolkit 1.4.0

Released on 27 August 2009

Java and Mozilla .properties

Unusual keys, separators and spacing should all be handled correctly now. Some Mozilla .properties files might now
have changed. Regenerate your Mozilla l10n files from fresh POT files without any changes to your PO files to ensure
that you can see and review these changes.

Hashing in podebug

The --hash option in podebug has been replaced by a format specifier %h to be able to better control the positioning
of the hash value.

Translate Toolkit 1.3.0

Released on 11 February 2009

Several duplicate styles were removed as has been warned about long before. Please check the recommendations
posted at the time that msgctxt was added on how to migrate.

Translate Toolkit 1.2.1

Released on 29 December 2008

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 1.2.0

Released on 24 November 2008

New formats

The toolkit now supports:

• Qt Phrase Book (.qph)

• Qt .ts v1.1

This allows reading, counting and working on these formats. The ts2po converter has not been changed so you will
not be able to benefit from the new .ts support. However, you can use the format for translation memory, etc as its is
now fully base class compliant.

222 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Stats database change

There were some changes in the database used by pocount for storing statistics. The location of the database might
also have changed, depending on what the last version is that you used. Remove the file stats.db from any of ~/.trans-
late_toolkit, ~/.wordforge (or the corresponding directories on your Windows installation.

Valid accelerators

The pofilter accelerator test is now able to make use of a list of valid accelerators. This allows translators to control the
behaviour of the test for their language and add or remove characters that can be used as accelerators. Please define
the valid accelerators for your language and these will then be included in future releases of the toolkit. By default the
old process is followed so that if you take no action then this check will continue to work as expected.

branches

These are branches that contain quite invasive changes that will most likely be merged into the main development and
be released sometime in the future.

toolkit-C-po

Converting the current Python based PO parser to the Gettext C based parser for PO. This offers quite a dramatic speed
improvement and conformance to the output found in Gettext itself. For most users there will be a number of changes
in layout of the files as they will now conform fully to Gettext layout. The ‘keep’ option in --duplicatestyle
will no longer be supported as this is not valid Gettext output.

Translate Toolkit 1.1.1

Released on 2 April 2008

Premature termination of DTD entities

Although this does not occur frequently a case emerged where some DTD entities where not fully extracted from the
DTD source. This was fixed in issue 331.

We expect this change to create a few new fuzzy entries. There is no action required from the user as the next update
of your PO files will bring the correct text into your translations, if you are using a translation memory your translation
might be recovered from obsolete translations.

Translate Toolkit 1.1.0

Released on 22 January 2008

oo2po Help (helpcontent2) escaping fixed

OpenOffice.org Help (helpcontent2) has notoriously contained some unreadable esacping, e.g. \\\\<tag
attr=\\"value\\"\\\\>. The escaping has been fixed and oo2po now understands helpcontent2 escaping while
leaving the current GUI escape handling unaltered.

3.1. Release Notes 223

http://docs.translatehouse.org/projects/localization-guide/en/latest/l10n/valid_accelerators.html#valid-accelerators
https://github.com/translate/translate/issues/331

Translate Toolkit Documentation, Release 3.0.0

If you have not translated helpcontent2 then you are unaffected by this change. If you have translated this content then
you will need to follow these instructions when upgrading.

If you follow normal procedures of creating POT files and upgrading your PO files using pot2po then your strings will
not match and you will obtain files with many fuzzies. To avoid this do the following:

1. Make sure your PO files contain no fuzzy entries

2. Use po2oo from the previous release to create and SDF file

3. Upgrade to the latest Translate Toolkit with new po2oo

4. Use po2oo -l xx-YY your.sdf po to create a new set of PO files with correct escaping

You can choose to do this with only your helpcontent2 PO files if needed, this will allow you to leave your GUI work
in its current state. Simply do the above procedure and discard all PO files except helpcontent2, then move these new
helpcontent2 files into your current work.

prop2po uses developer comments

prop2po used to place comments found in the source .properties file in traditional translator comments, they should of
course go into developer comments. The reason for this change is twofold, it allows these comments to be correctly
managed and it is part of the process of cleaning up these formats so that they are closer to the base class and can thus
work with XLIFF.

For the user there will be fairly large changes as one comment format moves to the next. It is best to cleanup translator
comments and get your translations into a fit state, i.e. no fuzzies, and then proceed with any migrations.

moz2po no longer uses KDE comments

moz2po has traditionally used KDE style comments for storing comments aimed at translators. Many translators
confuse these and try to translate them. Thus these have been moved into automatic or developer comments. The
result for many people migrating Mozilla PO files will be that many strings will become fuzzy, you can avoid much of
this by using pot2po which should intelligently be able to match without considering the KDE comments.

The best strategy is to get your translations into a relatively good shape before migration. You can then migrate them
first to a new set of POT files generated from the same source files that the translation is based on. Eliminate all fuzzies
as these should only relate to the changes in layout. Then proceed to migrate to a new set of POT files. If you cannot
work against the original source files then the best would be to also first eliminate fuzzy matches before proceeding to
translation. Your fuzzies will include changes in layout and changes in content so proceed carefully.

At the end of this you should have PO files that conform to the Gettext standard without KDE comments.

Read and Write MO files

You can read and write Gettext MO files (compiled PO files). Thus pocount can now count files on your filesystem
and you can also compile MO files using pocompile. MO files can be compiled from either PO or XLIFF sources.

MO will now also produce correct output for msgctxt and plural forms found in PO files.

Read Qt .qm files

We can now read Qt .qm files, thus pocount can count the contents of compiled files. We cannot however write .qm
files at this time.

224 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

Translate Toolkit 1.0.1

Released on 23 June 2007

pot2po will create new empty PO files if needed

From version 1.0.1, pot2po will create empty PO files corresponding to new POT files that might have been introduced.
If some new POT files are present in the input to pot2po, you will see a new PO file appear in your output directory
that was not in your old PO files. You will not lose any data but in the worst case you will see new files on projects
that you thought were fully translated.

Translate Toolkit 1.0

Released on 1 June 2007

Improved XLIFF support

Many toolkit tools that only worked with PO files before, can now also work with XLIFF files. pogrep, pocount,
pomerge, and pofilter all work with XLIFF, for example.

Pretty XML output

All XML formats should now be more human readable, and the converters to Qt .ts files should work correctly again.

Fuzzy matching in pot2po is optional

Fuzzy matching can now be entirely disabled in pot2po with the --nofuzzymatching parameter. This should
make it much faster, although pot2po is substantially faster than earlier versions, especially if python-Levenshtein is
installed.

Old match/Levenshtein.py* can cause name clash

The file previously called match/Levenshtein.py was renamed to lshtein.py in order to use the python-Levenshtein
package mentioned above. If you follow the basic installation instructions, the old file will not be overwritten, and can
cause problems. Ensure that you remove all files starting with Levenshtein.py in the installation path of the translate
toolkit, usually something like /usr/lib/python2.4/site-packages/translate/search/. It could be up to three files.

PO file layout now follows Gettext more closely

The toolkits output PO format should now resemble Gettext PO files more closely. Long lines are wrapped correctly,
messages with long initial lines will start with a ‘msgid “”’ entry. The reason for this change is to ensure that differences
in files relate to content change not format change, no matter what tool you use.

To understand the problem more clearly. If a user creates POT files with e.g. oo2po. She then edits them in a PO
editor or manipulate them with the Gettext tools. The layout of the file after manipulation was often different from
the original produced by the Toolkit. Thus making it hard to tell what where content changes as opposed to layout
changes.

The changes will affect you as follows:

3.1. Release Notes 225

Translate Toolkit Documentation, Release 3.0.0

1. They will only impact you when using the Toolkit tools.

2. You manipulate your files with a tool that follows Gettext PO layout

• your experience should now improve as the new PO files will align with your existing files

• updates should now only include real content changes not layout changes

3. You manipulate your files using Toolkit related tools or manual editing

• your files will go through a re-layout the first time you use any of the tools

• subsequent usage should continue as normal

• any manipulation using Gettext tools will leave your files correctly laid out.

Our suggestion is that if you are about to suffer a major reflow that your initial merge contain only reflow and update
changes. Do content changes in subsequent steps. Once you have gone through the reflow you should see no layout
changes and only content changes.

Language awareness

The toolkit is gradually becoming more aware of the differences between languages. Currently this mostly affects
pofilter checks (and therefore also Pootle) where tests involving punctuation and capitalisation will be more aware
of the differences between English and some other languages. Provisional customisation for the following languages
are in place and we will welcome more work on the language module: Amharic, Arabic, Greek, Persian, French,
Armenian, Japanese, Khmer, Vietnamese, all types of Chinese.

New pofilter tests: newlines and tabs

The escapes test has been refined with two new tests, newlines and tabs. This makes identifying the errors easier
and makes it easier to control the results of the tests. You shouldn’t have to change your testing behaviour in any way.

Merging can change fuzzy status

pomerge now handles fuzzy states:

pomerge -t old -i merge -o new

Messages that are fuzzy in merge will now also be fuzzy in new. Similarly if a fuzzy state is present in old but removed
in merge then the message in new will not be fuzzy.

Previously no fuzzy states were changed during a merge.

pofilter will make Mozilla accelerators a serious failure

If you use pofilter with the --mozilla option then accelerator failures will produce a serious filter error, i.e. the
message will be marked as fuzzy. This has been done because accelerator problems in your translations have the
potential to break Mozilla applications.

226 Chapter 3. Additional Notes

Translate Toolkit Documentation, Release 3.0.0

po2prop can output Mozilla or Java style properties

We have added the --personality option to allow a user to select output in either java, or mozilla style (Java
property files use escaped Unicode, while Mozilla uses actual Unicode characters). This functionality was always
available but was not exposed to the user and we always defaulted to the Mozilla style.

When using po2moz the behaviour is not changed for the user as the programs will ensure that the properties convertor
uses Mozilla style.

However, when using po2prop the default style is now java, thus if you are converting a single .properties file
as part of a Mozilla conversion you will need to add --personality=mozilla to your conversion. Thus:

po2prop -t moz.properties moz.properties.po my-moz.properties

Would become:

po2prop --personality=mozilla -t moz.properties moz.properties.po my-moz.properties

Note: Output in java style escaped Unicode will still be usable by Mozilla but will be harder to read.

Support for compressed files

There is some initial support for reading from and writing to compressed files. Single files compressed with gzip or
bzip2 compression is supported, but not tarballs. Most tools don’t support it, but pocount and the --tm parameter to
pot2po will work with it, for example. Naturally it is slower than working with uncompressed files. Hopefully more
tools can support it in future.

Translate Toolkit 0.11

Released on 24 March 2007

po2oo defaults to not check for errors

In po2oo we made the default --filteraction=none i.e. do nothing and don’t warn. Until we have a way of
clearly marking false positives we’ll have to disable this functionality as there is no way to quiet the output or mark
non errors. Also renamed exclude to exclude-all so that it is clearer what it does i.e. it excludes ‘all’ vs excludes
‘serious’.

pofilter xmltags produces less false positives

In the xmltags check we handle the case where we had some false positives. E.g. “<Error>” which looks like
XML/HTML but should actually be translated. These are handled by

1. identifying them as being the same length as the source text,

2. not containing any ‘=’ sign. Thus the following would not be detected by this hack. “An <Error> occurred” ->
“<Error name=”bob”>”, but these ones need human eyes anyway.

3.1. Release Notes 227

Translate Toolkit Documentation, Release 3.0.0

Translate Toolkit 0.10.1

Released on 28 December 2006

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 0.10

Released on 29 August 2006

PO to XLIFF conversion

Conversion from PO to XLIFF is greatly improved in 0.10 and this was done according to the specification at http:
//xliff-tools.freedesktop.org/wiki/Projects/XliffPoGuide – please let us know if there are features lacking.

pot2po can replace msgmerge

pot2po has undergone major changes which means that it now respects your header entries, can resurrect obsolete
messages, does fuzzy matching using Levenshtein distance algorithm, will correctly match messages with KDE style
comments and can use an external Translation Memory. You can now use pot2po instead of Gettext’s msgmerge and
it can also replace pomigrate2. You may still want to use pomigrate2 if there where file movements between versions
as pot2po can still not do intelligent matching of PO and POT files, pomigrate2 has also been adapted so that it can
use pot2po as it background merging tool.

pomigrate2 --use-compendium --pot2po <old> <pot> <new>

This will migrate file with a compendium built from PO files in <old> and will use pot2po as its conversion engine.

.properties pretty formatting

When using templates for generating translated .properties files we will now preserve the formatting around the equal
sign.

Previously if the template had
property = value

We output
property=translation

We will now output
property = translation

This change ensures that there is less noise when checking differences against the template file. However, there will
be quite a bit of noise when you make your first .properties commits with the new pretty layout. Our suggestion is that
you make a single commit of .properties files without changes of translations to gt the formatting correct.

228 Chapter 3. Additional Notes

http://xliff-tools.freedesktop.org/wiki/Projects/XliffPoGuide
http://xliff-tools.freedesktop.org/wiki/Projects/XliffPoGuide

Translate Toolkit Documentation, Release 3.0.0

Translate Toolkit 0.9.2

Released on 11 August 2006

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 0.9.1

Released on 17 July 2006

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 0.9

Released on 15 June 2006

Escaping – DTD files are no longer escaped

Previously each converter handled escaping, which made it a nightmare every time we identified an escaping related
error or added a new format. Escaping has now been moved into the format classes as much as possible, the result
being that formats exchange Python strings and manage their own escaping.

I doing this migration we revisited some of the format migration. We found that we were escaping elements in our
output DTD files. DTD’s should have no escaping i.e. \n is a literal \ followed by an n not a newline.

A result of this change is that older PO files will have different escaping to what po2moz will now expect. Probably
resulting in bad output .dtd files.

We did not make this backward compatible as the fix is relatively simple and is one you would have done for any
migration of your PO files.

1. Create a new set of POT files

moz2po -P mozilla pot

2. Migrate your old PO files

pomigrate2 old new pot

3. Fix all the fuzzy translations by editing your PO files

4. Use pofilter to check for escaping problems and fix them

pofilter -t escapes new new-check

5. Edit file in new-check in your PO editor

pomerge -t new -i new-check -o new-check

3.1. Release Notes 229

Translate Toolkit Documentation, Release 3.0.0

Migration to base class

All filters are/have been migrate to a base class. This move is so that it is easier to add new format, interchange
formats and to create converters. Thus xx2po and xx2xlf become easier to create. Also adding a new format should be
as simple as working towards the API exposed in the base class. An unexpected side effect will be the Pootle should
be able to work directly with any base class file (although that will not be the normal Pootle operation)

We have checks in place to ensure the current operation remains correct. However, nothing is perfect and unfortunately
the only way to really expose all bugs is to release this software.

If you discover a bug please report it on Bugzilla or on the Pootle mailing list. If you have the skills please check on
HEAD to see if it is not already fixed and if you regard it as critical discuss on the mailing list backporting the fix
(note some fixes will not be backported because they may be too invasive for the stable branch). If you are a developer
please write a test to expose the bug and a fix if possible.

Duplicate Merging in PO files – merge now the default

We added the --duplicatestyle option to allow duplicate messages to be merged, commented or simply appear
in the PO unmerged. Initially we used the msgid_comments options as the default. This adds a KDE style comment
to all affected messages which created a good balance allowing users to see duplicates in the PO file but still create a
valid PO file.

‘msgid_comments’ was the default for 0.8 (FIXME check), however it seemed to create more confusion then it solved.
Thus we have reverted to using ‘merge’ as the default (this then completely mimics Gettext behaviour).

As Gettext will soon introduce the msgctxt attribute we may revert to using that to manage disambiguation messages
instead of KDE comments. This we feel will put us back at a good balance of usefulness and usability. We will only
release this when msgctxt version of the Gettext tools are released.

.properties files no longer use escaped Unicode

The main use of the .properties converter class is to translate Mozilla files, although .properties files are actually a
Java standard. The old Mozilla way, and still the Java way, of working with .properties files is to escape any Unicode
characters using the \uNNNN convention. Mozilla now allows you to use Unicode in UTF-8 encoding for these files.
Thus in 0.9 of the Toolkit we now output UTF-8 encoded properties files. Issue 193 tracks the status of this and we
hope to add a feature to prop2po to restore the correct Java convention as an option.

Translate Toolkit 0.8

Released on 20 February 2006

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

Translate Toolkit 0.7.1

Released on 24 April 2004

Release notes for this release are still to be recovered, feel free to do some way back searching and create a Pull
Request for this release.

230 Chapter 3. Additional Notes

https://github.com/translate/translate/issues/193

Translate Toolkit Documentation, Release 3.0.0

3.2 History of the Translate Toolkit

This is a short history of the Translate Toolkit. In many ways written so that people who see problems in the toolkit
can understand how it evolved and where it is going.

3.2.1 Conception

The toolkit was developed by David Fraser while working for Translate.org.za. Initially Translate.org.za had focussed
on translating KDE into South Africa languages, this work was PO based. The next project was to translate Mozilla
which used a combination of DTD and .properties files. The Mozilla project used a tool called Mozilla Translator,
which mostly worked although it was not as feature rich as KBabel that was being used to manage PO translations. A
decision was made to create a set of tools that could convert the DTD and .properties files into PO files. The advantage
being that translators would not need to learn new tools, that existing translations could be leveraged and that the
resultant files, being bilingual, would make it easier to upgrade and manage translations.

Thus was born what initially was called the mozpotools.

3.2.2 Growth

The first problem with the tools was that it was possible to break Mozilla translations. This was a combination of
the fact that translators would often translate variables such as &browserName; and that the toolkit had developed a
method of folding labels and accelerators into one PO field. These breakages where presented as broken XML. Thus
was born pofilter which allowed us to check the translations for problems in variables and accelerators. pomerge its
sister allowed us to merge the corrections back into the main. We also developed pocount which allowed us to for the
first time get a real feel of the volume of work required in translating a PO file.

3.2.3 Expansion

Of course once you can convert the convoluted Mozilla translations then you realise you can do anything. A key
addition was the converter for OpenOffice.org but also added where TMX, Qt .ts, txt and OpenOffice.org SXW files.

The key being that files are converted to PO to allow translations and use of the Gettext tools and existing PO files.

3.2.4 Pootle

Initially started as a separate project to allow online translation it was soon realised that the toolkit being file based
gave all the infrastructure to allow Pootle to be a wrapper around the toolkit. So a file based, web translation tool was
created.

3.2.5 WordForge project

In 2006 with funding from the Open Society Institute (OSI) and IDRC the toolkit was adapted to allow many core
changes. The first being to introduce the concept of a base class from which PO and XLIFF storage formats are
derived. This allowed tools to be adapted to allow output to XLIFF or PO files. The tools themselves where adapted to
allow them to work with the core formats XLIFF and PO as well as all base class derived formats. Thus we can count
XLIFF, PO, MO and other formats.

Additional contributions during this phase where the adaptation of Pootle to use XLIFF as well as PO. The creation of
tools to manage translation memory files and glossary files.

3.2. History of the Translate Toolkit 231

http://translate.org.za
http://www.opensocietyfoundations.org/
http://www.idrc.ca/

Translate Toolkit Documentation, Release 3.0.0

The toolkit was also adapted to make dealing with encodings, plural forms, and escaping easier and more consistent
throughout the code. Many but not all of the formats where converted to the base class.

As part of the WordForge project Pootling was created which in the same way that Pootle is a web-based wrapper
around the toolkit so Pootling is a GUI wrapper around the toolkit.

3.2.6 ANLoc project

The African Network for Localisation provided the opportunity for further improvements to the project. We saw the
first official releases of Virtaal and massive improvements to all the translation tools.

Format support improved a lot, with several bilingual file formats now support (Wordfast TM, Qt TS, etc.), and several
monolingual file formats (PHP arrays, video subtitles, Mac OS X strings, etc.).

3.2.7 The Future

The toolkit continues to evolve with clean-up focused in various areas:

• Pulling features out of Pootle that should be in the Toolkit

• Cleaning up storage classes and converters to be XLIFF/PO interchangeable

• Cleaning up the converters to use only base class features and migrating code from the converters to the storage
class

• Adding storage classes as needed

• Optimisation where needed

The toolkit continues to serve as the core for the command line tools and for Pootle. Key new features:

• Process Management

3.3 License

The Translate Toolkit documentation is released under the GNU General Public License (GPL).

232 Chapter 3. Additional Notes

http://africanlocalisation.net
http://virtaal.org
http://www.gnu.org/licenses/gpl.html

CHAPTER 4

API Reference

This part covers any function, class or method included within the Translate Toolkit that you can use to programatically
build new localization tools.

4.1 API

The Translate Toolkit provides several modules for programmers to build their own tools.

4.1.1 Module overview

The following will give you an idea about what each module is capable of.

convert

Code to convert between different storage formats for localizations.

filters

Filters that can be used on translations. . .

lang

Classes that represent languages and provides language-specific information.

All classes inherit from the parent class called common.

The type of data includes:

• Language codes

• Language name

233

Translate Toolkit Documentation, Release 3.0.0

• Plurals

• Punctuation transformation

• etc.

misc

Miscellaneous modules for translate - including modules for backward compatibility with pre-2.3 versions of Python

search

Services for searching and matching of text.

services

translate.services is part of the translate toolkit. It provides network services for interacting with the toolkit

storage

Classes that represent various storage formats for localization.

tools

Code to perform various operations, mostly on po files.

4.1.2 Module list

All the modules included in the Translated Toolkit are listed here.

convert

Code to convert between different storage formats for localizations.

acesskey

functions used to manipulate access keys in strings

class translate.convert.accesskey.UnitMixer(labelsuffixes, accesskeysuffixes)
Helper to mix separately defined labels and accesskeys into one unit.

match_entities(index)
Populates mixedentities from the index.

mix_units(label_unit, accesskey_unit, target_unit)
Mix the given units into the given target_unit if possible.

Might return None if no match is possible.

234 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

translate.convert.accesskey.combine(label, accesskey, accesskey_marker=’&’)
Combine a label and and accesskey to form a label+accesskey string

We place an accesskey marker before the accesskey in the label and this creates a string with the two combined
e.g. “File” + “F” = “&File”

The case of the accesskey is preferred unless no match is found, in which case the alternate case is used.

Parameters

• label (unicode) – a label

• accesskey (unicode char) – The accesskey

Return type unicode or None

Returns label+accesskey string or None if uncombineable

translate.convert.accesskey.extract(string, accesskey_marker=’&’)
Extract the label and accesskey from a label+accesskey string

The function will also try to ignore &entities; which would obviously not contain accesskeys.

Parameters

• string (Unicode) – A string that might contain a label with accesskey marker

• accesskey_marker (Char) – The character that is used to prefix an access key

convert

Handles converting of files between formats (used by translate.convert tools).

class translate.convert.convert.ArchiveConvertOptionParser(formats, usetem-
plates=False, use-
pots=False, descrip-
tion=None, archive-
formats=None)

ConvertOptionParser that can handle recursing into single archive files.

archiveformats maps extension to class. If the extension doesn’t matter, it can be None.

If the extension is only valid for input/output/template, it can be given as (extension, filepurpose).

add_duplicates_option(default=’msgctxt’)
Adds an option to say what to do with duplicate strings.

add_fuzzy_option(default=False)
Adds an option to include / exclude fuzzy translations.

add_multifile_option(default=’single’)
Adds an option to say how to split the po/pot files.

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

add_remove_untranslated_option(default=False)
Adds an option to remove key value from output if it is untranslated.

add_threshold_option(default=None)
Adds an option to output only stores where translation percentage exceeds the threshold.

4.1. API 235

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

filterinputformats(options)
Filters input formats, processing relevant switches in options.

filteroutputoptions(options)
Filters output options, processing relevant switches in options.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getarchiveclass(fileext, filepurpose, isdir=False)
Returns the archiveclass for the given fileext and filepurpose

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

236 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isarchive(fileoption, filepurpose=’input’)
Returns whether the file option is an archive file.

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openarchive(archivefilename, filepurpose, **kwargs)
Creates an archive object for the given file.

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

potifyformat(fileformat)
Converts a .po to a .pot where required.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),

4.1. API 237

Translate Toolkit Documentation, Release 3.0.0

any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Run an invidividual conversion.

recursearchivefiles(options)
Recurse through archive files and convert files.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through archive file / directories and return files to be converted.

recursiveprocess(options)
Recurse through directories and convert files.

run(argv=None)
Parses the command line options and runs the conversion.

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setpotoption()
Sets the -P/--pot option depending on input/output formats etc.

setprogressoptions()
Sets the progress options.

settimestampoption()
Sets -S/--timestamp option.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

238 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

templateexists(options, templatepath)
Returns whether the given template exists. . .

verifyoptions(options)
Verifies that the options are valid (required options are present, etc).

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

class translate.convert.convert.ConvertOptionParser(formats, usetemplates=False,
usepots=False, allowmiss-
ingtemplate=False, descrip-
tion=None)

A specialized Option Parser for convertor tools. . .

add_duplicates_option(default=’msgctxt’)
Adds an option to say what to do with duplicate strings.

add_fuzzy_option(default=False)
Adds an option to include / exclude fuzzy translations.

add_multifile_option(default=’single’)
Adds an option to say how to split the po/pot files.

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

add_remove_untranslated_option(default=False)
Adds an option to remove key value from output if it is untranslated.

add_threshold_option(default=None)
Adds an option to output only stores where translation percentage exceeds the threshold.

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

4.1. API 239

Translate Toolkit Documentation, Release 3.0.0

filterinputformats(options)
Filters input formats, processing relevant switches in options.

filteroutputoptions(options)
Filters output options, processing relevant switches in options.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

240 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

potifyformat(fileformat)
Converts a .po to a .pot where required.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Process an individual file.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
Recurse through directories and process files.

run(argv=None)
Parses the command line options and runs the conversion.

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

4.1. API 241

Translate Toolkit Documentation, Release 3.0.0

setpotoption()
Sets the -P/--pot option depending on input/output formats etc.

setprogressoptions()
Sets the progress options.

settimestampoption()
Sets -S/--timestamp option.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

verifyoptions(options)
Verifies that the options are valid (required options are present, etc).

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

class translate.convert.convert.Replacer(searchstring, replacestring)
An object that knows how to replace strings in files.

doreplace(text)
actually replace the text

searchreplaceinput(inputfile, outputfile, templatefile, **kwargs)
copies the input file to the output file, searching and replacing

searchreplacetemplate(inputfile, outputfile, templatefile, **kwargs)
Copies the template file to the output file, searching and replacing.

translate.convert.convert.copyinput(inputfile, outputfile, templatefile, **kwargs)
Copies the input file to the output file.

translate.convert.convert.copytemplate(inputfile, outputfile, templatefile, **kwargs)
Copies the template file to the output file.

translate.convert.convert.should_output_store(store, threshold)
Check if the percent of translated source words more than or equal to the given threshold.

csv2po

Convert Comma-Separated Value (.csv) files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2po.html for examples and usage
instructions.

242 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2po.html

Translate Toolkit Documentation, Release 3.0.0

translate.convert.csv2po.convertcsv(inputfile, outputfile, templatefile, charset=None, colum-
norder=None, duplicatestyle=’msgctxt’)

reads in inputfile using csvl10n, converts using csv2po, writes to outputfile

class translate.convert.csv2po.csv2po(templatepo=None, charset=None, duplicat-
estyle=’keep’)

a class that takes translations from a .csv file and puts them in a .po file

convertstore(thecsvfile)
converts a csvfile to a pofile, and returns it. uses templatepo if given at construction

convertunit(csvunit)
converts csv unit to po unit

handlecsvunit(csvunit)
handles reintegrating a csv unit into the .po file

makeindex()
makes indexes required for searching. . .

translate.convert.csv2po.replacestrings(source, *pairs)
Use pairs of (original, replacement) to replace text found in source.

Parameters

• source (String) – String to on which pairs of strings are to be replaced

• *pairs (One or more tuples of (original, replacement)) – Strings to
be matched and replaced

Returns String with *pairs of strings replaced

csv2tbx

Convert Comma-Separated Value (.csv) files to a TermBase eXchange (.tbx) glossary file

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2tbx.html for examples and usage
instructions

translate.convert.csv2tbx.convertcsv(inputfile, outputfile, templatefile, charset=None, colum-
norder=None)

reads in inputfile using csvl10n, converts using csv2tbx, writes to outputfile

class translate.convert.csv2tbx.csv2tbx(charset=None)
a class that takes translations from a .csv file and puts them in a .tbx file

convertfile(csvfile)
converts a csvfile to a tbxfile, and returns it. uses templatepo if given at construction

dtd2po

Convert a Mozilla .dtd UTF-8 localization format to a Gettext PO localization file.

Uses the po and dtd modules, and the dtd2po convertor class which is in this module You can convert back to .dtd
using po2dtd.py.

translate.convert.dtd2po.convertdtd(inputfile, outputfile, templatefile, pot=False, duplicat-
estyle=’msgctxt’)

reads in inputfile and templatefile using dtd, converts using dtd2po, writes to outputfile

4.1. API 243

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2tbx.html

Translate Toolkit Documentation, Release 3.0.0

translate.convert.dtd2po.is_css_entity(entity)
Says if the given entity is likely to contain CSS that should not be translated.

factory

Factory methods to convert supported input files to supported translatable files.

exception translate.convert.factory.UnknownExtensionError(afile)

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception translate.convert.factory.UnsupportedConversionError(in_ext=None,
out_ext=None,
templ_ext=None)

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

html2po

Convert HTML files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html for examples and us-
age instructions.

translate.convert.html2po.converthtml(inputfile, outputfile, templates, includeun-
tagged=False, pot=False, duplicatestyle=’msgctxt’,
keepcomments=False)

reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

ical2po

Convert iCalendar files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ical2po.html for examples and usage
instructions.

class translate.convert.ical2po.ical2po(input_file, output_file, template_file=None,
blank_msgstr=False, duplicate_style=’msgctxt’)

Convert one or two iCalendar files to a single PO file.

SourceStoreClass
alias of translate.storage.ical.icalfile

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

244 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ical2po.html

Translate Toolkit Documentation, Release 3.0.0

merge_stores()
Convert two source format files to a target format file.

run()
Run the converter.

translate.convert.ical2po.run_converter(input_file, output_file, template_file=None,
pot=False, duplicatestyle=’msgctxt’)

Wrapper around converter.

ini2po

Convert .ini files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ini2po.html for examples and usage
instructions.

class translate.convert.ini2po.ini2po(input_file, output_file, template_file=None,
blank_msgstr=False, duplicate_style=’msgctxt’,
dialect=’default’)

Convert one or two INI files to a single PO file.

SourceStoreClass
alias of translate.storage.ini.inifile

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

merge_stores()
Convert two source format files to a target format file.

run()
Run the converter.

translate.convert.ini2po.run_converter(input_file, output_file, template_file=None,
pot=False, duplicatestyle=’msgctxt’, di-
alect=’default’)

Wrapper around converter.

json2po

Convert JSON files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/json2po.html for examples and us-
age instructions.

translate.convert.json2po.convertjson(input_file, output_file, template_file, pot=False, dupli-
catestyle=’msgctxt’, dialect=’default’, filter=None)

Reads in input_file using jsonl10n, converts using json2po, writes to output_file.

4.1. API 245

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ini2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/json2po.html

Translate Toolkit Documentation, Release 3.0.0

class translate.convert.json2po.json2po
Convert a JSON file to a PO file

convert_store(input_store, duplicatestyle=’msgctxt’)
Converts a JSON file to a PO file

convert_unit(input_unit, commenttype)
Converts a JSON unit to a PO unit

Returns None if empty or not for translation

merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle=’msgctxt’)
Converts two JSON files to a PO file

moz2po

Convert Mozilla .dtd and .properties files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/moz2po.html for examples and us-
age instructions.

mozfunny2prop

Converts additional Mozilla files to properties files.

translate.convert.mozfunny2prop.inc2po(inputfile, outputfile, templatefile, encoding=None,
pot=False, duplicatestyle=’msgctxt’)

wraps prop2po but converts input/template files to properties first

translate.convert.mozfunny2prop.inc2prop(lines)
convert a .inc file with #defines in it to a properties file

translate.convert.mozfunny2prop.it2po(inputfile, outputfile, templatefile, encoding=’cp1252’,
pot=False, duplicatestyle=’msgctxt’)

wraps prop2po but converts input/template files to properties first

translate.convert.mozfunny2prop.it2prop(lines, encoding=’cp1252’)
convert a pseudo-properties .it file to a conventional properties file

mozlang2po

Convert Mozilla .lang files to Gettext PO localization files.

class translate.convert.mozlang2po.lang2po(input_file, output_file, tem-
plate_file=None, blank_msgstr=False,
duplicate_style=’msgctxt’, encoding=’utf-
8’)

Convert one Mozilla .lang file to a single PO file.

SourceStoreClass
alias of translate.storage.mozilla_lang.LangStore

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

246 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/moz2po.html

Translate Toolkit Documentation, Release 3.0.0

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

merge_stores()
Convert two source format files to a target format file.

run()
Run the converter.

translate.convert.mozlang2po.run_converter(input_file, output_file, template_file=None,
pot=False, duplicatestyle=’msgctxt’,
encoding=’utf-8’)

Wrapper around converter.

odf2xliff

Convert OpenDocument (ODF) files to XLIFF localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/odf2xliff.html for examples and us-
age instructions.

translate.convert.odf2xliff.convertodf(inputfile, outputfile, templates)
Convert an ODF package to XLIFF.

oo2po

Convert an OpenOffice.org (SDF) localization file to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html for examples and usage
instructions.

translate.convert.oo2po.convertoo(inputfile, outputfile, templates, pot=False, source-
language=None, targetlanguage=None, duplicat-
estyle=’msgid_comment’, multifilestyle=’single’)

reads in stdin using inputstore class, converts using convertorclass, writes to stdout

translate.convert.oo2po.verifyoptions(options)
verifies the commandline options

oo2xliff

Convert an OpenOffice.org (SDF) localization file to XLIFF localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html for examples and usage
instructions.

translate.convert.oo2xliff.convertoo(inputfile, outputfile, templates, pot=False, source-
language=None, targetlanguage=None, duplicat-
estyle=’msgctxt’, multifilestyle=’single’)

reads in stdin using inputstore class, converts using convertorclass, writes to stdout

translate.convert.oo2xliff.verifyoptions(options)
verifies the commandline options

4.1. API 247

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/odf2xliff.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html

Translate Toolkit Documentation, Release 3.0.0

php2po

Convert PHP localization files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/php2po.html for examples and usage
instructions.

class translate.convert.php2po.php2po(input_file, output_file, template_file=None,
blank_msgstr=False, duplicate_style=’msgctxt’)

Convert one or two PHP files to a single PO file.

SourceStoreClass
alias of translate.storage.php.phpfile

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

merge_stores()
Convert two source format files to a target format file.

run()
Run the converter.

translate.convert.php2po.run_converter(input_file, output_file, template_file=None,
pot=False, duplicatestyle=’msgctxt’)

Wrapper around converter.

po2csv

Convert Gettext PO localization files to Comma-Separated Value (.csv) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2po.html for examples and usage
instructions.

translate.convert.po2csv.convertcsv(inputfile, outputfile, templatefile, columnorder=None)
reads in inputfile using po, converts using po2csv, writes to outputfile

po2dtd

Converts a Gettext PO file to a UTF-8 encoded Mozilla .dtd file.

translate.convert.po2dtd.applytranslation(entity, dtdunit, inputunit, mixedentities)
applies the translation for entity in the po unit to the dtd unit

class translate.convert.po2dtd.po2dtd(android=False, remove_untranslated=False)
this is a convertor class that creates a new dtd file based on a po file without a template

class translate.convert.po2dtd.redtd(dtdfile, android=False, remove_untranslated=False)
this is a convertor class that creates a new dtd based on a template using translations in a po

248 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/php2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/csv2po.html

Translate Toolkit Documentation, Release 3.0.0

po2html

Convert Gettext PO localization files to HTML files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html for examples and us-
age instructions.

translate.convert.po2html.converthtml(inputfile, outputfile, templatefile, includefuzzy=False,
outputthreshold=None)

reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

class translate.convert.po2html.po2html
po2html can take a po file and generate html. best to give it a template file otherwise will just concat msgstrs

mergestore(inputstore, templatetext, includefuzzy)
converts a file to .po format

po2ical

Convert Gettext PO localization files to iCalendar files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ical2po.html for examples and usage
instructions.

class translate.convert.po2ical.po2ical(input_file, output_file, template_file=None, in-
clude_fuzzy=False, output_threshold=None)

Convert a PO file and a template iCalendar file to a iCalendar file.

SourceStoreClass
alias of translate.storage.pypo.pofile

TargetStoreClass
alias of translate.storage.ical.icalfile

TargetUnitClass
alias of translate.storage.ical.icalunit

merge_stores()
Convert a source file to a target file using a template file.

Source file is in source format, while target and template files use target format.

run()
Run the converter.

translate.convert.po2ical.run_converter(inputfile, outputfile, templatefile=None, include-
fuzzy=False, outputthreshold=None)

Wrapper around converter.

po2ini

Convert Gettext PO localization files to .ini files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ini2po.html for examples and usage
instructions.

class translate.convert.po2ini.po2ini(input_file, output_file, template_file=None, in-
clude_fuzzy=False, output_threshold=None, di-
alect=’default’)

Convert a PO file and a template INI file to a INI file.

4.1. API 249

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/html2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ical2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ini2po.html

Translate Toolkit Documentation, Release 3.0.0

SourceStoreClass
alias of translate.storage.pypo.pofile

TargetStoreClass
alias of translate.storage.ini.inifile

TargetUnitClass
alias of translate.storage.ini.iniunit

merge_stores()
Convert a source file to a target file using a template file.

Source file is in source format, while target and template files use target format.

run()
Run the converter.

translate.convert.po2ini.run_converter(inputfile, outputfile, templatefile=None, include-
fuzzy=False, dialect=’default’, outputthresh-
old=None)

Wrapper around converter.

po2json

Convert Gettext PO localization files to JSON files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/json2po.html for examples and us-
age instructions.

po2mozlang

Convert Gettext PO localization files to Mozilla .lang files.

class translate.convert.po2mozlang.po2lang(input_file, output_file, template_file=None,
include_fuzzy=False, output_threshold=None,
mark_active=True)

Convert a PO file to a Mozilla .lang file.

SourceStoreClass
alias of translate.storage.pypo.pofile

TargetStoreClass
alias of translate.storage.mozilla_lang.LangStore

TargetUnitClass
alias of translate.storage.mozilla_lang.LangUnit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

run()
Run the converter.

translate.convert.po2mozlang.run_converter(inputfile, outputfile, templatefile=None, in-
cludefuzzy=False, mark_active=True, output-
threshold=None)

Wrapper around converter.

250 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/json2po.html

Translate Toolkit Documentation, Release 3.0.0

po2moz

Convert Gettext PO localization files to Mozilla .dtd and .properties files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/moz2po.html for examples and us-
age instructions.

class translate.convert.po2moz.MozConvertOptionParser(formats, usetemplates=False,
usepots=False, descrip-
tion=None)

add_duplicates_option(default=’msgctxt’)
Adds an option to say what to do with duplicate strings.

add_fuzzy_option(default=False)
Adds an option to include / exclude fuzzy translations.

add_multifile_option(default=’single’)
Adds an option to say how to split the po/pot files.

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

add_remove_untranslated_option(default=False)
Adds an option to remove key value from output if it is untranslated.

add_threshold_option(default=None)
Adds an option to output only stores where translation percentage exceeds the threshold.

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

filterinputformats(options)
Filters input formats, processing relevant switches in options.

4.1. API 251

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/moz2po.html

Translate Toolkit Documentation, Release 3.0.0

filteroutputoptions(options)
Filters output options, processing relevant switches in options.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

252 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

potifyformat(fileformat)
Converts a .po to a .pot where required.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Process an individual file.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
recurse through directories and convert files

run(argv=None)
Parses the command line options and runs the conversion.

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setpotoption()
Sets the -P/--pot option depending on input/output formats etc.

4.1. API 253

Translate Toolkit Documentation, Release 3.0.0

setprogressoptions()
Sets the progress options.

settimestampoption()
Sets -S/--timestamp option.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
splits a inputpath into name and extension

Special adaptation to handle po2moz case where extensions are e.g. properties.po

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

verifyoptions(options)
Verifies that the options are valid (required options are present, etc).

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

po2oo

Convert Gettext PO localization files to an OpenOffice.org (SDF) localization file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html for examples and usage
instructions.

po2php

Convert Gettext PO localization files to PHP localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/php2po.html for examples and usage
instructions.

po2prop

Convert Gettext PO localization files to Java/Mozilla .properties files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html for examples and us-
age instructions.

translate.convert.po2prop.applytranslation(key, propunit, inunit, mixedkeys)
applies the translation for key in the po unit to the prop unit

254 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/php2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html

Translate Toolkit Documentation, Release 3.0.0

translate.convert.po2prop.convertmozillaprop(inputfile, outputfile, templatefile, include-
fuzzy=False, remove_untranslated=False,
outputthreshold=None)

Mozilla specific convertor function

translate.convert.po2prop.convertstrings(inputfile, outputfile, templatefile, person-
ality=’strings’, includefuzzy=False, en-
coding=None, outputthreshold=None, re-
move_untranslated=False)

.strings specific convertor function

po2rc

Convert Gettext PO localization files back to Windows Resource (.rc) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/rc2po.html for examples and usage
instructions.

translate.convert.po2rc.is_iterable_but_not_string(o)
Check if object is iterable but not a string.

po2resx

Convert Gettext PO localisation files to .Net Resource (.resx) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/resx2po.html for examples and us-
age instructions.

po2sub

Convert Gettext PO localization files to subtitle files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/sub2po.html for examples and usage
instructions.

po2symb

Convert Gettext PO localization files to Symbian translation files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/symb2po.html for examples and us-
age instructions.

po2tiki

Convert Gettext PO files to TikiWiki’s language.php files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tiki2po.html for examples and usage
instructions.

class translate.convert.po2tiki.po2tiki(input_file, output_file, template_file=None)
Convert a PO file and a template TikiWiki file to a TikiWiki file.

SourceStoreClass
alias of translate.storage.pypo.pofile

4.1. API 255

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/rc2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/resx2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/sub2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/symb2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tiki2po.html

Translate Toolkit Documentation, Release 3.0.0

TargetStoreClass
alias of translate.storage.tiki.TikiStore

TargetUnitClass
alias of translate.storage.tiki.TikiUnit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

run()
Run the converter.

translate.convert.po2tiki.run_converter(inputfile, outputfile, template=None)
Wrapper around converter.

po2tmx

Convert Gettext PO localization files to a TMX (Translation Memory eXchange) file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/po2tmx.html for examples and usage
instructions.

class translate.convert.po2tmx.TmxOptionParser(formats, usetemplates=False, use-
pots=False, description=None, archive-
formats=None)

add_duplicates_option(default=’msgctxt’)
Adds an option to say what to do with duplicate strings.

add_fuzzy_option(default=False)
Adds an option to include / exclude fuzzy translations.

add_multifile_option(default=’single’)
Adds an option to say how to split the po/pot files.

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

add_remove_untranslated_option(default=False)
Adds an option to remove key value from output if it is untranslated.

add_threshold_option(default=None)
Adds an option to output only stores where translation percentage exceeds the threshold.

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

256 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/po2tmx.html

Translate Toolkit Documentation, Release 3.0.0

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

filterinputformats(options)
Filters input formats, processing relevant switches in options.

filteroutputoptions(options)
Filters output options, processing relevant switches in options.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getarchiveclass(fileext, filepurpose, isdir=False)
Returns the archiveclass for the given fileext and filepurpose

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

4.1. API 257

Translate Toolkit Documentation, Release 3.0.0

isarchive(fileoption, filepurpose=’input’)
Returns whether the file option is an archive file.

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openarchive(archivefilename, filepurpose, **kwargs)
Creates an archive object for the given file.

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

potifyformat(fileformat)
Converts a .po to a .pot where required.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Run an invidividual conversion.

recursearchivefiles(options)
Recurse through archive files and convert files.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

258 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

recurseinputfiles(options)
Recurse through archive file / directories and return files to be converted.

recursiveprocess(options)
Recurse through directories and convert files.

run(argv=None)
Parses the command line options and runs the conversion.

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setpotoption()
Sets the -P/--pot option depending on input/output formats etc.

setprogressoptions()
Sets the progress options.

settimestampoption()
Sets -S/--timestamp option.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

verifyoptions(options)
Verifies that the options are valid (required options are present, etc).

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

4.1. API 259

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

translate.convert.po2tmx.convertpo(inputfile, outputfile, templatefile, sourcelanguage=’en’,
targetlanguage=None, comment=None)

reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

po2ts

Convert Gettext PO localization files to Qt Linguist (.ts) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ts2po.html for examples and usage
instructions.

translate.convert.po2ts.convertpo(inputfile, outputfile, templatefile, context)
reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

po2txt

Convert Gettext PO localization files to plain text (.txt) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/txt2po.html for examples and usage
instructions.

class translate.convert.po2txt.po2txt(input_file, output_file, template_file=None, in-
clude_fuzzy=False, output_threshold=None,
encoding=’utf-8’, wrap=None)

po2txt can take a po file and generate txt.

best to give it a template file otherwise will just concat msgstrs

convert_store()
Convert a source file to a target file.

merge_stores()
Convert a source file to a target file using a template file.

Source file is in source format, while target and template files use target format.

run()
Run the converter.

wrapmessage(message)
rewraps text as required

translate.convert.po2txt.run_converter(inputfile, outputfile, templatefile=None, wrap=None,
includefuzzy=False, encoding=’utf-8’, outputthresh-
old=None)

Wrapper around converter.

po2web2py

Convert GNU/gettext PO files to web2py translation dictionaries (.py).

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/web2py2po.html for examples and
usage instructions.

260 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ts2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/txt2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/web2py2po.html

Translate Toolkit Documentation, Release 3.0.0

po2wordfast

Convert Gettext PO localization files to a Wordfast translation memory file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/po2wordfast.html for examples and
usage instructions.

class translate.convert.po2wordfast.WfOptionParser(formats, usetemplates=False,
usepots=False, description=None,
archiveformats=None)

add_duplicates_option(default=’msgctxt’)
Adds an option to say what to do with duplicate strings.

add_fuzzy_option(default=False)
Adds an option to include / exclude fuzzy translations.

add_multifile_option(default=’single’)
Adds an option to say how to split the po/pot files.

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

add_remove_untranslated_option(default=False)
Adds an option to remove key value from output if it is untranslated.

add_threshold_option(default=None)
Adds an option to output only stores where translation percentage exceeds the threshold.

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

filterinputformats(options)
Filters input formats, processing relevant switches in options.

4.1. API 261

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/po2wordfast.html

Translate Toolkit Documentation, Release 3.0.0

filteroutputoptions(options)
Filters output options, processing relevant switches in options.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getarchiveclass(fileext, filepurpose, isdir=False)
Returns the archiveclass for the given fileext and filepurpose

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isarchive(fileoption, filepurpose=’input’)
Returns whether the file option is an archive file.

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openarchive(archivefilename, filepurpose, **kwargs)
Creates an archive object for the given file.

openinputfile(options, fullinputpath)
Opens the input file.

262 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

potifyformat(fileformat)
Converts a .po to a .pot where required.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Run an invidividual conversion.

recursearchivefiles(options)
Recurse through archive files and convert files.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through archive file / directories and return files to be converted.

recursiveprocess(options)
Recurse through directories and convert files.

run(argv=None)
Parses the command line options and runs the conversion.

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

4.1. API 263

Translate Toolkit Documentation, Release 3.0.0

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setpotoption()
Sets the -P/--pot option depending on input/output formats etc.

setprogressoptions()
Sets the progress options.

settimestampoption()
Sets -S/--timestamp option.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

verifyoptions(options)
Verifies that the options are valid (required options are present, etc).

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

translate.convert.po2wordfast.convertpo(inputfile, outputfile, templatefile, sourcelan-
guage=’en’, targetlanguage=None)

reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

po2xliff

Convert Gettext PO localization files to XLIFF localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/xliff2po.html for examples and us-
age instructions.

translate.convert.po2xliff.convertpo(inputfile, outputfile, templatefile)
reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

po2yaml

Convert Gettext PO localization files to YAML files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/yaml2po.html for examples and us-
age instructions.

264 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/xliff2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/yaml2po.html

Translate Toolkit Documentation, Release 3.0.0

class translate.convert.po2yaml.po2yaml(input_file, output_file, template_file=None, in-
clude_fuzzy=False, output_threshold=None)

Convert a PO file and a template YAML file to a YAML file.

SourceStoreClass
alias of translate.storage.pypo.pofile

TargetStoreClass
alias of translate.storage.yaml.YAMLFile

TargetUnitClass
alias of translate.storage.yaml.YAMLUnit

convert_unit(unit)
Convert a source format unit to a target format unit.

merge_stores()
Convert a source file to a target file using a template file.

Source file is in source format, while target and template files use target format.

run()
Run the converter.

translate.convert.po2yaml.run_converter(inputfile, outputfile, templatefile=None, include-
fuzzy=False, outputthreshold=None)

Wrapper around converter.

pot2po

Convert template files (like .pot or template .xlf files) to translation files, preserving existing translations.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html for examples and usage
instructions.

translate.convert.pot2po.convert_stores(input_store, template_store, temp_store=None,
tm=None, min_similarity=75, fuzzymatch-
ing=True, **kwargs)

Actual conversion function, works on stores not files, returns a properly initialized pretranslated output store,
with structure based on input_store, metadata based on template_store, migrates old translations from tem-
plate_store and pretranslating from TM.

translate.convert.pot2po.convertpot(input_file, output_file, template_file, tm=None,
min_similarity=75, fuzzymatching=True, classes=None,
classes_str=None, **kwargs)

Main conversion function.

prop2mozfunny

Converts properties files to additional Mozilla format files.

translate.convert.prop2mozfunny.po2inc(inputfile, outputfile, templatefile, encoding=None,
includefuzzy=False, remove_untranslated=False,
outputthreshold=None)

wraps po2prop but converts outputfile to properties first

translate.convert.prop2mozfunny.po2ini(inputfile, outputfile, templatefile, encoding=’UTF-
8’, includefuzzy=False, remove_untranslated=False,
outputthreshold=None)

wraps po2prop but converts outputfile to properties first using UTF-8 encoding

4.1. API 265

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pot2po.html

Translate Toolkit Documentation, Release 3.0.0

translate.convert.prop2mozfunny.po2it(inputfile, outputfile, templatefile, encoding=’cp1252’,
includefuzzy=False, remove_untranslated=False, out-
putthreshold=None)

wraps po2prop but converts outputfile to properties first

translate.convert.prop2mozfunny.prop2inc(pf)
convert a properties file back to a .inc file with #defines in it

translate.convert.prop2mozfunny.prop2it(pf)
convert a properties file back to a pseudo-properties .it file

prop2po

Convert Java/Mozilla .properties files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html for examples and us-
age instructions.

exception translate.convert.prop2po.DiscardUnit

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

translate.convert.prop2po.convertmozillaprop(inputfile, outputfile, templatefile, pot=False,
duplicatestyle=’msgctxt’)

Mozilla specific convertor function

translate.convert.prop2po.convertprop(inputfile, outputfile, templatefile, personality=’java’,
pot=False, duplicatestyle=’msgctxt’, encod-
ing=None)

reads in inputfile using properties, converts using prop2po, writes to outputfile

translate.convert.prop2po.convertstrings(inputfile, outputfile, templatefile, per-
sonality=’strings’, pot=False, duplicat-
estyle=’msgctxt’, encoding=None)

.strings specific convertor function

class translate.convert.prop2po.prop2po(personality=’java’, blankmsgstr=False, duplicat-
estyle=’msgctxt’)

convert a .properties file to a .po file for handling the translation.

convertpropunit(store, unit, commenttype, mixbucket=’properties’)
Converts a unit from store to a po unit, keeping track of mixed names along the way.

mixbucket can be specified to indicate if the given unit is part of the template or the translated file.

convertstore(thepropfile)
converts a .properties file to a .po file. . .

convertunit(propunit, commenttype)
Converts a .properties unit to a .po unit. Returns None if empty or not for translation.

fold_gaia_plurals(postore)
Fold the multiple plural units of a gaia file into a gettext plural.

fold_gwt_plurals(postore)
Fold the multiple plural units of a gwt file into a gettext plural.

mergestore(origpropfile, translatedpropfile)
converts two .properties files to a .po file. . .

266 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/prop2po.html

Translate Toolkit Documentation, Release 3.0.0

rc2po

Convert Windows RC files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/rc2po.html for examples and usage
instructions.

translate.convert.rc2po.convertrc(input_file, output_file, template_file, pot=False, dupli-
catestyle=’msgctxt’, charset=None, lang=None, sub-
lang=None)

reads in input_file using rc, converts using rc2po, writes to output_file

class translate.convert.rc2po.rc2po
Convert a .rc file to a .po file for handling the translation.

convert_store(input_store, duplicatestyle=’msgctxt’)
converts a .rc file to a .po file. . .

convert_unit(input_unit, commenttype)
Converts a .rc unit to a .po unit. Returns None if empty or not for translation.

merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle=’msgctxt’)
converts two .rc files to a .po file. . .

resx2po

Convert .Net Resource (.resx) to Gettext PO localisation files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/resx2po.html for examples and us-
age instructions.

class translate.convert.resx2po.resx2po
Convert a RESX file to a PO file for handling translation

convert_store(input_store, duplicatestyle=’msgctxt’)
Converts a RESX file to a PO file

convert_unit(input_unit, commenttype)
Converts a RESX unit to a PO unit @return: None if empty or not for translation

merge_store(template_store, input_store, blankmsgstr=False, duplicatestyle=’msgctxt’)
Converts two RESX files to a PO file

sub2po

Convert subtitle files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/sub2po.html for examples and usage
instructions.

translate.convert.sub2po.convert_store(input_store, duplicatestyle=’msgctxt’)
converts a subtitle file to a .po file. . .

translate.convert.sub2po.convert_unit(input_unit, commenttype)
Converts a subtitle unit to a .po unit. Returns None if empty or not for translation.

translate.convert.sub2po.convertsub(input_file, output_file, template_file=None, pot=False,
duplicatestyle=’msgctxt’)

Reads in input_file using translate.subtitles, converts using sub2po, writes to output_file.

4.1. API 267

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/rc2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/resx2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/sub2po.html

Translate Toolkit Documentation, Release 3.0.0

translate.convert.sub2po.merge_store(template_store, input_store, blankmsgstr=False, dupli-
catestyle=’msgctxt’)

converts two subtitle files to a .po file. . .

symb2po

Convert Symbian localisation files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/symb2po.html for examples and us-
age instructions.

tiki2po

Convert TikiWiki’s language.php files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tiki2po.html for examples and usage
instructions.

translate.convert.tiki2po.run_converter(input_file, output_file, template_file=None, in-
cludeunused=False)

Wrapper around converter.

class translate.convert.tiki2po.tiki2po(input_file, output_file, template_file=None, in-
clude_unused=False)

Convert one or two TikiWiki’s language.php files to a single PO file.

SourceStoreClass
alias of translate.storage.tiki.TikiStore

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

run()
Run the converter.

ts2po

Convert Qt Linguist (.ts) files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ts2po.html for examples and usage
instructions.

translate.convert.ts2po.convertts(inputfile, outputfile, templates, pot=False, duplicat-
estyle=’msgctxt’)

reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

268 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/symb2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tiki2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/ts2po.html

Translate Toolkit Documentation, Release 3.0.0

txt2po

Convert plain text (.txt) files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/txt2po.html for examples and usage
instructions.

translate.convert.txt2po.run_converter(input_file, output_file, template_file=None, duplicat-
estyle=’msgctxt’, encoding=’utf-8’, flavour=None,
no_segmentation=False)

Wrapper around converter.

class translate.convert.txt2po.txt2po(input_file, output_file, template_file=None,
duplicate_style=’msgctxt’, encoding=’utf-8’,
flavour=None, no_segmentation=False)

Convert one plain text (.txt) file to a single PO file.

SourceStoreClass
alias of translate.storage.txt.TxtFile

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

convert_store()
Convert a single source format file to a target format file.

merge_stores()
Convert two source format files to a target format file.

run()
Run the converter.

web2py2po

Convert web2py translation dictionaries (.py) to GNU/gettext PO files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/web2py2po.html for examples and
usage instructions.

xliff2odf

Convert XLIFF translation files to OpenDocument (ODF) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/odf2xliff.html for examples and us-
age instructions.

translate.convert.xliff2odf.convertxliff(input_file, output_file, template)
Create a translated ODF using an ODF template and a XLIFF file.

translate.convert.xliff2odf.write_odf(template, output_file, dom_trees)
Write the translated ODF package.

The resulting ODF package is a copy of the template ODF package, with the translatable files replaced by their
translated versions.

4.1. API 269

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/txt2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/web2py2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/odf2xliff.html

Translate Toolkit Documentation, Release 3.0.0

xliff2oo

Convert XLIFF localization files to an OpenOffice.org (SDF) localization file.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html for examples and usage
instructions.

xliff2po

Convert XLIFF localization files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/xliff2po.html for examples and us-
age instructions.

translate.convert.xliff2po.convertxliff(inputfile, outputfile, templates, duplicat-
estyle=’msgctxt’)

reads in stdin using fromfileclass, converts using convertorclass, writes to stdout

yaml2po

Convert YAML files to Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/yaml2po.html for examples and us-
age instructions.

translate.convert.yaml2po.run_converter(input_file, output_file, template_file=None,
pot=False, duplicatestyle=’msgctxt’)

Wrapper around converter.

class translate.convert.yaml2po.yaml2po(input_file, output_file, template_file=None,
blank_msgstr=False, duplicate_style=’msgctxt’)

Convert one or two YAML files to a single PO file.

SourceStoreClass
alias of translate.storage.yaml.YAMLFile

TargetStoreClass
alias of translate.storage.pypo.pofile

TargetUnitClass
alias of translate.storage.pypo.pounit

convert_store()
Convert a single source format file to a target format file.

convert_unit(unit)
Convert a source format unit to a target format unit.

merge_stores()
Convert two source format files to a target format file.

run()
Run the converter.

filters

Filters that can be used on translations. . .

270 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/oo2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/xliff2po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/yaml2po.html

Translate Toolkit Documentation, Release 3.0.0

autocorrect

A set of autocorrect functions that fix common punctuation and space problems automatically

translate.filters.autocorrect.correct(source, target)
Runs a set of easy and automatic corrections

Current corrections include:

• Ellipses - align target to use source form of ellipses (either three dots or the Unicode ellipses charac-
ters)

• Missing whitespace and start or end of the target

• Missing punction (.:?) at the end of the target

checks

This is a set of validation checks that can be performed on translation units.

Derivatives of UnitChecker (like StandardUnitChecker) check translation units, and derivatives of TranslationChecker
(like StandardChecker) check (source, target) translation pairs.

When adding a new test here, please document and explain their behaviour on the pofilter tests page.

class translate.filters.checks.CCLicenseChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

4.1. API 271

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

272 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

4.1. API 273

Translate Toolkit Documentation, Release 3.0.0

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

274 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

4.1. API 275

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

276 Chapter 4. API Reference

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.CheckerConfig(targetlanguage=None, accelmark-
ers=None, varmatches=None, notranslate-
words=None, musttranslatewords=None,
validchars=None, punctuation=None,
endpunctuation=None, ignoretags=None,
canchangetags=None, criticaltests=None,
credit_sources=None)

Object representing the configuration of a checker.

update(otherconfig)
Combines the info in otherconfig into this config object.

updatetargetlanguage(langcode)
Updates the target language in the config to the given target language and sets its script.

updatevalidchars(validchars)
Updates the map that eliminates valid characters.

class translate.filters.checks.DrupalChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

4.1. API 277

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

278 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

4.1. API 279

Translate Toolkit Documentation, Release 3.0.0

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

280 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

4.1. API 281

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

282 Chapter 4. API Reference

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

exception translate.filters.checks.FilterFailure(messages)
This exception signals that a Filter didn’t pass, and gives an explanation or a comment.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class translate.filters.checks.GnomeChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

4.1. API 283

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

284 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

gconf(str1, str2)
Checks if we have any gconf config settings translated.

Gconf settings should not be translated so this check checks that gconf settings such as “name” or “modi-
fication_date” are not translated in the translation. It allows you to change the surrounding quotes but will
ensure that the setting values remain untranslated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

4.1. API 285

Translate Toolkit Documentation, Release 3.0.0

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

286 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

4.1. API 287

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-

288 Chapter 4. API Reference

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.IOSChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

4.1. API 289

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

290 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally

4.1. API 291

Translate Toolkit Documentation, Release 3.0.0

they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

292 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

4.1. API 293

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.KdeChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

294 Chapter 4. API Reference

http://your_server.com/filename.html
http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

4.1. API 295

Translate Toolkit Documentation, Release 3.0.0

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

296 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

4.1. API 297

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

298 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

4.1. API 299

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/
http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.L20nChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

For Mozilla we lower the severity to cosmetic, and for some languages it also ensures accelerators are
absent in the target string since some languages do not use accelerators, for example Indic languages.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

300 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

dialogsizes(str1, str2)
Checks that dialog sizes are not translated.

This is a Mozilla specific test. Mozilla uses a language called XUL to define dialogues and screens. This
can make use of CSS to specify properties of the dialogue. These properties include things such as the
width and height of the box. The size might need to be changed if the dialogue size changes due to longer
translations. Thus translators can change these settings. But you are only meant to change the number not
translate the words ‘width’ or ‘height’. This check capture instances where these are translated. It will also
catch other types of errors in these units.

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

4.1. API 301

Translate Toolkit Documentation, Release 3.0.0

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

302 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks that numbers are not translated.

Special handling for Mozilla to ignore entries that are dialog sizes.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

4.1. API 303

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have

304 Chapter 4. API Reference

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

Special handling for Mozilla to ignore entries that are dialog sizes.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

4.1. API 305

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.LibreOfficeChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

306 Chapter 4. API Reference

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

4.1. API 307

Translate Toolkit Documentation, Release 3.0.0

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

308 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Not used in LibreOffice

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

4.1. API 309

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

310 Chapter 4. API Reference

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

validxml(str1, str2)
Check that all XML/HTML open/close tags has close/open pair in the translation.

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

4.1. API 311

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.MinimalChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

312 Chapter 4. API Reference

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

4.1. API 313

Translate Toolkit Documentation, Release 3.0.0

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally

314 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

4.1. API 315

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

316 Chapter 4. API Reference

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.MozillaChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

For Mozilla we lower the severity to cosmetic, and for some languages it also ensures accelerators are
absent in the target string since some languages do not use accelerators, for example Indic languages.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

4.1. API 317

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

dialogsizes(str1, str2)
Checks that dialog sizes are not translated.

This is a Mozilla specific test. Mozilla uses a language called XUL to define dialogues and screens. This
can make use of CSS to specify properties of the dialogue. These properties include things such as the
width and height of the box. The size might need to be changed if the dialogue size changes due to longer
translations. Thus translators can change these settings. But you are only meant to change the number not
translate the words ‘width’ or ‘height’. This check capture instances where these are translated. It will also
catch other types of errors in these units.

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

318 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

4.1. API 319

Translate Toolkit Documentation, Release 3.0.0

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks that numbers are not translated.

Special handling for Mozilla to ignore entries that are dialog sizes.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

320 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

4.1. API 321

Translate Toolkit Documentation, Release 3.0.0

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

Special handling for Mozilla to ignore entries that are dialog sizes.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration

322 Chapter 4. API Reference

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/
http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.OpenOfficeChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

4.1. API 323

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

324 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

4.1. API 325

Translate Toolkit Documentation, Release 3.0.0

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

326 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

4.1. API 327

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

328 Chapter 4. API Reference

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.ReducedChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

4.1. API 329

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

330 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

4.1. API 331

Translate Toolkit Documentation, Release 3.0.0

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

332 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

4.1. API 333

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

exception translate.filters.checks.SeriousFilterFailure(messages)
This exception signals that a Filter didn’t pass, and the bad translation might break an application (so the string
will be marked fuzzy)

334 Chapter 4. API Reference

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class translate.filters.checks.StandardChecker(checkerconfig=None, exclude-
filters=None, limitfilters=None, er-
rorhandler=None)

The basic test suite for source -> target translations.

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

4.1. API 335

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

336 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally

4.1. API 337

Translate Toolkit Documentation, Release 3.0.0

they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

338 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

4.1. API 339

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.StandardUnitChecker(checkerconfig=None, exclude-
filters=None, limitfilters=None,
errorhandler=None)

The standard checks for common checks on translation units.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

340 Chapter 4. API Reference

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

hassuggestion(unit)
Checks if there is at least one suggested translation for this unit.

If a message has a suggestion (an alternate translation stored in alt-trans units in XLIFF and .pending files
in PO) then these will be extracted. This is used by Pootle and is probably only useful in pofilter when
using XLIFF files.

isfuzzy(unit)
Check if the unit has been marked fuzzy.

If a message is marked fuzzy in the PO file then it is extracted. Note this is different from --fuzzy and
--nofuzzy options which specify whether tests should be performed against messages marked fuzzy.

isreview(unit)
Check if the unit has been marked review.

If you have made use of the ‘review’ flags in your translations:

(review) reason for review
(pofilter) testname: explanation for translator

Then if a message is marked for review in the PO file it will be extracted. Note this is different from
--review and --noreview options which specify whether tests should be performed against messages
already marked as under review.

nplurals(unit)
Checks for the correct number of noun forms for plural translations.

This uses the plural information in the language module of the Translate Toolkit. This is the same as the
Gettext nplural value. It will check that the number of plurals required is the same as the number supplied
in your translation.

run_filters(unit, categorised=False)
Run all the tests in this suite.

Return type Dictionary

Returns

Content of the dictionary is as follows:

{'testname': { 'message': message_or_exception, 'category': failure_
→˓category } }

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

class translate.filters.checks.TeeChecker(checkerconfig=None, excludefilters=None, lim-
itfilters=None, checkerclasses=None, errorhan-
dler=None, languagecode=None)

A Checker that controls multiple checkers.

categories = {}
Categories where each checking function falls into Function names are used as keys, categories are the
values

4.1. API 341

Translate Toolkit Documentation, Release 3.0.0

getfilters(excludefilters=None, limitfilters=None)
Returns a dictionary of available filters, including/excluding those in the given lists.

run_filters(unit, categorised=False)
Run all the tests in the checker’s suites.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

class translate.filters.checks.TermChecker(**kwargs)

accelerators(str1, str2)
Checks whether accelerators are consistent between the two strings.

This test is capable of checking the different type of accelerators that are used in different projects, like
Mozilla or KDE. The test will pick up accelerators that are missing and ones that shouldn’t be there.

See accelerators on the localization guide for a full description on accelerators.

acronyms(str1, str2)
Checks that acronyms that appear are unchanged.

If an acronym appears in the original this test will check that it appears in the translation. Translating
acronyms is a language decision but many languages leave them unchanged. In that case this test is useful
for tracking down translations of the acronym and correcting them.

blank(str1, str2)
Checks whether a translation is totally blank.

This will check to see if a translation has inadvertently been translated as blank i.e. as spaces. This is
different from untranslated which is completely empty. This test is useful in that if something is translated
as ” ” it will appear to most tools as if it is translated.

brackets(str1, str2)
Checks that the number of brackets in both strings match.

If ([{ or }]) appear in the original this will check that the same number appear in the translation.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

compendiumconflicts(str1, str2)
Checks for Gettext compendium conflicts (#-#-#-#-#).

When you use msgcat to create a PO compendium it will insert #-#-#-#-# into entries that are not
consistent. If the compendium is used later in a message merge then these conflicts will appear in your
translations. This test quickly extracts those for correction.

credits(str1, str2)
Checks for messages containing translation credits instead of normal translations.

Some projects have consistent ways of giving credit to translators by having a unit or two where translators
can fill in their name and possibly their contact details. This test allows you to find these units easily to
check that they are completed correctly and also disables other tests that might incorrectly get triggered
for these units (such as urls, emails, etc.)

doublequoting(str1, str2)
Checks whether doublequoting is consistent between the two strings.

Checks on double quotes " to ensure that you have the same number in both the original and the translated
string. This tests takes into account that several languages use different quoting characters, and will test
for them instead.

342 Chapter 4. API Reference

http://docs.translatehouse.org/projects/localization-guide/en/latest/guide/translation/accelerators.html

Translate Toolkit Documentation, Release 3.0.0

doublespacing(str1, str2)
Checks for bad double-spaces by comparing to original.

This will identify if you have [space][space] in when you don’t have it in the original or it appears in the
original but not in your translation. Some of these are spurious and how you correct them depends on the
conventions of your language.

doublewords(str1, str2)
Checks for repeated words in the translation.

Words that have been repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These
are generally typos that need correcting. Some languages may have valid repeated words in their structure,
in that case either ignore those instances or switch this test off.

emails(str1, str2)
Checks that emails are not translated.

Generally you should not be translating email addresses. This check will look to see that email addresses
e.g. info@example.com are not translated. In some cases of course you should translate the address
but generally you shouldn’t.

endpunc(str1, str2)
Checks whether punctuation at the end of the strings match.

This will ensure that the ending of your translation has the same punctuation as the original. E.g. if it
ends in :[space] then so should yours. It is useful for ensuring that you have ellipses [. . .] in all your
translations, not simply three separate full-stops. You may pick up some errors in the original: feel free to
keep your translation and notify the programmers. In some languages, characters such as ? or ! are always
preceded by a space e.g. [space]? — do what your language customs dictate. Other false positives you
will notice are, for example, if through changes in word-order you add “), etc. at the end of the sentence.
Do not change these: your language word-order takes precedence.

It must be noted that if you are tempted to leave out [full-stop] or [colon] or add [full-stop] to a sentence,
that often these have been done for a reason, e.g. a list where fullstops make it look cluttered. So, initially
match them with the English, and make changes once the program is being used.

This check is aware of several language conventions for punctuation characters, such as the custom ques-
tion marks for Greek and Arabic, Devanagari Danda, full-width punctuation for CJK languages, etc. Sup-
port for your language can be added easily if it is not there yet.

endwhitespace(str1, str2)
Checks whether whitespace at the end of the strings matches.

Operates the same as endpunc but is only concerned with whitespace. This filter is particularly useful for
those strings which will evidently be followed by another string in the program, e.g. [Password:] or [Enter
your username:]. The whitespace is an inherent part of the string. This filter makes sure you don’t miss
those important but otherwise invisible spaces!

If your language uses full-width punctuation (like Chinese), the visual spacing in the character might be
enough without an added extra space.

escapes(str1, str2)
Checks whether escaping is consistent between the two strings.

Checks escapes such as \n \ to ensure that if they exist in the original string you also have them in the
translation.

filepaths(str1, str2)
Checks that file paths have not been translated.

Checks that paths such as /home/user1 have not been translated. Generally you do not translate a file
path, unless it is being used as an example, e.g. your_user_name/path/to/filename.conf.

4.1. API 343

Translate Toolkit Documentation, Release 3.0.0

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

functions(str1, str2)
Checks that function names are not translated.

Checks that function names e.g. rgb() or getEntity.Name() are not translated.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

kdecomments(str1, str2)
Checks to ensure that no KDE style comments appear in the translation.

KDE style translator comments appear in PO files as "_: comment\n". New translators often trans-
late the comment. This test tries to identify instances where the comment has been translated.

long(str1, str2)
Checks whether a translation is much longer than the original string.

This is most useful in the special case where the translation is multiple characters long while the source
text is only 1 character long. Otherwise, we use a general ratio that will catch very big differences but is
set conservatively to limit the number of false positives.

musttranslatewords(str1, str2)
Checks that words configured as definitely translatable don’t appear in the translation.

If for instance in your language you decide that you must translate ‘OK’ then this test will flag any occur-
rences of ‘OK’ in the translation if it appeared in the source string. You must specify a file containing all
of the must translate words using --musttranslatefile.

newlines(str1, str2)
Checks whether newlines are consistent between the two strings.

Counts the number of \n newlines (and variants such as \r\n) and reports and error if they differ.

notranslatewords(str1, str2)
Checks that words configured as untranslatable appear in the translation too.

Many brand names should not be translated, this test allows you to easily make sure that words like: Word,
Excel, Impress, Calc, etc. are not translated. You must specify a file containing all of the no translate
words using --notranslatefile.

numbers(str1, str2)
Checks whether numbers of various forms are consistent between the two strings.

You will see some errors where you have either written the number in full or converted it to the digit in
your translation. Also changes in order will trigger this error.

options(str1, str2)
Checks that command line options are not translated.

In messages that contain command line options, such as --help, this test will check that these remain
untranslated. These could be translated in the future if programs can create a mechanism to allow this, but
currently they are not translated. If the options has a parameter, e.g. --file=FILE, then the test will
check that the parameter has been translated.

printf(str1, str2)
Checks whether printf format strings match.

344 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

If the printf formatting variables are not identical, then this will indicate an error. Printf statements are used
by programs to format output in a human readable form (they are placeholders for variable data). They
allow you to specify lengths of string variables, string padding, number padding, precision, etc. Generally
they will look like this: %d, %5.2f, %100s, etc. The test can also manage variables-reordering using
the %1$s syntax. The variables’ type and details following data are tested to ensure that they are strictly
identical, but they may be reordered.

See also printf Format String.

puncspacing(str1, str2)
Checks for bad spacing after punctuation.

In the case of [full-stop][space] in the original, this test checks that your translation does not remove the
space. It checks also for [comma], [colon], etc.

Some languages don’t use spaces after common punctuation marks, especially where full-width punctua-
tion marks are used. This check will take that into account.

purepunc(str1, str2)
Checks that strings that are purely punctuation are not changed.

This extracts strings like + or - as these usually should not be changed.

pythonbraceformat(str1, str2)
Checks whether python brace format strings match.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

sentencecount(str1, str2)
Checks that the number of sentences in both strings match.

Adds the number of sentences to see that the sentence count is the same between the original and translated
string. You may not always want to use this test, if you find you often need to reformat your translation,
because the original is badly-expressed, or because the structure of your language works better that way.
Do what works best for your language: it’s the meaning of the original you want to convey, not the exact
way it was written in the English.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

short(str1, str2)
Checks whether a translation is much shorter than the original string.

This is most useful in the special case where the translation is 1 characters long while the source text is
multiple characters long. Otherwise, we use a general ratio that will catch very big differences but is set
conservatively to limit the number of false positives.

simplecaps(str1, str2)
Checks the capitalisation of two strings isn’t wildly different.

This will pick up many false positives, so don’t be a slave to it. It is useful for identifying translations that
don’t start with a capital letter (upper-case letter) when they should, or those that do when they shouldn’t.
It will also highlight sentences that have extra capitals; depending on the capitalisation convention of your
language, you might want to change these to Title Case, or change them all to normal sentence case.

4.1. API 345

http://en.wikipedia.org/wiki/Printf_format_string

Translate Toolkit Documentation, Release 3.0.0

simpleplurals(str1, str2)
Checks for English style plural(s) for you to review.

This test will extract any message that contains words with a final “(s)” in the source text. You can then
inspect the message, to check that the correct plural form has been used for your language. In some
languages, plurals are made by adding text at the beginning of words, making the English style messy. In
this case, they often revert to the plural form. This test allows an editor to check that the plurals used are
correct. Be aware that this test may create a number of false positives.

For languages with no plural forms (only one noun form) this test will simply test that nothing like “(s)”
was used in the translation.

singlequoting(str1, str2)
Checks whether singlequoting is consistent between the two strings.

The same as doublequoting but checks for the ' character. Because this is used in contractions like it’s
and in possessive forms like user’s, this test can output spurious errors if your language doesn’t use such
forms. If a quote appears at the end of a sentence in the translation, i.e. '., this might not be detected
properly by the check.

spellcheck(str1, str2)
Checks words that don’t pass a spell check.

This test will check for misspelled words in your translation. The test first checks for misspelled words in
the original (usually English) text, and adds those to an exclusion list. The advantage of this exclusion is
that many words that are specific to the application will not raise errors e.g. program names, brand names,
function names.

The checker works with PyEnchant. You need to have PyEnchant installed as well as a dictionary for your
language (for example, one of the Hunspell or aspell dictionaries). This test will only work if you have
specified the --language option.

The pofilter error that is created, lists the misspelled word, plus suggestions returned from the spell checker.
That makes it easy for you to identify the word and select a replacement.

startcaps(str1, str2)
Checks that the message starts with the correct capitalisation.

After stripping whitespace and common punctuation characters, it then checks to see that the first remain-
ing character is correctly capitalised. So, if the sentence starts with an upper-case letter, and the translation
does not, an error is produced.

This check is entirely disabled for many languages that don’t make a distinction between upper and lower
case. Contact us if this is not yet disabled for your language.

startpunc(str1, str2)
Checks whether punctuation at the beginning of the strings match.

Operates as endpunc but you will probably see fewer errors.

startwhitespace(str1, str2)
Checks whether whitespace at the beginning of the strings matches.

As in endwhitespace but you will see fewer errors.

tabs(str1, str2)
Checks whether tabs are consistent between the two strings.

Counts the number of \t tab markers and reports an error if they differ.

unchanged(str1, str2)
Checks whether a translation is basically identical to the original string.

346 Chapter 4. API Reference

http://pythonhosted.org/pyenchant/
https://wiki.openoffice.org/wiki/Dictionaries
http://ftp.gnu.org/gnu/aspell/dict/

Translate Toolkit Documentation, Release 3.0.0

This checks to see if the translation isn’t just a copy of the English original. Sometimes, this is what you
want, but other times you will detect words that should have been translated.

untranslated(str1, str2)
Checks whether a string has been translated at all.

This check is really only useful if you want to extract untranslated strings so that they can be translated
independently of the main work.

urls(str1, str2)
Checks that URLs are not translated.

This checks only basic URLs (http, ftp, mailto etc.) not all URIs (e.g. afp, smb, file). Generally, you don’t
want to translate URLs, unless they are example URLs (http://your_server.com/filename.html). If the
URL is for configuration information, then you need to query the developers about placing configuration
information in PO files. It shouldn’t really be there, unless it is very clearly marked: such information
should go into a configuration file.

validchars(str1, str2)
Checks that only characters specified as valid appear in the translation.

Often during character conversion to and from UTF-8 you get some strange characters appearing in your
translation. This test presents a simple way to try and identify such errors.

This test will only run of you specify the --validcharsfile command line option. This file contains
all the characters that are valid in your language. You must use UTF-8 encoding for the characters in the
file.

If the test finds any characters not in your valid characters file then the test will print the character together
with its Unicode value (e.g. 002B).

variables(str1, str2)
Checks whether variables of various forms are consistent between the two strings.

This checks to make sure that variables that appear in the original also appear in the translation. It can
handle variables from projects like KDE or OpenOffice. It does not at the moment cope with variables that
use the reordering syntax of Gettext PO files.

xmltags(str1, str2)
Checks that XML/HTML tags have not been translated.

This check finds the number of tags in the source string and checks that the same number are in the
translation. If the counts don’t match then either the tag is missing or it was mistakenly translated by the
translator, both of which are errors.

The check ignores tags or things that look like tags that cover the whole string e.g. <Error> but
will produce false positives for things like An <Error> occurred as here Error should be trans-
lated. It also will allow translation of the alt attribute in e.g. <img src="bob.png" alt="Image
description"> or similar translatable attributes in OpenOffice.org help files.

class translate.filters.checks.TranslationChecker(checkerconfig=None, exclude-
filters=None, limitfilters=None,
errorhandler=None)

A checker that passes source and target strings to the checks, not the whole unit.

This provides some speedup and simplifies testing.

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

4.1. API 347

http://your_server.com/filename.html

Translate Toolkit Documentation, Release 3.0.0

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

run_filters(unit, categorised=False)
Do some optimisation by caching some data of the unit for the benefit of run_test().

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

class translate.filters.checks.UnitChecker(checkerconfig=None, excludefilters=None,
limitfilters=None, errorhandler=None)

Parent Checker class which does the checking based on functions available in derived classes.

categories = None
Categories where each checking function falls into Function names are used as keys, categories are the
values

checker_name
Extract checker name, for example ‘mozilla’ from MozillaChecker.

filteraccelerators_by_list(str1, acceptlist=None)
Filter out accelerators from str1.

get_ignored_filters()
Return checker’s additional filters for current language.

getfilters(excludefilters=None, limitfilters=None)
Returns dictionary of available filters, including/excluding those in the given lists.

run_filters(unit, categorised=False)
Run all the tests in this suite.

Return type Dictionary

Returns

Content of the dictionary is as follows:

{'testname': { 'message': message_or_exception, 'category': failure_
→˓category } }

run_test(test, unit)
Runs the given test on the given unit.

Note that this can raise a FilterFailure as part of normal operation.

setconfig(config)
Sets the accelerator list.

setsuggestionstore(store)
Sets the filename that a checker should use for evaluating suggestions.

348 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

translate.filters.checks.batchruntests(pairs)
Runs test on a batch of string pairs.

translate.filters.checks.intuplelist(pair, list)
Tests to see if pair == (a,b,c) is in list, but handles None entries in list as wildcards (only allowed in positions
“a” and “c”). We take a shortcut by only considering “c” if “b” has already matched.

translate.filters.checks.runtests(str1, str2, ignorelist=())
Verifies that the tests pass for a pair of strings.

translate.filters.checks.tagname(string)
Returns the name of the XML/HTML tag in string

translate.filters.checks.tagproperties(strings, ignore)
Returns all the properties in the XML/HTML tag string as (tagname, propertyname, propertyvalue), but ignore
those combinations specified in ignore.

decoration

functions to get decorative/informative text out of strings. . .

translate.filters.decoration.countaccelerators(accelmarker, acceptlist=None)
returns a function that counts the number of accelerators marked with the given marker

translate.filters.decoration.findaccelerators(str1, accelmarker, acceptlist=None)
returns all the accelerators and locations in str1 marked with a given marker

translate.filters.decoration.findmarkedvariables(str1, startmarker, endmarker, ig-
norelist=[])

returns all the variables and locations in str1 marked with a given marker

translate.filters.decoration.getaccelerators(accelmarker, acceptlist=None)
returns a function that gets a list of accelerators marked using accelmarker

translate.filters.decoration.getemails(str1)
returns the email addresses that are in a string

translate.filters.decoration.getfunctions(str1)
returns the functions() that are in a string, while ignoring the trailing punctuation in the given parameter

translate.filters.decoration.getnumbers(str1)
returns any numbers that are in the string

translate.filters.decoration.geturls(str1)
returns the URIs in a string

translate.filters.decoration.getvariables(startmarker, endmarker)
returns a function that gets a list of variables marked using startmarker and endmarker

translate.filters.decoration.ispurepunctuation(str1)
checks whether the string is entirely punctuation

translate.filters.decoration.isvalidaccelerator(accelerator, acceptlist=None)
returns whether the given accelerator character is valid

Parameters

• accelerator (character) – A character to be checked for accelerator validity

• acceptlist (String) – A list of characters that are permissible as accelerators

Return type Boolean

4.1. API 349

Translate Toolkit Documentation, Release 3.0.0

Returns True if the supplied character is an acceptable accelerator

translate.filters.decoration.puncend(str1, punctuation)
returns all the punctuation from the end of the string

translate.filters.decoration.puncstart(str1, punctuation)
returns all the punctuation from the start of the string

translate.filters.decoration.spaceend(str1)
returns all the whitespace from the end of the string

translate.filters.decoration.spacestart(str1)
returns all the whitespace from the start of the string

helpers

a set of helper functions for filters. . .

translate.filters.helpers.countmatch(str1, str2, countstr)
checks whether countstr occurs the same number of times in str1 and str2

translate.filters.helpers.countsmatch(str1, str2, countlist)
checks whether each element in countlist occurs the same number of times in str1 and str2

translate.filters.helpers.filtercount(str1, func)
returns the number of characters in str1 that pass func

translate.filters.helpers.filtertestmethod(testmethod, strfilter)
returns a version of the testmethod that operates on filtered strings using strfilter

translate.filters.helpers.funcmatch(str1, str2, func, *args)
returns whether the result of func is the same for str1 and str2

translate.filters.helpers.funcsmatch(str1, str2, funclist)
checks whether the results of each func in funclist match for str1 and str2

translate.filters.helpers.multifilter(str1, strfilters, *args)
passes str1 through a list of filters

translate.filters.helpers.multifiltertestmethod(testmethod, strfilters)
returns a version of the testmethod that operates on filtered strings using strfilter

pofilter

Perform quality checks on Gettext PO, XLIFF and TMX localization files.

Snippet files are created whenever a test fails. These can be examined, corrected and merged back into the originals
using pomerge.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html for examples and us-
age instructions and http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html
for full descriptions of all tests.

class translate.filters.pofilter.FilterOptionParser(formats)
A specialized Option Parser for filter tools. . .

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

350 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pofilter_tests.html

Translate Toolkit Documentation, Release 3.0.0

build_checkerconfig(options)
Prepare the checker config from the given options. This is mainly factored out for the sake of unit tests.

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

4.1. API 351

Translate Toolkit Documentation, Release 3.0.0

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

parse_noinput(option, opt, value, parser, *args, **kwargs)
This sets an option to True, but also sets input to - to prevent an error.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Process an individual file.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

352 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

recursiveprocess(options)
Recurse through directories and process files.

run()
Parses the arguments, and runs recursiveprocess with the resulting options.

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setprogressoptions()
Sets the progress options.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

translate.filters.pofilter.runfilter(inputfile, outputfile, templatefile, checkfilter=None)
Reads in inputfile, filters using checkfilter, writes to outputfile.

prefilters

Filters that strings can be passed through before certain tests.

translate.filters.prefilters.filteraccelerators(accelmarker)
Returns a function that filters accelerators marked using accelmarker from a strings.

Parameters accelmarker (string) – Accelerator marker character

4.1. API 353

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

Return type Function

Returns fn(str1, acceplist=None)

translate.filters.prefilters.filtervariables(startmarker, endmarker, varfilter)
Returns a function that filters variables marked using startmarker and endmarker from a string.

Parameters

• startmarker (string) – Start of variable marker

• endmarker (string) – End of variable marker

• varfilter (Function) – fn(variable, startmarker, endmarker)

Return type Function

Returns fn(str1)

translate.filters.prefilters.filterwordswithpunctuation(str1)
Goes through a list of known words that have punctuation and removes the punctuation from them.

translate.filters.prefilters.removekdecomments(str1)
Remove KDE-style PO comments.

KDE comments start with _:[space] and end with a literal \n. Example:

"_: comment\n"

translate.filters.prefilters.varname(variable, startmarker, endmarker)
Variable filter that returns the variable name without the marking punctuation.

Note: Currently this function simply returns variable unchanged, no matter what *marker’s are set to.

Return type String

Returns Variable name with the supplied startmarker and endmarker removed.

translate.filters.prefilters.varnone(variable, startmarker, endmarker)
Variable filter that returns an empty string.

Return type String

Returns Empty string

spelling

An API to provide spell checking for use in checks or elsewhere.

lang

Classes that represent languages and provides language-specific information.

All classes inherit from the parent class called common.

The type of data includes:

• Language codes

• Language name

354 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

• Plurals

• Punctuation transformation

• etc.

af

This module represents the Afrikaans language.

See also:

http://en.wikipedia.org/wiki/Afrikaans_language

class translate.lang.af.af
This class represents Afrikaans.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Modify this for the indefinite article (‘n).

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

translate.lang.af.cyr2lat = {'': 'Jo', '': 'A', '': 'B', '': 'W', '': 'G', '': 'D', '': 'Dj', '': 'Je', '': 'Ei', '': 'Zj', '': 'Z', '': 'I', '': 'J', '': 'K', '': 'L', '': 'M', '': 'N', '': 'O', '': 'P', '': 'R', '': 'S', '': 'T', '': 'Oe', '': 'F', '': 'Ch', '': 'Ts', '': 'Tj', '': 'Sj', '': 'Sjtsj', '': '', '': 'I', '': '', '': 'E', '': 'Joe', '': 'Ja', '': 'a', '': 'b', '': 'w', '': 'g', '': 'd', '': 'dj', '': 'je', '': 'ei', '': 'zj', '': 'z', '': 'i', '': 'j', '': 'k', '': 'l', '': 'm', '': 'n', '': 'o', '': 'p', '': 'r', '': 's', '': 't', '': 'oe', '': 'f', '': 'ch', '': 'ts', '': 'tj', '': 'sj', '': 'sjtsj', '': '', '': 'i', '': '', '': 'e', '': 'joe', '': 'ja', '': 'jo'}
Mapping of Cyrillic to Latin letters for transliteration in Afrikaans

translate.lang.af.tranliterate_cyrillic(text)
Convert Cyrillic text to Latin according to the AWS transliteration rules.

4.1. API 355

http://en.wikipedia.org/wiki/Afrikaans_language

Translate Toolkit Documentation, Release 3.0.0

am

This module represents the Amharic language.

See also:

http://en.wikipedia.org/wiki/Amharic_language

class translate.lang.am.am
This class represents Amharic.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ar

This module represents the Arabic language.

See also:

http://en.wikipedia.org/wiki/Arabic_language

class translate.lang.ar.ar
This class represents Arabic.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

356 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Amharic_language
http://en.wikipedia.org/wiki/Arabic_language

Translate Toolkit Documentation, Release 3.0.0

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

bn

This module represents the Bengali language.

See also:

http://en.wikipedia.org/wiki/Bengali_language

class translate.lang.bn.bn
This class represents Bengali.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

4.1. API 357

http://en.wikipedia.org/wiki/Bengali_language

Translate Toolkit Documentation, Release 3.0.0

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

code_or

This module represents the Odia language.

See also:

https://en.wikipedia.org/wiki/Odia_language

class translate.lang.code_or.code_or
This class represents Odia.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

358 Chapter 4. API Reference

https://en.wikipedia.org/wiki/Odia_language

Translate Toolkit Documentation, Release 3.0.0

classmethod words(text)
Returns a list of words in text.

common

This module contains all the common features for languages.

Supported features:

• language code (km, af)

• language name (Khmer, Afrikaans)

• Plurals

– Number of plurals (nplurals)

– Plural equation

• pofilter tests to ignore

Segmentation:

• characters

• words

• sentences

Punctuation:

• End of sentence

• Start of sentence

• Middle of sentence

• Quotes

– single

– double

• Valid characters

• Accelerator characters

• Special characters

• Direction (rtl or ltr)

TODOs and Ideas for possible features:

• Language-Team information

• Segmentation

– phrases

class translate.lang.common.Common
This class is the common parent class for all language classes.

CJKpunc = ''
These punctuation marks are used in certain circumstances with CJK languages.

4.1. API 359

Translate Toolkit Documentation, Release 3.0.0

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

checker = None
A language specific checker instance (see filters.checks).

This doesn’t need to be supplied, but will be used if it exists.

code = ''
The ISO 639 language code, possibly with a country specifier or other modifier.

Examples:

km
pt_BR
sr_YU@Latn

commonpunc = '.,;:!?-@#$%^*_()[]{}/\\\'`"<>'
These punctuation marks are common in English and most languages that use latin script.

ethiopicpunc = ''
These punctuation marks are used by several Ethiopic languages.

fullname = ''
The full (English) name of this language.

Dialect codes should have the form of:

• Khmer

• Portugese (Brazil)

• TODO: sr_YU@Latn?

ignoretests = {}
Dictionary of tests to ignore in some or all checkers.

Keys are checker names and values are list of names for the ignored tests in the checker. A special ‘all’
checker name can be used to tell that the tests must be ignored in all the checkers.

Listed checkers to ignore tests on must be lowercase strings for the checker name, for example “mozilla”
for MozillaChecker or “libreoffice” for LibreOfficeChecker.

indicpunc = ''
These punctuation marks are used by several Indic languages.

invertedpunc = '¿¡'
Inverted punctuation sometimes used at the beginning of sentences in Spanish, Asturian, Galician, and
Catalan.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

360 Chapter 4. API Reference

mailto:sr_YU@Latn

Translate Toolkit Documentation, Release 3.0.0

listseperator = ', '
This string is used to separate lists of textual elements. Most languages probably can stick with the default
comma, but Arabic and some Asian languages might want to override this.

miscpunc = '...±°123·©®×£¥C'
The middle dot (·) is used by Greek and Georgian.

mozilla_pluralequation = '0'
This of languages that has different plural formula in Mozilla than the standard one in Gettext.

nplurals = 0
The number of plural forms of this language.

0 is not a valid value - it must be overridden. Any positive integer is valid (it should probably be between
1 and 6)

See also:

translate.lang.data

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

numbertuple = ()
A tuple of number transformation rules that can be used by numbertranslate().

classmethod numstart(text)
Determines whether the text starts with a numeric value.

pluralequation = '0'
The plural equation for selection of plural forms.

This is used for PO files to fill into the header.

See also:

Gettext manual, translate.lang.data

puncdict = {}
A dictionary of punctuation transformation rules that can be used by punctranslate().

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

punctuation = '.,;:!?-@#$%^*_()[]{}/\\\'`"<>‘’“”„‹›«»¿¡÷...±°123·©®×£¥C'
We include many types of punctuation here, simply since this is only meant to determine if something is
punctuation. Hopefully we catch some languages which might not be represented with modules. Most
languages won’t need to override this.

quotes = '‘’“”„‹›«»'
These are different quotation marks used by various languages.

rtlpunc = '÷'
These punctuation marks are used by Arabic and Persian, for example.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

sentenceend = '.!?...'
These marks can indicate a sentence end. Once again we try to account for many languages. Most lan-
gauges won’t need to override this.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

4.1. API 361

http://www.gnu.org/software/gettext/manual/html_node/gettext_150.html#Plural-forms

Translate Toolkit Documentation, Release 3.0.0

specialchars = ''
Characters used by the language that might not be easy to input with common keyboard layouts

validaccel = None
Characters that can be used as accelerators (access keys) i.e. Alt+X where X is the accelerator. These can
include combining diacritics as long as they are accessible from the users keyboard in a single keystroke,
but normally they would be at least precomposed characters. All characters, lower and upper, are included
in the list.

validdoublewords = []
Some languages allow double words in certain cases. This is a dictionary of such words.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

data

This module stores information and functionality that relates to plurals.

translate.lang.data.cldr_plural_categories = ['zero', 'one', 'two', 'few', 'many', 'other']
List of plural tags generated from CLDR 32.0.1 using https://github.com/WeblateOrg/language-data

translate.lang.data.expansion_factors = {'af': 0.1, 'ar': -0.09, 'es': 0.21, 'fr': 0.28, 'it': 0.2}
Source to target string length expansion factors.

translate.lang.data.forceunicode(string)
Ensures that the string is in unicode.

Parameters string (Unicode, String) – A text string

Returns String converted to Unicode and normalized as needed.

Return type Unicode

translate.lang.data.get_country_iso_name(country_code)
Return country ISO name.

translate.lang.data.get_language_iso_fullname(language_code)
Return language ISO fullname.

If language code is not a simple ISO 639 code, then we try to split into a two part language code (ISO 639 and
ISO 3166).

translate.lang.data.get_language_iso_name(language_code)
Return language ISO name.

translate.lang.data.gettext_country(langcode=None)
Returns a gettext function to translate country names into the given language, or the system language if no
language is specified.

translate.lang.data.gettext_domain(langcode, domain, localedir=None)
Returns a gettext function for given iso domain

translate.lang.data.gettext_lang(langcode=None)
Returns a gettext function to translate language names into the given language, or the system language if no
language is specified.

translate.lang.data.languagematch(languagecode, otherlanguagecode)
matches a languagecode to another, ignoring regions in the second

362 Chapter 4. API Reference

https://github.com/WeblateOrg/language-data

Translate Toolkit Documentation, Release 3.0.0

translate.lang.data.languages = {'ach': ('Acholi', 2, 'n > 1'), 'af': ('Afrikaans', 2, '(n != 1)'), 'ak': ('Akan', 2, 'n > 1'), 'am': ('Amharic', 2, 'n > 1'), 'an': ('Aragonese', 2, '(n != 1)'), 'anp': ('Angika', 2, '(n != 1)'), 'ar': ('Arabic', 6, 'n==0 ? 0 : n==1 ? 1 : n==2 ? 2 : n%100>=3 && n%100<=10 ? 3 : n%100>=11 ? 4 : 5'), 'arn': ('Mapudungun; Mapuche', 2, 'n > 1'), 'as': ('Assamese', 2, '(n != 1)'), 'ast': ('Asturian; Bable; Leonese; Asturleonese', 2, '(n != 1)'), 'ay': ('Aymará', 1, '0'), 'az': ('Azerbaijani', 2, '(n != 1)'), 'be': ('Belarusian', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'bg': ('Bulgarian', 2, '(n != 1)'), 'bn': ('Bengali', 2, '(n != 1)'), 'bn_BD': ('Bengali (Bangladesh)', 2, '(n != 1)'), 'bn_IN': ('Bengali (India)', 2, '(n != 1)'), 'bo': ('Tibetan', 1, '0'), 'br': ('Breton', 2, 'n > 1'), 'brx': ('Bodo', 2, '(n != 1)'), 'bs': ('Bosnian', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'ca': ('Catalan; Valencian', 2, '(n != 1)'), 'ca@valencia': ('Catalan; Valencian (Valencia)', 2, '(n != 1)'), 'cgg': ('Chiga', 1, '0'), 'cs': ('Czech', 3, '(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2'), 'csb': ('Kashubian', 3, 'n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'cy': ('Welsh', 2, '(n==2) ? 1 : 0'), 'da': ('Danish', 2, '(n != 1)'), 'de': ('German', 2, '(n != 1)'), 'doi': ('Dogri', 2, '(n != 1)'), 'dz': ('Dzongkha', 1, '0'), 'el': ('Greek, Modern (1453-)', 2, '(n != 1)'), 'en': ('English', 2, '(n != 1)'), 'en_GB': ('English (United Kingdom)', 2, '(n != 1)'), 'en_ZA': ('English (South Africa)', 2, '(n != 1)'), 'eo': ('Esperanto', 2, '(n != 1)'), 'es': ('Spanish; Castilian', 2, '(n != 1)'), 'es_AR': ('Argentinean Spanish', 2, '(n != 1)'), 'et': ('Estonian', 2, '(n != 1)'), 'eu': ('Basque', 2, '(n != 1)'), 'fa': ('Persian', 2, 'n > 1'), 'ff': ('Fulah', 2, '(n != 1)'), 'fi': ('Finnish', 2, '(n != 1)'), 'fil': ('Filipino; Pilipino', 2, '(n > 1)'), 'fo': ('Faroese', 2, '(n != 1)'), 'fr': ('French', 2, '(n > 1)'), 'fur': ('Friulian', 2, '(n != 1)'), 'fy': ('Frisian', 2, '(n != 1)'), 'ga': ('Irish', 5, 'n==1 ? 0 : n==2 ? 1 : (n>2 && n<7) ? 2 :(n>6 && n<11) ? 3 : 4'), 'gd': ('Gaelic; Scottish Gaelic', 4, '(n==1 || n==11) ? 0 : (n==2 || n==12) ? 1 : (n > 2 && n < 20) ? 2 : 3'), 'gl': ('Galician', 2, '(n != 1)'), 'gu': ('Gujarati', 2, '(n != 1)'), 'gun': ('Gun', 2, '(n > 1)'), 'ha': ('Hausa', 2, '(n != 1)'), 'he': ('Hebrew', 2, '(n != 1)'), 'hi': ('Hindi', 2, '(n != 1)'), 'hne': ('Chhattisgarhi', 2, '(n != 1)'), 'hr': ('Croatian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'ht': ('Haitian; Haitian Creole', 2, '(n != 1)'), 'hu': ('Hungarian', 2, '(n != 1)'), 'hy': ('Armenian', 1, '0'), 'ia': ('Interlingua (International Auxiliary Language Association)', 2, '(n != 1)'), 'id': ('Indonesian', 1, '0'), 'is': ('Icelandic', 2, '(n != 1)'), 'it': ('Italian', 2, '(n != 1)'), 'ja': ('Japanese', 1, '0'), 'jbo': ('Lojban', 1, '0'), 'jv': ('Javanese', 2, '(n != 1)'), 'ka': ('Georgian', 1, '0'), 'kab': ('Kabyle', 2, '(n != 1)'), 'kk': ('Kazakh', 2, 'n != 1'), 'kl': ('Greenlandic', 2, '(n != 1)'), 'km': ('Central Khmer', 1, '0'), 'kn': ('Kannada', 2, '(n != 1)'), 'ko': ('Korean', 1, '0'), 'kok': ('Konkani', 2, '(n != 1)'), 'ks': ('Kashmiri', 2, '(n != 1)'), 'ku': ('Kurdish', 2, '(n != 1)'), 'kw': ('Cornish', 4, '(n==1) ? 0 : (n==2) ? 1 : (n == 3) ? 2 : 3'), 'ky': ('Kirghiz; Kyrgyz', 2, 'n != 1'), 'lb': ('Luxembourgish; Letzeburgesch', 2, '(n != 1)'), 'ln': ('Lingala', 2, '(n > 1)'), 'lo': ('Lao', 1, '0'), 'lt': ('Lithuanian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'lv': ('Latvian', 3, '(n%10==1 && n%100!=11 ? 0 : n != 0 ? 1 : 2)'), 'mai': ('Maithili', 2, '(n != 1)'), 'me': ('Montenegrin', 3, 'n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2'), 'mfe': ('Morisyen', 2, '(n > 1)'), 'mg': ('Malagasy', 2, '(n > 1)'), 'mi': ('Maori', 2, '(n > 1)'), 'mk': ('Macedonian', 2, '(n==1 || n%10==1 ? 0 : 1)'), 'ml': ('Malayalam', 2, '(n != 1)'), 'mn': ('Mongolian', 2, '(n != 1)'), 'mni': ('Meithei (Manipuri)', 2, '(n != 1)'), 'mnk': ('Mandinka', 3, '(n==0 ? 0 : n==1 ? 1 : 2)'), 'mr': ('Marathi', 2, '(n != 1)'), 'ms': ('Malay', 1, '0'), 'mt': ('Maltese', 4, '(n==1 ? 0 : n==0 || (n%100>1 && n%100<11) ? 1 : (n%100>10 && n%100<20) ? 2 : 3)'), 'my': ('Burmese', 1, '0'), 'nah': ('Nahuatl languages', 2, '(n != 1)'), 'nap': ('Neapolitan', 2, '(n != 1)'), 'nb': ('Bokmål, Norwegian; Norwegian Bokmål', 2, '(n != 1)'), 'ne': ('Nepali', 2, '(n != 1)'), 'nl': ('Dutch; Flemish', 2, '(n != 1)'), 'nn': ('Norwegian Nynorsk; Nynorsk, Norwegian', 2, '(n != 1)'), 'nqo': ("N'Ko", 2, '(n > 1)'), 'nso': ('Pedi; Sepedi; Northern Sotho', 2, '(n != 1)'), 'oc': ('Occitan (post 1500)', 2, '(n > 1)'), 'or': ('Odia', 2, '(n != 1)'), 'pa': ('Panjabi; Punjabi', 2, '(n != 1)'), 'pap': ('Papiamento', 2, '(n != 1)'), 'pl': ('Polish', 3, '(n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'pms': ('Piemontese', 2, '(n != 1)'), 'ps': ('Pushto; Pashto', 2, '(n != 1)'), 'pt': ('Portuguese', 2, '(n != 1)'), 'pt_BR': ('Portuguese (Brazil)', 2, '(n > 1)'), 'rm': ('Romansh', 2, '(n != 1)'), 'ro': ('Romanian', 3, '(n==1 ? 0 : (n==0 || (n%100 > 0 && n%100 < 20)) ? 1 : 2)'), 'ru': ('Russian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'rw': ('Kinyarwanda', 2, '(n != 1)'), 'sa': ('Sanskrit', 3, '(n==1 ? 0 : n==2 ? 1 : 2)'), 'sah': ('Yakut', 1, '0'), 'sat': ('Santali', 2, '(n != 1)'), 'scn': ('Sicilian', 2, '(n != 1)'), 'sco': ('Scots', 2, '(n != 1)'), 'sd': ('Sindhi', 2, '(n != 1)'), 'se': ('Northern Sami', 2, '(n != 1)'), 'si': ('Sinhala; Sinhalese', 2, '(n != 1)'), 'sk': ('Slovak', 3, '(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2'), 'sl': ('Slovenian', 4, '(n%100==1 ? 0 : n%100==2 ? 1 : n%100==3 || n%100==4 ? 2 : 3)'), 'so': ('Somali', 2, '(n != 1)'), 'son': ('Songhai languages', 1, '0'), 'sq': ('Albanian', 2, '(n != 1)'), 'sr': ('Serbian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'st': ('Sotho, Southern', 2, '(n != 1)'), 'su': ('Sundanese', 1, '0'), 'sv': ('Swedish', 2, '(n != 1)'), 'sw': ('Swahili', 2, '(n != 1)'), 'szl': ('Silesian', 3, '(n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'ta': ('Tamil', 2, '(n != 1)'), 'te': ('Telugu', 2, '(n != 1)'), 'tg': ('Tajik', 1, '0'), 'th': ('Thai', 1, '0'), 'ti': ('Tigrinya', 2, '(n > 1)'), 'tk': ('Turkmen', 2, '(n != 1)'), 'tr': ('Turkish', 2, '(n != 1)'), 'tt': ('Tatar', 1, '0'), 'ug': ('Uighur; Uyghur', 1, '0'), 'uk': ('Ukrainian', 3, '(n%10==1 && n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2)'), 'ur': ('Urdu', 2, '(n != 1)'), 'uz': ('Uzbek', 2, '(n > 1)'), 've': ('Venda', 2, '(n != 1)'), 'vi': ('Vietnamese', 1, '0'), 'wa': ('Walloon', 2, '(n > 1)'), 'wo': ('Wolof', 2, '(n != 1)'), 'yo': ('Yoruba', 2, '(n != 1)'), 'yue': ('Yue', 1, '0'), 'zh_CN': ('Chinese (China)', 1, '0'), 'zh_HK': ('Chinese (Hong Kong)', 1, '0'), 'zh_TW': ('Chinese (Taiwan)', 1, '0'), 'zu': ('Zulu', 2, '(n != 1)')}
Dictionary of language data. The language code is the dictionary key (which may contain country codes and
modifiers). The value is a tuple: (Full name in English from iso-codes, nplurals, plural equation).

Note that the English names should not be used in user facing places - it should always be passed through the
function returned from tr_lang(), or at least passed through _fix_language_name().

translate.lang.data.normalize(string, normal_form=’NFC’)
Return a unicode string in its normalized form

Parameters

• string – The string to be normalized

• normal_form – NFC (default), NFD, NFKC, NFKD

Returns Normalized string

translate.lang.data.normalized_unicode(string)
Forces the string to unicode and does normalization.

translate.lang.data.scripts = {'Beng': ['bn', 'mni'], 'Deva': ['anp', 'bho', 'brx', 'doi', 'hi', 'kfy', 'kok', 'mai', 'mr', 'sa', 'sat'], 'Gujr': ['gu'], 'Khmr': ['km'], 'Knda': ['kn'], 'Laoo': ['lo'], 'Mlym': ['ml'], 'Mymr': ['my', 'shn'], 'Orya': ['or'], 'Sind': ['sd'], 'Taml': ['ta'], 'Tibt': ['bo'], 'assamese': ['as'], 'chinese': ['yue'], 'perso-arabic': ['ks']}
Dictionary of scripts data. The dictionary keys are ISO 15924 script codes, and script names where scripts are
missing from standard. The value is a list of codes for languages using that script.

This is mainly used to alter the behavior of some checks (the accelerators one for example).

translate.lang.data.simplercode(code)
This attempts to simplify the given language code by ignoring country codes, for example.

See also:

• http://www.rfc-editor.org/rfc/bcp/bcp47.txt

• http://www.rfc-editor.org/rfc/rfc4646.txt

• http://www.rfc-editor.org/rfc/rfc4647.txt

• http://www.w3.org/International/articles/language-tags/

translate.lang.data.simplify_to_common(language_code)
Simplify language code to the most commonly used form for the language, stripping country information for
languages that tend not to be localized differently for different countries

translate.lang.data.tr_lang(langcode=None)
Gives a function that can translate a language name, even in the form "language (country)", into the
language with iso code langcode, or the system language if no language is specified.

de

This module represents the German language.

See also:

http://en.wikipedia.org/wiki/German_language

class translate.lang.de.de
This class represents German.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

4.1. API 363

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/rfc4646.txt
http://www.rfc-editor.org/rfc/rfc4647.txt
http://www.w3.org/International/articles/language-tags/
http://en.wikipedia.org/wiki/German_language

Translate Toolkit Documentation, Release 3.0.0

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

el

This module represents the Greek language.

See also:

http://en.wikipedia.org/wiki/Greek_language

class translate.lang.el.el
This class represents Greek.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

364 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Greek_language

Translate Toolkit Documentation, Release 3.0.0

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

es

This module represents the Spanish language.

Note: As it only has special case code for initial inverted punctuation, it could also be used for Asturian, Galician, or
Catalan.

class translate.lang.es.es
This class represents Spanish.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Implement some extra features for inverted punctuation.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

4.1. API 365

Translate Toolkit Documentation, Release 3.0.0

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

factory

This module provides a factory to instantiate language classes.

translate.lang.factory.get_all_languages()
Return all language classes.

translate.lang.factory.getlanguage(code)
This returns a language class.

Parameters code – The ISO 639 language code

fa

This module represents the Persian language.

See also:

http://en.wikipedia.org/wiki/Persian_language

class translate.lang.fa.fa
This class represents Persian.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Implement “French” quotation marks.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

366 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Persian_language

Translate Toolkit Documentation, Release 3.0.0

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

fi

This module represents the Finnish language.

class translate.lang.fi.fi
This class represents Finnish.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

fr

This module represents the French language.

See also:

http://en.wikipedia.org/wiki/French_language

class translate.lang.fr.fr
This class represents French.

4.1. API 367

http://en.wikipedia.org/wiki/French_language

Translate Toolkit Documentation, Release 3.0.0

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Implement some extra features for quotation marks.

Known shortcomings:

• % and $ are not touched yet for fear of variables

• Double spaces might be introduced

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

gu

This module represents the Gujarati language.

See also:

http://en.wikipedia.org/wiki/Gujarati_language

class translate.lang.gu.gu
This class represents Gujarati.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

368 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Gujarati_language

Translate Toolkit Documentation, Release 3.0.0

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

he

This module represents the Hebrew language.

See also:

http://en.wikipedia.org/wiki/Hebrew_language

class translate.lang.he.he
This class represents Hebrew.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

4.1. API 369

http://en.wikipedia.org/wiki/Hebrew_language

Translate Toolkit Documentation, Release 3.0.0

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

hi

This module represents the Hindi language.

See also:

http://en.wikipedia.org/wiki/Hindi_language

class translate.lang.hi.hi
This class represents Hindi.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

370 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Hindi_language

Translate Toolkit Documentation, Release 3.0.0

hy

This module represents the Armenian language.

See also:

http://en.wikipedia.org/wiki/Armenian_language

class translate.lang.hy.hy
This class represents Armenian.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

identify

This module contains functions for identifying languages based on language models.

ja

This module represents the Japanese language.

See also:

http://en.wikipedia.org/wiki/Japanese_language

4.1. API 371

http://en.wikipedia.org/wiki/Armenian_language
http://en.wikipedia.org/wiki/Japanese_language

Translate Toolkit Documentation, Release 3.0.0

class translate.lang.ja.ja
This class represents Japanese.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

km

This module represents the Khmer language.

See also:

http://en.wikipedia.org/wiki/Khmer_language

class translate.lang.km.km
This class represents Khmer.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

372 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Khmer_language

Translate Toolkit Documentation, Release 3.0.0

classmethod characters(text)
Returns a list of characters in text.

khmerpunc = ''
These marks are only used for Khmer.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

kn

This module represents the Kannada language.

See also:

http://en.wikipedia.org/wiki/Kannada_language

class translate.lang.kn.kn
This class represents Kannada.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

4.1. API 373

http://en.wikipedia.org/wiki/Kannada_language

Translate Toolkit Documentation, Release 3.0.0

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ko

This module represents the Korean language.

See also:

http://en.wikipedia.org/wiki/Korean_language

class translate.lang.ko.ko
This class represents Korean.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

374 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Korean_language

Translate Toolkit Documentation, Release 3.0.0

ml

This module represents the Malayalam language.

See also:

http://en.wikipedia.org/wiki/Malayalam_language

class translate.lang.ml.ml
This class represents Malayalam.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

mr

This module represents the Marathi language.

See also:

http://en.wikipedia.org/wiki/Marathi_language

class translate.lang.mr.mr
This class represents Marathi.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

4.1. API 375

http://en.wikipedia.org/wiki/Malayalam_language
http://en.wikipedia.org/wiki/Marathi_language

Translate Toolkit Documentation, Release 3.0.0

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ne

This module represents the Nepali language.

See also:

http://en.wikipedia.org/wiki/Nepali_language

class translate.lang.ne.ne
This class represents Nepali.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

376 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Nepali_language

Translate Toolkit Documentation, Release 3.0.0

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ngram

Ngram models for language guessing.

Note: Orignal code from http://thomas.mangin.me.uk/data/source/ngram.py

pa

This module represents the Punjabi language.

See also:

http://en.wikipedia.org/wiki/Punjabi_language

class translate.lang.pa.pa
This class represents Punjabi.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

4.1. API 377

http://thomas.mangin.me.uk/data/source/ngram.py
http://en.wikipedia.org/wiki/Punjabi_language

Translate Toolkit Documentation, Release 3.0.0

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

poedit

Functions to manage Poedit’s language features.

Note: The ISO 639 maps are from Poedit’s isocode.cpp (v1.4.2) to ensure that we match currently released versions
of Poedit.

translate.lang.poedit.dialects = {'Chinese': {'CHINA': 'zh_CN', 'None': 'zh_CN', 'TAIWAN': 'zh_TW'}, 'English': {'None': 'en', 'SOUTH AFRICA': 'en_ZA', 'UNITED KINGDOM': 'en_GB'}, 'Portuguese': {'BRAZIL': 'pt_BR', 'None': 'pt', 'PORTUGAL': 'pt'}}
Language dialects based on ISO 3166 country names, ‘None’ is the default fallback

translate.lang.poedit.isocode(language, country=None)
Returns a language code for the given Poedit language name.

Poedit uses language and country names in the PO header entries:

• X-Poedit-Language

• X-Poedit-Country

This function converts the supplied language name into the required ISO 639 code. If needed, in the case of
dialects, the country name is used to create an xx_YY style dialect code.

Parameters

• language (String) – Language name

• country (String) – Country name

Returns ISO 639 language code

Return type String

translate.lang.poedit.lang_codes = {'aa': 'Afar', 'ab': 'Abkhazian', 'ae': 'Avestan', 'af': 'Afrikaans', 'am': 'Amharic', 'ar': 'Arabic', 'as': 'Assamese', 'ay': 'Aymara', 'az': 'Azerbaijani', 'ba': 'Bashkir', 'be': 'Belarusian', 'bg': 'Bulgarian', 'bh': 'Bihari', 'bi': 'Bislama', 'bn': 'Bengali', 'bo': 'Tibetan', 'br': 'Breton', 'bs': 'Bosnian', 'ca': 'Catalan', 'ce': 'Chechen', 'ch': 'Chamorro', 'co': 'Corsican', 'cs': 'Czech', 'cu': 'Church Slavic', 'cv': 'Chuvash', 'cy': 'Welsh', 'da': 'Danish', 'de': 'German', 'dz': 'Dzongkha', 'el': 'Greek', 'en': 'English', 'eo': 'Esperanto', 'es': 'Spanish', 'et': 'Estonian', 'eu': 'Basque', 'fa': 'Persian', 'fi': 'Finnish', 'fj': 'Fijian', 'fo': 'Faroese', 'fr': 'French', 'fur': 'Friulian', 'fy': 'Frisian', 'ga': 'Irish', 'gd': 'Gaelic', 'gl': 'Galician', 'gn': 'Guarani', 'gu': 'Gujarati', 'ha': 'Hausa', 'he': 'Hebrew', 'hi': 'Hindi', 'ho': 'Hiri Motu', 'hr': 'Croatian', 'hu': 'Hungarian', 'hy': 'Armenian', 'hz': 'Herero', 'ia': 'Interlingua', 'id': 'Indonesian', 'ie': 'Interlingue', 'ik': 'Inupiaq', 'is': 'Icelandic', 'it': 'Italian', 'iu': 'Inuktitut', 'ja': 'Japanese', 'jw': 'Javanese', 'ka': 'Georgian', 'ki': 'Kikuyu', 'kj': 'Kuanyama', 'kk': 'Kazakh', 'kl': 'Kalaallisut', 'km': 'Khmer', 'kn': 'Kannada', 'ko': 'Korean', 'ks': 'Kashmiri', 'ku': 'Kurdish', 'kv': 'Komi', 'kw': 'Cornish', 'ky': 'Kyrgyz', 'la': 'Latin', 'lb': 'Letzeburgesch', 'ln': 'Lingala', 'lo': 'Lao', 'lt': 'Lithuanian', 'lv': 'Latvian', 'mg': 'Malagasy', 'mh': 'Marshall', 'mi': 'Maori', 'mk': 'Macedonian', 'ml': 'Malayalam', 'mn': 'Mongolian', 'mo': 'Moldavian', 'mr': 'Marathi', 'ms': 'Malay', 'mt': 'Maltese', 'my': 'Burmese', 'na': 'Nauru', 'nb': 'Norwegian Bokmal', 'ne': 'Nepali', 'ng': 'Ndonga', 'nl': 'Dutch', 'nn': 'Norwegian Nynorsk', 'nr': 'Ndebele, South', 'nv': 'Navajo', 'ny': 'Chichewa; Nyanja', 'oc': 'Occitan', 'om': '(Afan) Oromo', 'or': 'Oriya', 'os': 'Ossetian; Ossetic', 'pa': 'Panjabi', 'pi': 'Pali', 'pl': 'Polish', 'ps': 'Pashto, Pushto', 'pt': 'Portuguese', 'qu': 'Quechua', 'rm': 'Rhaeto-Romance', 'rn': 'Rundi', 'ro': 'Romanian', 'ru': 'Russian', 'rw': 'Kinyarwanda', 'sa': 'Sanskrit', 'sc': 'Sardinian', 'sd': 'Sindhi', 'se': 'Northern Sami', 'sg': 'Sangro', 'sh': 'Serbo-Croatian', 'si': 'Sinhalese', 'sk': 'Slovak', 'sl': 'Slovenian', 'sm': 'Samoan', 'sn': 'Shona', 'so': 'Somali', 'sq': 'Albanian', 'sr': 'Serbian', 'ss': 'Siswati', 'st': 'Sesotho', 'su': 'Sundanese', 'sv': 'Swedish', 'sw': 'Swahili', 'ta': 'Tamil', 'te': 'Telugu', 'tg': 'Tajik', 'th': 'Thai', 'ti': 'Tigrinya', 'tk': 'Turkmen', 'tl': 'Tagalog', 'tn': 'Setswana', 'to': 'Tonga', 'tr': 'Turkish', 'ts': 'Tsonga', 'tt': 'Tatar', 'tw': 'Twi', 'ty': 'Tahitian', 'ug': 'Uighur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vi': 'Vietnamese', 'vo': 'Volapuk', 'wa': 'Walloon', 'wo': 'Wolof', 'xh': 'Xhosa', 'yi': 'Yiddish', 'yo': 'Yoruba', 'za': 'Zhuang', 'zh': 'Chinese', 'zu': 'Zulu'}
ISO369 codes and names as used by Poedit. Mostly these are identical to ISO 639, but there are some differ-
ences.

translate.lang.poedit.lang_names = {'(Afan) Oromo': 'om', 'Abkhazian': 'ab', 'Afar': 'aa', 'Afrikaans': 'af', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', 'Assamese': 'as', 'Avestan': 'ae', 'Aymara': 'ay', 'Azerbaijani': 'az', 'Bashkir': 'ba', 'Basque': 'eu', 'Belarusian': 'be', 'Bengali': 'bn', 'Bihari': 'bh', 'Bislama': 'bi', 'Bosnian': 'bs', 'Breton': 'br', 'Bulgarian': 'bg', 'Burmese': 'my', 'Catalan': 'ca', 'Chamorro': 'ch', 'Chechen': 'ce', 'Chichewa; Nyanja': 'ny', 'Chinese': 'zh', 'Church Slavic': 'cu', 'Chuvash': 'cv', 'Cornish': 'kw', 'Corsican': 'co', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'Dzongkha': 'dz', 'English': 'en', 'Esperanto': 'eo', 'Estonian': 'et', 'Faroese': 'fo', 'Fijian': 'fj', 'Finnish': 'fi', 'French': 'fr', 'Frisian': 'fy', 'Friulian': 'fur', 'Gaelic': 'gd', 'Galician': 'gl', 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Guarani': 'gn', 'Gujarati': 'gu', 'Hausa': 'ha', 'Hebrew': 'he', 'Herero': 'hz', 'Hindi': 'hi', 'Hiri Motu': 'ho', 'Hungarian': 'hu', 'Icelandic': 'is', 'Indonesian': 'id', 'Interlingua': 'ia', 'Interlingue': 'ie', 'Inuktitut': 'iu', 'Inupiaq': 'ik', 'Irish': 'ga', 'Italian': 'it', 'Japanese': 'ja', 'Javanese': 'jw', 'Kalaallisut': 'kl', 'Kannada': 'kn', 'Kashmiri': 'ks', 'Kazakh': 'kk', 'Khmer': 'km', 'Kikuyu': 'ki', 'Kinyarwanda': 'rw', 'Komi': 'kv', 'Korean': 'ko', 'Kuanyama': 'kj', 'Kurdish': 'ku', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Latin': 'la', 'Latvian': 'lv', 'Letzeburgesch': 'lb', 'Lingala': 'ln', 'Lithuanian': 'lt', 'Macedonian': 'mk', 'Malagasy': 'mg', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Marshall': 'mh', 'Moldavian': 'mo', 'Mongolian': 'mn', 'Nauru': 'na', 'Navajo': 'nv', 'Ndebele, South': 'nr', 'Ndonga': 'ng', 'Nepali': 'ne', 'Northern Sami': 'se', 'Norwegian Bokmal': 'nb', 'Norwegian Nynorsk': 'nn', 'Occitan': 'oc', 'Oriya': 'or', 'Ossetian; Ossetic': 'os', 'Pali': 'pi', 'Panjabi': 'pa', 'Pashto, Pushto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese': 'pt', 'Quechua': 'qu', 'Rhaeto-Romance': 'rm', 'Romanian': 'ro', 'Rundi': 'rn', 'Russian': 'ru', 'Samoan': 'sm', 'Sangro': 'sg', 'Sanskrit': 'sa', 'Sardinian': 'sc', 'Serbian': 'sr', 'Serbo-Croatian': 'sh', 'Sesotho': 'st', 'Setswana': 'tn', 'Shona': 'sn', 'Sindhi': 'sd', 'Sinhalese': 'si', 'Siswati': 'ss', 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', 'Swahili': 'sw', 'Swedish': 'sv', 'Tagalog': 'tl', 'Tahitian': 'ty', 'Tajik': 'tg', 'Tamil': 'ta', 'Tatar': 'tt', 'Telugu': 'te', 'Thai': 'th', 'Tibetan': 'bo', 'Tigrinya': 'ti', 'Tonga': 'to', 'Tsonga': 'ts', 'Turkish': 'tr', 'Turkmen': 'tk', 'Twi': 'tw', 'Uighur': 'ug', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Volapuk': 'vo', 'Walloon': 'wa', 'Welsh': 'cy', 'Wolof': 'wo', 'Xhosa': 'xh', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zhuang': 'za', 'Zulu': 'zu'}
Reversed lang_codes

si

This module represents the Sinhala language.

See also:

378 Chapter 4. API Reference

https://github.com/vslavik/poedit/blob/v1.4.2/src/isocodes.cpp#L36-227

Translate Toolkit Documentation, Release 3.0.0

http://en.wikipedia.org/wiki/Sinhala_language

class translate.lang.si.si
This class represents Sinhala.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

st

This module represents the Southern Sotho language.

class translate.lang.st.st
This class represents Southern Sotho.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

4.1. API 379

http://en.wikipedia.org/wiki/Sinhala_language

Translate Toolkit Documentation, Release 3.0.0

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

sv

This module represents the the Swedish language.

See also:

http://en.wikipedia.org/wiki/Swedish_language

class translate.lang.sv.sv
This class represents Swedish.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

380 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Swedish_language

Translate Toolkit Documentation, Release 3.0.0

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ta

This module represents the Tamil language.

See also:

http://en.wikipedia.org/wiki/Tamil_language

class translate.lang.ta.ta
This class represents Tamil.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

team

Module to guess the language ISO code based on the ‘Language-Team’ entry in the header of a Gettext PO file.

4.1. API 381

http://en.wikipedia.org/wiki/Tamil_language

Translate Toolkit Documentation, Release 3.0.0

translate.lang.team.LANG_TEAM_CONTACT_SNIPPETS = {'af': ('i18n@af.org.za', 'Petri Jooste'), 'am': ('@geez.org',), 'ar': ('arabeyes.org', 'Arabeyes'), 'as': ('assam@mm.assam-glug.org',), 'ast': ('@softastur.org', 'launchpad.net/~ubuntu-l10n-ast', 'softast-xeneral@lists.sourceforge.net', 'Softastur'), 'az': ('linuxaz@azerimal.net', 'gnome@azitt.com', 'gnome@aztt.com'), 'az_IR': ('az-ir@lists.sharif.edu',), 'be': ('i18n@mova.org', 'i18n@tut.by', 'mozilla_byx@poczta.fm'), 'be@latin': ('translation-team-be-latin@lists', 'be-latin.open-tran.eu'), 'bg': ('dict@fsa-bg.org', 'dict@linux.zonebg.com'), 'bn': ('gnome-translation@bengalinux.org', 'core@bengalinux.org', 'ankur-bd-l10n@googlegroups.com', 'redhat-translation@bengalinux.org'), 'bn_IN': ('anubad@lists.ankur.org.in',), 'br': ('drouizig@drouizig.org', 'brenux@free.fr', 'tradgnome@softcatala.net', 'fedora@softcatala.org'), 'bs': ('lokal@linux.org.ba', 'lokal@lugbih.org'), 'ca': ('@softcatala.org',), 'crh': ('tilde-birlik-tercime@lists.sourceforge.net',), 'cs': ('fedora-cs-list@redhat.com', 'cs-users@lists.fedoraproject.org', 'debian-l10n-czech@lists.debian.org', 'kde-czech-apps@lists.sourceforge.net', 'kde-czech-apps@lists.sf.net', 'translations.cs@gnupg.cz'), 'cy': ('gnome-cy@lists.linux.org.uk', 'gnome-cy@pengwyn.linux.org.uk', 'gnome-cy@www.linux.org', 'gnome-cy@www.linux.org.uk', 'cy@pengwyn.linux.org.uk'), 'da': ('dansk@dansk-gruppen.dk', 'dansk@klid.dk', 'sslug-locale@sslug.dk'), 'de': ('gnome-de@gnome.org', 'debian-l10n-german@lists.debian.org'), 'dz': ('pgeyleg@dit.gov.bt', 'pgyeleg@dit.gov.bt'), 'el': ('debian-l10n-greek@lists.debian.org', 'i18ngr@lists.hellug.gr', 'i18n@hellug.gr', 'nls@tux.hellug.gr', 'team@gnome.gr', 'team@lists.gnome.gr', 'users@el.openoffice.org'), 'en@shaw': ('ubuntu-l10n-en-shaw@launchpad.net', 'ubuntu-l10n-en-shaw@lists.launchpad.net'), 'en_AU': ('trans@six-by-nine.com.au',), 'en_CA': ('adamw@gnome.org', 'adamw@freebsd.org'), 'en_GB': ('kde-en-gb@kde.me.uk',), 'eo': ('eo-tradukado@lists.tuxfamily.org', 'debian-l10n-esperanto@lists.debian.org', 'ubuntu-l10n-eo@lists.launchpad.net', 'eo-tradukado.tuxfamily.org'), 'es': ('pgsql-es-ayuda@postgresql.org', 'debian-l10n-spanish@lists.debian.org', 'gnome-es@gnome.org', 'traductores@es.gnome.org'), 'et': ('gnome-et@linux.ee', 'kde-et@linux.ee', 'linux-ee@lists.eenet.ee', 'linux-et@lists.eenet.ee', 'et-gnome@linux.ee', 'linux-ee@eenet.ee'), 'eu': ('debian-l10n-basque@lists.debian.org', 'debian-l10n-eu@lists.debian.org', 'itzulpena@euskalgnu.org', 'gnome@euskalgnu.org', 'librezale@librezale.org', 'linux-eu@chanae.alphanet.ch'), 'fa': ('farsi@lists.sharif.edu', 'Farsiweb.info'), 'fi': ('debian-l10n-finnish@lists.debian.org', 'gnome-fi-laatu@lists.sourceforge.net', 'laatu@lokalisointi.org', 'lokalisointi-laatu@linux-aktivaattori.org', 'laatu@gnome.fi', 'yast-trans-fi@kotoistaminen.novell.fi'), 'fr': ('debian-l10n-french@lists.debian.org', 'gnomefr@traduc.org', 'kde-francophone@kde.org', 'traduc@traduc.org', 'pgsql-fr-generale@postgresql.org', 'rpm-fr@livna.org'), 'ga': ('gaeilge-gnulinux@lists.sourceforge.net', 'gaeilge-a@listserv.heanet.ie'), 'gl': ('trasno@ceu.fi.udc.es', 'gnome@g11n.net', 'gpul-traduccion@ceu.fi.udc.es', 'proxecto@trasno.net', 'trasno@gpul.org'), 'gu': ('indianoss-gujarati@lists.sourceforge.net',), 'he': ('debian-hebrew-common@lists.alioth.debian.org', 'kde-il@yahoogroups.com', 'fedora-he-list@redhat.com', 'mdk-hebrew@iglu.org.il'), 'hi': ('indlinux-hindi-gnome@lists.sourceforge.net', 'indlinux-hindi@lists.sourceforge.net'), 'hr': ('translator-shop.org', 'lokalizacija@linux.hr'), 'hu': ('debian-l10n-hungarian@lists.debian.org', 'gnome@fsf.hu', 'gnome@gnome.hu', 'magyar@lists.linux.hu'), 'id': ('@id.gnome.org', '@gnome.linux.or.id', 'mdk-id@yahoogroups.com', 'linux.or.id', 'gnome@i15n.org'), 'io': ('gnome-ido@lists.mterry.name',), 'is': ('gnome@techattack.nu', 'kde-isl@mmedia.is', 'kde-isl@molar.is'), 'it': ('debian-l10n-italian@lists.debian.org', 'traduzioni@itpug.org', 'fedora-trans-it@redhat.com', 'tp@lists.linux.it'), 'ja': ('debian-doc@debian.or.jp', 'debian-japanese@lists.debian.org', 'gnome-translation@gnome.gr.jp', 'translation@gnome.gr.jp', 'jpug-doc@ml.postgresql.jp'), 'ka': ('geognome@googlegroups.com', 'Ubuntu-Georgian-Translators@googlegroups.com'), 'kk': ('kk_KZ@googlegroups.com',), 'km': ('@khmeros.info',), 'kn': ('debian-l10n-kannada@lists.debian.org',), 'ko': ('gnome-kr-hackers@list.kldp.net', 'gnome-kr-hackers@lists.kldp.net', 'gnome-kr-translation@lists.kldp.net', 'pgsql-kr@postgresql.or.kr', 'hangul-hackers@lists.kldp.net', 'debian-l10n-korean@lists.debian.org', 'gnome-kr-translation@lists.sourceforge.net'), 'ks': ('ks-gnome-trans-commits@lists.code.indlinux.net',), 'ku': ('gnu-ku-wergerandin@lists.sourceforge.net',), 'ky': ('i18n-team-ky-kyrgyz@lists.sourceforge.net', 'ky-li@mail.ru'), 'la': ('gnome-latin-list@gnome.org',), 'li': ('li@gnome.org',), 'lt': ('gimp-lt@lists.akl.lt', 'gnome-lt@lists.akl.lt', 'gnome-lt@lists.gnome.org', 'komp_lt@konferencijos.lt'), 'lv': ('lata-l10n@googlegroups.com', 'lata-i18n@groups.google.com', 'locale@laka.lv', 'll10nt@os.lv'), 'mai': ('maithili.sf.net',), 'mg': ('i18n-malagasy-gnome@gnome.org',), 'mi': ('maori@nzlinux.org.nz',), 'mk': ('gnomk-main@lists.sourceforge.net', 'lug@lists.linux.net.mk', 'mkde-l10n@lists.sourceforge.net', 'ossm-members@hedona.on.net.mk'), 'ml': ('smc-discuss@googlegroups.com',), 'mn': ('openmn-', 'openmn.org'), 'ms': ('gabai-penyumbang@lists.sourceforge.net', 'gabai-penyumbang@lists.sf.net', 'kedidiemas@yahoogroups.com'), 'nb': ('i18n-nb@lister.ping.uio.no',), 'nds': ('nds-lowgerman@lists.sourceforge.net',), 'ne': ('info@mpp.org.np',), 'nl': ('debian-l10n-dutch@lists.debian.org', 'vertaling@nl.gnome.org', 'vertaling@vrijschrift.org', 'nl@vrijschrift.org', 'vertaling@nl.linux.org', 'vertaling@nl.li.org'), 'nn': ('i18n-nn@lister.ping.uio.no',), 'nso': ('sepedi@translate.org.za',), 'or': ('oriya-group@lists.sarovar.org', 'oriya-it@googlegroups.com'), 'pa': ('punjabi-l10n@users.sf.net', 'fedora-pa-list@redhat.com', 'punjabi-users@lists.sf.net', 'punjabi-l10n@lists.sourceforge.net', 'punlinux-i18n@lists.sourceforge.net'), 'pl': ('gnomepl@aviary.pl', 'debian-l10n-polish@lists.debian.org', 'gnome-l10n@lists.aviary.pl', 'translators@gnomepl.org'), 'ps': ('pathanisation@googelgroups.com',), 'pt': ('fedora-trans-pt@redhat.org', 'gnome_pt@yahoogroups.com', 'traduz@debianpt.org', 'traduz@debian.pt'), 'pt_BR': ('gnome-l10n-br@listas.cipsga.org.br', 'gnome-pt_br-list@gnome.org', 'fedora-docs-br@redhat.com', 'fedora-trans-pt-br@redhat.com', 'ldp-br@bazar.conectiva.com.br', 'pgbr-dev@postgresql.org.br', 'pgbr-dev@listas.postgresql.org.br', 'debian-l10n-portuguese@lists.debian.org'), 'ro': ('fedora-ro@googlegroups.com', 'gnomero-list@lists.sourceforge.net', 'debian-l10n-romanian@lists.debian.org'), 'ru': ('pgsql-rus@yahoogroups.com', 'debian-l10n-russian@lists.debian.org', 'gnupg-ru@gnupg.org'), 'scn': ('l10n@cademiasiciliana.org',), 'sk': ('sk-i18n@lists.linux.sk', 'kde-sk@linux.sk'), 'sl': ('gnome-si@googlegroups.com',), 'sq': ('gnome-albanian-perkthyesit@lists.sourceforge.net', 'debian-l10n-albanian@lists.debian.org'), 'sr': ('@prevod.org', 'serbiangnome-lista@nongnu.org'), 'sv': ('debian-l10n-swedish@lists.debian.org', 'tp-sv@listor.tp-sv.se'), 'ta': ('gnome-tamil-translation@googlegroups.com', 'tamilinix@yahoogroups.com', 'Ubuntu-l10n-tam@lists.ubuntu.com', 'tamil-DI@yahoogroups.com'), 'te': ('localisation@swecha.org', 'indlinux-telugu@lists.sourceforge.net'), 'th': ('l10n@opentle.org', 'thai-l10n@googlegroup.com', 'thailang@buraphalinux.org', 'thai-l10n@googlegroups.com', 'l10n.opentle.org'), 'tk': ('kakilikgroup@yahoo.com',), 'tl': ('debian-tl@banwa.upm.edu.ph',), 'tr': ('debian-l10n-turkish@lists.debian.org', 'gnome-turk@gnome.org', 'gnu-tr-u12a@lists.sourceforge.net', 'turkce@pardus.org.tr'), 'tt': ('tatarish.l10n@gmail.com',), 'ug': ('gnome-uighur@yahoogroups.com',), 'uk': ('linux@linux.org.ua',), 'ur': ('l10n@urduweb.org', 'urdu.scs.gift@gmail.com'), 've': ('venda@translate.org.za',), 'vi': ('gnomevi-list@lists.sourceforge.net', 'vi-VN@googlegroups.com'), 'wa': ('linux-wa@',), 'xh': ('xh-translate@ubuntu.com', 'xhosa@translate.org.za', 'xhosa@ubuntu.com'), 'zh_CN': ('i18n-translation@lists.linux.net.cn', 'i18n-zh@googlegroups.com', 'translation-team-zh-cn@lists.sourceforge.net', 'i18n-zh@googlegroup.com'), 'zh_TW': ('zh-l10n@lists.linux.org.tw', 'chinese-l10n@googlegroups.com', 'community@linuxhall.org', 'zh-l10n@linux.org.tw'), 'zu': ('zulu@translate.org.za',)}
Language codes with snippets of contact information that can be used to uniquely identify the language

translate.lang.team.guess_language(team_string)
Gueses the language of a PO file based on the Language-Team entry

te

This module represents the Telugu language.

See also:

http://en.wikipedia.org/wiki/Telugu_language

class translate.lang.te.te
This class represents Telugu.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

th

This module represents the Thai language.

See also:

http://en.wikipedia.org/wiki/Thai_language

382 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Telugu_language
http://en.wikipedia.org/wiki/Thai_language

Translate Toolkit Documentation, Release 3.0.0

class translate.lang.th.th
This class represents Thai.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ug

This module represents the Uyghur language.

See also:

http://en.wikipedia.org/wiki/Uyghur_language

class translate.lang.ug.ug
This class represents Uyghur.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

4.1. API 383

http://en.wikipedia.org/wiki/Uyghur_language

Translate Toolkit Documentation, Release 3.0.0

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

ur

This module represents the Urdu language.

See also:

http://en.wikipedia.org/wiki/Urdu_language

class translate.lang.ur.ur
This class represents Urdu.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

384 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Urdu_language

Translate Toolkit Documentation, Release 3.0.0

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

vi

This module represents the Vietnamese language.

See also:

http://en.wikipedia.org/wiki/Vietnamese_language

class translate.lang.vi.vi
This class represents Vietnamese.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Implement some extra features for quotation marks.

Known shortcomings:

• % and $ are not touched yet for fear of variables

• Double spaces might be introduced

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

4.1. API 385

http://en.wikipedia.org/wiki/Vietnamese_language

Translate Toolkit Documentation, Release 3.0.0

classmethod words(text)
Returns a list of words in text.

zh

This module represents the Chinese language (Both tradisional and simplified).

See also:

http://en.wikipedia.org/wiki/Chinese_language

class translate.lang.zh.zh
This class represents Chinese.

classmethod alter_length(text)
Converts the given string by adding or removing characters as an estimation of translation length (with
English assumed as source language).

classmethod capsstart(text)
Determines whether the text starts with a capital letter.

classmethod character_iter(text)
Returns an iterator over the characters in text.

classmethod characters(text)
Returns a list of characters in text.

classmethod length_difference(length)
Returns an estimate to a likely change in length relative to an English string of length length.

classmethod numbertranslate(text)
Converts the numbers in a string according to the rules of the language.

classmethod numstart(text)
Determines whether the text starts with a numeric value.

classmethod punctranslate(text)
Converts the punctuation in a string according to the rules of the language.

classmethod sentence_iter(text, strip=True)
Returns an iterator over the sentences in text.

classmethod sentences(text, strip=True)
Returns a list of sentences in text.

classmethod word_iter(text)
Returns an iterator over the words in text.

classmethod words(text)
Returns a list of words in text.

misc

Miscellaneous modules for translate - including modules for backward compatibility with pre-2.3 versions of Python

dictutils

Implements a case-insensitive (on keys) dictionary and order-sensitive dictionary

386 Chapter 4. API Reference

http://en.wikipedia.org/wiki/Chinese_language

Translate Toolkit Documentation, Release 3.0.0

class translate.misc.dictutils.cidict(fromdict=None)

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None)
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update(E)→ None.
Update D from E: for k in E.keys(): D[k] = E[k]

values()→ an object providing a view on D’s values

file_discovery

translate.misc.file_discovery.get_abs_data_filename(path_parts, basedirs=None)
Get the absolute path to the given file- or directory name in the current running application’s data directory.

Parameters path_parts (list) – The path parts that can be joined by os.path.join().

multistring

Supports a hybrid Unicode string that can also have a list of alternate strings in the strings attribute

class translate.misc.multistring.multistring(*args, **kwargs)

capitalize()
Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()
Return a version of the string suitable for caseless comparisons.

center()
Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

4.1. API 387

https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

count(sub[, start[, end]])→ int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional argu-
ments start and end are interpreted as in slice notation.

encode()
Encode the string using the codec registered for encoding.

encoding The encoding in which to encode the string.

errors The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding
errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefre-
place’ as well as any other name registered with codecs.register_error that can handle UnicodeEn-
codeErrors.

endswith(suffix[, start[, end]])→ bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to
try.

expandtabs()
Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format(*args, **kwargs)→ str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified
by braces (‘{‘ and ‘}’).

format_map(mapping)→ str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by
braces (‘{‘ and ‘}’).

index(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()
Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character
in the string.

isalpha()
Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the
string.

isascii()
Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()
Return True if the string is a decimal string, False otherwise.

388 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

A string is a decimal string if all characters in the string are decimal and there is at least one character in
the string.

isdigit()
Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the
string.

isidentifier()
Return True if the string is a valid Python identifier, False otherwise.

Use keyword.iskeyword() to test for reserved identifiers such as “def” and “class”.

islower()
Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased
character in the string.

isnumeric()
Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()
Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()
Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the
string.

istitle()
Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase
characters only cased ones.

isupper()
Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased
character in the string.

join()
Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new
string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()
Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()
Return a copy of the string converted to lowercase.

4.1. API 389

Translate Toolkit Documentation, Release 3.0.0

lstrip()
Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

static maketrans()
Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two
arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be
mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

partition()
Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the
part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

replace(old, new, count=None)
Return a copy with all occurrences of substring old replaced by new.

count Maximum number of occurrences to replace. -1 (the default value) means replace all
occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()
Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()
Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple
containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()
Return a list of the words in the string, using sep as the delimiter string.

sep The delimiter according which to split the string. None (the default value) means split ac-
cording to any whitespace, and discard empty strings from the result.

maxsplit Maximum number of splits to do. -1 (the default value) means no limit.

Splits are done starting at the end of the string and working to the front.

390 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

rstrip()
Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()
Return a list of the words in the string, using sep as the delimiter string.

sep The delimiter according which to split the string. None (the default value) means split according to
any whitespace, and discard empty strings from the result.

maxsplit Maximum number of splits to do. -1 (the default value) means no limit.

splitlines()
Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith(prefix[, start[, end]])→ bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to
try.

strip()
Return a copy of the string with leading and trailing whitespace remove.

If chars is given and not None, remove characters in chars instead.

swapcase()
Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()
Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower
case.

translate()
Replace each character in the string using the given translation table.

table Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals,
strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this oper-
ation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()
Return a copy of the string converted to uppercase.

zfill()
Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

optrecurse

class translate.misc.optrecurse.ManHelpFormatter(indent_increment=0,
max_help_position=0, width=80,
short_first=1)

format_option_strings(option)
Return a comma-separated list of option strings & metavariables.

4.1. API 391

Translate Toolkit Documentation, Release 3.0.0

class translate.misc.optrecurse.ManPageOption(*opts, **attrs)

take_action(action, dest, opt, value, values, parser)
take_action that can handle manpage as well as standard actions

class translate.misc.optrecurse.RecursiveOptionParser(formats, usetemplates=False,
allowmissingtemplate=False,
description=None)

A specialized Option Parser for recursing through directories.

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

392 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
Parses the command line options, handling implicit input/output args.

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

4.1. API 393

Translate Toolkit Documentation, Release 3.0.0

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Process an individual file.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
Recurse through directories and process files.

run()
Parses the arguments, and runs recursiveprocess with the resulting options. . .

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setprogressoptions()
Sets the progress options.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

394 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

ourdom

module that provides modified DOM functionality for our needs

Note that users of ourdom should ensure that no code might still use classes directly from minidom, like
minidom.Element, minidom.Document or methods such as minidom.parseString, since the functionality provided
here will not be in those objects.

class translate.misc.ourdom.Document

documentElement
Top-level element of this document.

firstChild
First child node, or None.

lastChild
Last child node, or None.

localName
Namespace-local name of this node.

class translate.misc.ourdom.Element(tagName, namespaceURI=None, prefix=None, local-
Name=None)

attributes
NamedNodeMap of attributes on the element.

firstChild
First child node, or None.

lastChild
Last child node, or None.

localName
Namespace-local name of this element.

class translate.misc.ourdom.ExpatBuilderNS(options=None)

createParser()
Create a new namespace-handling parser.

getParser()
Return the parser object, creating a new one if needed.

install(parser)
Insert the namespace-handlers onto the parser.

parseFile(file)
Parse a document from a file object, returning the document node.

parseString(string)
Parse a document from a string, returning the document node.

reset()
Free all data structures used during DOM construction.

start_namespace_decl_handler(prefix, uri)
Push this namespace declaration on our storage.

4.1. API 395

Translate Toolkit Documentation, Release 3.0.0

translate.misc.ourdom.getElementsByTagName_helper(parent, name, dummy=None)
A reimplementation of getElementsByTagName as an iterator.

Note that this is not compatible with getElementsByTagName that returns a list, therefore, the class below
exposes this through yieldElementsByTagName

translate.misc.ourdom.getnodetext(node)
returns the node’s text by iterating through the child nodes

translate.misc.ourdom.parse(file, parser=None, bufsize=None)
Parse a file into a DOM by filename or file object.

translate.misc.ourdom.parseString(string, parser=None)
Parse a file into a DOM from a string.

translate.misc.ourdom.searchElementsByTagName_helper(parent, name, onlysearch)
limits the search to within tags occuring in onlysearch

translate.misc.ourdom.writexml_helper(self, writer, indent=”, addindent=”, newl=”)
A replacement for writexml that formats it like typical XML files. Nodes are intendented but text nodes, where
whitespace can be significant, are not indented.

progressbar

Progress bar utilities for reporting feedback on the progress of an application.

class translate.misc.progressbar.DotsProgressBar
An ultra-simple progress indicator that just writes a dot for each action

show(verbosemessage)
show a dot for progress :-)

class translate.misc.progressbar.HashProgressBar(*args, **kwargs)
A ProgressBar which knows how to go back to the beginning of the line.

show(verbosemessage)
displays the progress bar

class translate.misc.progressbar.MessageProgressBar(*args, **kwargs)
A ProgressBar that just writes out the messages without any progress display

show(verbosemessage)
displays the progress bar

class translate.misc.progressbar.NoProgressBar
An invisible indicator that does nothing.

show(verbosemessage)
show nothing for progress :-)

class translate.misc.progressbar.ProgressBar(minValue=0, maxValue=100, total-
Width=50)

A plain progress bar that doesn’t know very much about output.

show(verbosemessage)
displays the progress bar

class translate.misc.progressbar.VerboseProgressBar(*args, **kwargs)

show(verbosemessage)
displays the progress bar

396 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

quote

String processing utilities for extracting strings with various kinds of delimiters

translate.misc.quote.entitydecode(source, name2codepoint)
Decode source using entities from name2codepoint.

Parameters

• source (unicode) – Source string to decode

• name2codepoint (dict()) – Dictionary mapping entity names (without the the leading
& or the trailing ;) to code points

translate.misc.quote.entityencode(source, codepoint2name)
Encode source using entities from codepoint2name.

Parameters

• source (unicode) – Source string to encode

• codepoint2name (dict()) – Dictionary mapping code points to entity names (without
the the leading & or the trailing ;)

translate.misc.quote.escapecontrols(source)
escape control characters in the given string

translate.misc.quote.extract(source, startdelim, enddelim, escape=None, startinstring=False, al-
lowreentry=True)

Extracts a doublequote-delimited string from a string, allowing for backslash-escaping returns tuple of (quoted
string with quotes, still in string at end).

translate.misc.quote.extractwithoutquotes(source, startdelim, enddelim, escape=None,
startinstring=False, includeescapes=True, al-
lowreentry=True)

Extracts a doublequote-delimited string from a string, allowing for backslash-escaping includeescapes can also
be a function that takes the whole escaped string and returns the replaced version.

translate.misc.quote.find_all(searchin, substr)
Returns a list of locations where substr occurs in searchin locations are not allowed to overlap

translate.misc.quote.htmlentitydecode(source)
Decode source using HTML entities e.g. © -> ©.

Parameters source (unicode) – Source string to decode

translate.misc.quote.htmlentityencode(source)
Encode source using HTML entities e.g. © -> ©

Parameters source (unicode) – Source string to encode

translate.misc.quote.java_utf8_properties_encode(source)
Encodes source in the escaped-unicode encoding used by java utf-8 .properties files.

translate.misc.quote.javapropertiesencode(source)
Encodes source in the escaped-unicode encoding used by Java .properties files

translate.misc.quote.mozillaescapemarginspaces(source)
Escape leading and trailing spaces for Mozilla .properties files.

translate.misc.quote.propertiesdecode(source)
Decodes source from the escaped-unicode encoding used by .properties files.

Java uses Latin1 by default, and Mozilla uses UTF-8 by default.

4.1. API 397

Translate Toolkit Documentation, Release 3.0.0

Since the .decode(“unicode-escape”) routine decodes everything, and we don’t want to we reimplemented the
algorithm from Python Objects/unicode.c in Python and modify it to retain escaped control characters.

wsgi

Wrapper to launch the bundled CherryPy server.

translate.misc.wsgi.launch_server(host, port, app, **kwargs)
Use cheroot WSGI server, a multithreaded scallable server.

xml_helpers

Helper functions for working with XML.

translate.misc.xml_helpers.getText(node, xml_space=’preserve’)
Extracts the plain text content out of the given node.

This method checks the xml:space attribute of the given node, and takes an optional default to use in case nothing
is specified in this node.

translate.misc.xml_helpers.getXMLlang(node)
Gets the xml:lang attribute on node

translate.misc.xml_helpers.getXMLspace(node, default=None)
Gets the xml:space attribute on node

translate.misc.xml_helpers.namespaced(namespace, name)
Returns name in Clark notation within the given namespace.

For example namespaced(“source”) in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

translate.misc.xml_helpers.normalize_space(text)
Normalize the given text for implementation of xml:space="default".

translate.misc.xml_helpers.normalize_xml_space(node, xml_space, remove_start=False)
normalize spaces following the nodes xml:space, or alternatively the given xml_space parameter.

translate.misc.xml_helpers.reindent(elem, level=0, indent=’ ’, max_level=4, skip=None,
toplevel=True, leaves=None)

Adjust indentation to match specification.

Each nested tag is identified by indent string, up to max_level depth, possibly skipping tags listed in skip.

translate.misc.xml_helpers.setXMLlang(node, lang)
Sets the xml:lang attribute on node

translate.misc.xml_helpers.setXMLspace(node, value)
Sets the xml:space attribute on node

translate.misc.xml_helpers.string_xpath = string()
Return a non-normalized string in the node subtree

translate.misc.xml_helpers.string_xpath_normalized = normalize-space()
Return a (space) normalized string in the node subtree

398 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

translate.misc.xml_helpers.xml_preserve_ancestors = ancestor-or-self::*[attribute::xml:space='preserve']
All ancestors with xml:space=’preserve’

translate.misc.xml_helpers.xml_space_ancestors = ancestor-or-self::*/attribute::xml:space
All xml:space attributes in the ancestors

search

Services for searching and matching of text.

lshtein

A class to calculate a similarity based on the Levenshtein distance.

See http://en.wikipedia.org/wiki/Levenshtein_distance.

If available, the python-Levenshtein will be used which will provide better performance as it is implemented natively.

translate.search.lshtein.distance(a, b, stopvalue=0)
Same as python_distance in functionality. This uses the fast C version if we detected it earlier.

Note that this does not support arbitrary sequence types, but only string types.

translate.search.lshtein.native_distance(a, b, stopvalue=0)
Same as python_distance in functionality. This uses the fast C version if we detected it earlier.

Note that this does not support arbitrary sequence types, but only string types.

translate.search.lshtein.python_distance(a, b, stopvalue=-1)
Calculates the distance for use in similarity calculation. Python version.

match

Class to perform translation memory matching from a store of translation units.

class translate.search.match.matcher(store, max_candidates=10, min_similarity=75,
max_length=70, comparer=None, usefuzzy=False)

A class that will do matching and store configuration for the matching process.

buildunits(candidates)
Builds a list of units conforming to base API, with the score in the comment.

extendtm(units, store=None, sort=True)
Extends the memory with extra unit(s).

Parameters

• units – The units to add to the TM.

• store – Optional store from where some metadata can be retrieved and associated with
each unit.

• sort – Optional parameter that can be set to False to supress sorting of the candidates
list. This should probably only be used in matcher.inittm().

getstartlength(min_similarity, text)
Calculates the minimum length we are interested in. The extra fat is because we don’t use plain character
distance only.

4.1. API 399

http://en.wikipedia.org/wiki/Levenshtein_distance
https://pypi.python.org/pypi/python-Levenshtein

Translate Toolkit Documentation, Release 3.0.0

getstoplength(min_similarity, text)
Calculates a length beyond which we are not interested. The extra fat is because we don’t use plain
character distance only.

inittm(stores, reverse=False)
Initialises the memory for later use. We use simple base units for speedup.

matches(text)
Returns a list of possible matches for given source text.

Parameters text (String) – The text that will be search for in the translation memory

Return type list

Returns a list of units with the source and target strings from the translation memory. If self.
addpercentage is True (default) the match quality is given as a percentage in the notes.

setparameters(max_candidates=10, min_similarity=75, max_length=70)
Sets the parameters without reinitialising the tm. If a parameter is not specified, it is set to the default, not
ignored

usable(unit)
Returns whether this translation unit is usable for TM

translate.search.match.sourcelen(unit)
Returns the length of the source string.

class translate.search.match.terminologymatcher(store, max_candidates=10,
min_similarity=75, max_length=500,
comparer=None)

A matcher with settings specifically for terminology matching.

buildunits(candidates)
Builds a list of units conforming to base API, with the score in the comment.

extendtm(units, store=None, sort=True)
Extends the memory with extra unit(s).

Parameters

• units – The units to add to the TM.

• store – Optional store from where some metadata can be retrieved and associated with
each unit.

• sort – Optional parameter that can be set to False to supress sorting of the candidates
list. This should probably only be used in matcher.inittm().

getstartlength(min_similarity, text)
Calculates the minimum length we are interested in. The extra fat is because we don’t use plain character
distance only.

getstoplength(min_similarity, text)
Calculates a length beyond which we are not interested. The extra fat is because we don’t use plain
character distance only.

inittm(store)
Normal initialisation, but convert all source strings to lower case

matches(text)
Normal matching after converting text to lower case. Then replace with the original unit to retain com-
ments, etc.

400 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

setparameters(max_candidates=10, min_similarity=75, max_length=70)
Sets the parameters without reinitialising the tm. If a parameter is not specified, it is set to the default, not
ignored

usable(unit)
Returns whether this translation unit is usable for terminology.

translate.search.match.unit2dict(unit)
converts a pounit to a simple dict structure for use over the web

terminology

A class that does terminology matching

services

translate.services is part of the translate toolkit. It provides network services for interacting with the toolkit

tmserver

A translation memory server using tmdb for storage, communicates with clients using JSON over HTTP.

class translate.services.tmserver.TMServer(tmdbfile, tmfiles, max_candidates=3,
min_similarity=75, max_length=1000,
prefix=”, source_lang=None, tar-
get_lang=None)

A RESTful JSON TM server.

storage

Classes that represent various storage formats for localization.

base

Base classes for storage interfaces.

exception translate.storage.base.ParseError(inner_exc)

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class translate.storage.base.TranslationStore(unitclass=None, encoding=None)
Base class for stores for multiple translation units of type UnitClass.

Extensions = None
A list of file extentions associated with this store type

Mimetypes = None
A list of MIME types associated with this store type

Name = 'Base translation store'
The human usable name of this store type

4.1. API 401

Translate Toolkit Documentation, Release 3.0.0

UnitClass
The class of units that will be instantiated and used by this class

alias of TranslationUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

402 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

parse(data)
parser to process the given source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

suggestions_in_format = False
Indicates if format can store suggestions and alternative translation for a unit

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.base.TranslationUnit(source=None)
Base class for translation units.

Our concept of a translation unit is influenced heavily by XLIFF.

As such most of the method- and variable names borrows from XLIFF terminology.

A translation unit consists of the following:

• A source string. This is the original translatable text.

• A target string. This is the translation of the source.

• Zero or more notes on the unit. Notes would typically be some comments from a translator on the unit, or
some comments originating from the source code.

• Zero or more locations. Locations indicate where in the original source code this unit came from.

• Zero or more errors. Some tools (eg. pofilter) can run checks on translations and produce error
messages.

4.1. API 403

https://docs.python.org/3.8/library/constants.html#None
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

Translate Toolkit Documentation, Release 3.0.0

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

404 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

4.1. API 405

Translate Toolkit Documentation, Release 3.0.0

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_parsers = []
A list of functions to use for parsing a string into a rich string tree.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

406 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

benchmark

class translate.storage.benchmark.TranslateBenchmarker(test_dir, storeclass)
class to aid in benchmarking Translate Toolkit stores

clear_test_dir()
removes the given directory

create_sample_files(num_dirs, files_per_dir, strings_per_file, source_words_per_string, tar-
get_words_per_string)

creates sample files for benchmarking

parse_files(file_dir=None)
parses all the files in the test directory into memory

parse_placeables()
parses placeables

bundleprojstore

class translate.storage.bundleprojstore.BundleProjectStore(fname)
Represents a translate project bundle (zip archive).

append_file(afile, fname, ftype=’trans’, delete_orig=False)
Append the given file to the project with the given filename, marked to be of type ftype (‘src’, ‘trans’,
‘tgt’).

Parameters delete_orig – If True, as set by convert_forward(), afile is deleted
after appending, if possible.

Note: For this implementation, the appended file will be deleted from disk if delete_orig is True.

cleanup()
Clean up our mess: remove temporary files.

get_file(fname)
Retrieve a project file (source, translation or target file) from the project archive.

get_filename_type(fname)
Get the type of file (‘src’, ‘trans’, ‘tgt’) with the given name.

get_proj_filename(realfname)
Try and find a project file name for the given real file name.

load(zipname)
Load the bundle project from the zip file of the given name.

remove_file(fname, ftype=None)
Remove the file with the given project name from the project.

save(filename=None)
Save all project files to the bundle zip file.

sourcefiles
Read-only access to self._sourcefiles.

targetfiles
Read-only access to self._targetfiles.

4.1. API 407

Translate Toolkit Documentation, Release 3.0.0

transfiles
Read-only access to self._transfiles.

update_file(pfname, infile)
Updates the file with the given project file name with the contents of infile.

Returns the results from BundleProjStore.append_file().

exception translate.storage.bundleprojstore.InvalidBundleError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

catkeys

Manage the Haiku catkeys translation format

The Haiku catkeys format is the translation format used for localisation of the Haiku operating system.

It is a bilingual base class derived format with CatkeysFile and CatkeysUnit providing file and unit level
access. The file format is described here: http://www.haiku-os.org/blog/pulkomandy/2009-09-24_haiku_locale_kit_
translator_handbook

Implementation The implementation covers the full requirements of a catkeys file. The files are simple Tab Separated
Value (TSV) files that can be read by Microsoft Excel and other spreadsheet programs. They use the .txt
extension which does make it more difficult to automatically identify such files.

The dialect of the TSV files is specified by CatkeysDialect.

Encoding The files are UTF-8 encoded.

Header CatkeysHeader provides header management support.

Escaping catkeys seem to escape things like in C++ (strings are just extracted from the source code unchanged, it
seems.

Functions allow for _escape() and _unescape().

class translate.storage.catkeys.CatkeysDialect
Describe the properties of a catkeys generated TAB-delimited file.

class translate.storage.catkeys.CatkeysFile(inputfile=None, **kwargs)
A catkeys translation memory file

UnitClass
alias of CatkeysUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

408 Chapter 4. API Reference

http://www.haiku-os.org/
http://www.haiku-os.org/blog/pulkomandy/2009-09-24_haiku_locale_kit_translator_handbook
http://www.haiku-os.org/blog/pulkomandy/2009-09-24_haiku_locale_kit_translator_handbook

Translate Toolkit Documentation, Release 3.0.0

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

4.1. API 409

Translate Toolkit Documentation, Release 3.0.0

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(newlang)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.catkeys.CatkeysHeader(header=None)
A catkeys translation memory header

setchecksum(checksum)
Set the checksum for the file

settargetlanguage(newlang)
Set a human readable target language

class translate.storage.catkeys.CatkeysUnit(source=None)
A catkeys translation memory unit

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

410 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

dict
Get the dictionary of values for a catkeys line

getcontext()
Get the message context.

getdict()
Get the dictionary of values for a catkeys line

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

4.1. API 411

Translate Toolkit Documentation, Release 3.0.0

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(present=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,

(continues on next page)

412 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setdict(newdict)
Set the dictionary of values for a catkeys line

Parameters newdict (Dict) – a new dictionary with catkeys line elements

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

translate.storage.catkeys.FIELDNAMES = ['source', 'context', 'comment', 'target']
Field names for a catkeys TU

translate.storage.catkeys.FIELDNAMES_HEADER = ['version', 'language', 'mimetype', 'checksum']
Field names for the catkeys header

translate.storage.catkeys.FIELDNAMES_HEADER_DEFAULTS = {'checksum': '', 'language': '', 'mimetype': '', 'version': '1'}
Default or minimum header entries for a catkeys file

cpo

csvl10n

classes that hold units of comma-separated values (.csv) files (csvunit) or entire files (csvfile) for use with localisation

class translate.storage.csvl10n.DefaultDialect

4.1. API 413

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.csvl10n.csvfile(inputfile=None, fieldnames=None, encod-
ing=’auto’)

This class represents a .csv file with various lines. The default format contains three columns: location, source,
target

UnitClass
alias of csvunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

414 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Returns The default matching criterion for all the subclasses.

Return type string

parse(csvsrc)
parser to process the given source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write to file

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.csvl10n.csvunit(source=None)

add_spreadsheet_escapes(source, target)
add common spreadsheet escapes to two strings

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

4.1. API 415

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

416 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

4.1. API 417

Translate Toolkit Documentation, Release 3.0.0

match_header()
see if unit might be a header

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

remove_spreadsheet_escapes(source, target)
remove common spreadsheet escapes from two strings

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(value)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

translate.storage.csvl10n.detect_header(inputfile, dialect, fieldnames)
Test if file has a header or not, also returns number of columns in first row

translate.storage.csvl10n.valid_fieldnames(fieldnames)
Check if fieldnames are valid, that is at least one field is identified as the source.

418 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

directory

This module provides functionality to work with directories.

class translate.storage.directory.Directory(dir=None)
This class represents a directory.

file_iter()
Iterator over (dir, filename) for all files in this directory.

getfiles()
Returns a list of (dir, filename) tuples for all the file names in this directory.

getunits()
List of all the units in all the files in this directory.

scanfiles()
Populate the internal file data.

unit_iter()
Iterator over all the units in all the files in this directory.

dtd

Classes that hold units of .dtd files (dtdunit) or entire files (dtdfile).

These are specific .dtd files for localisation used by mozilla.

Specifications The following information is provided by Mozilla:

Specification

There is a grammar for entity definitions, which isn’t really precise, as the spec says. There’s no formal specifi-
cation for DTD files, it’s just “whatever makes this work” basically. The whole piece is clearly not the strongest
point of the xml spec

XML elements are allowed in entity values. A number of things that are allowed will just break the resulting
document, Mozilla forbids these in their DTD parser.

Dialects There are two dialects:

• Regular DTD

• Android DTD

Both dialects are similar, but the Android DTD uses some particular escapes that regular DTDs don’t have.

Escaping in regular DTD In DTD usually there are characters escaped in the entities. In order to ease the translation
some of those escaped characters are unescaped when reading from, or converting, the DTD, and that are escaped
again when saving, or converting to a DTD.

In regular DTD the following characters are usually or sometimes escaped:

• The % character is escaped using % or % or %

• The ” character is escaped using "

• The ‘ character is escaped using ' (partial roundtrip)

• The & character is escaped using &

• The < character is escaped using < (not yet implemented)

• The > character is escaped using > (not yet implemented)

4.1. API 419

http://www.w3.org/TR/REC-xml/#sec-entexpand

Translate Toolkit Documentation, Release 3.0.0

Besides the previous ones there are a lot of escapes for a huge number of characters. This escapes usually have
the form of &#NUMBER; where NUMBER represents the numerical code for the character.

There are a few particularities in DTD escaping. Some of the escapes are not yet implemented since they are
not really necessary, or because its implementation is too hard.

A special case is the ‘ escaping using ' which doesn’t provide a full roundtrip conversion in order to
support some special Mozilla DTD files.

Also the ” character is never escaped in the case that the previous character is = (the sequence =” is present on
the string) in order to avoid escaping the ” character indicating an attribute assignment, for example in a href
attribute for an a tag in HTML (anchor tag).

Escaping in Android DTD It has the sames escapes as in regular DTD, plus this ones:

• The ‘ character is escaped using ' or ‘ or u0027

• The ” character is escaped using "

translate.storage.dtd.accesskeysuffixes = ('.accesskey', '.accessKey', '.akey')
Accesskey Suffixes: entries with this suffix may be combined with labels ending in labelsuffixes into
accelerator notation

class translate.storage.dtd.dtdfile(inputfile=None, android=False)
A .dtd file made up of dtdunits.

UnitClass
alias of dtdunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

420 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
makes self.id_index dictionary keyed on entities

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(dtdsrc)
read the source code of a dtd file in and include them as dtdunits in self.units

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write content to file

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

4.1. API 421

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.dtd.dtdunit(source=”, android=False)
An entity definition from a DTD file (and any associated comments).

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Set the entity to the given “location”.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
Return the entity as location (identifier).

getnotes(origin=None)
Returns all notes about this unit.

422 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getoutput()
convert the dtd entity back to string form

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isnull()
returns whether this dtdunit doesn’t actually have an entity definition

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

4.1. API 423

Translate Toolkit Documentation, Release 3.0.0

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

parse(dtdsrc)
read the first dtd element from the source code into this object, return linesprocessed

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(new_id)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

source
gets the unquoted source string

424 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

target
gets the unquoted target string

unit_iter()
Iterator that only returns this unit.

translate.storage.dtd.labelsuffixes = ('.label', '.title')
Label suffixes: entries with this suffix are able to be comibed with accesskeys found in in entries ending with
accesskeysuffixes

translate.storage.dtd.quoteforandroid(source)
Escapes a line for Android DTD files.

translate.storage.dtd.quotefordtd(source)
Quotes and escapes a line for regular DTD files.

translate.storage.dtd.removeinvalidamps(name, value)
Find and remove ampersands that are not part of an entity definition.

A stray & in a DTD file can break an application’s ability to parse the file. In Mozilla localisation this is very
important and these can break the parsing of files used in XUL and thus break interface rendering. Tracking
down the problem is very difficult, thus by removing potential broken ampersand and warning the users we can
ensure that the output DTD will always be parsable.

Parameters

• name (String) – Entity name

• value (String) – Entity text value

Return type String

Returns Entity value without bad ampersands

translate.storage.dtd.unquotefromandroid(source)
Unquotes a quoted Android DTD definition.

translate.storage.dtd.unquotefromdtd(source)
unquotes a quoted dtd definition

_factory_classes

Py2exe can’t find stuff that we import dynamically, so we have this file just for the sake of the Windows installer to
easily pick up all the stuff that we need and ensure they make it into the installer.

factory

factory methods to build real storage objects that conform to base.py

translate.storage.factory.getclass(storefile, localfiletype=None, ignore=None, classes=None,
classes_str=None, hiddenclasses=None)

Factory that returns the applicable class for the type of file presented. Specify ignore to ignore some part at the
back of the name (like .gz).

translate.storage.factory.getobject(storefile, localfiletype=None, ignore=None,
classes=None, classes_str=None, hiddenclasses=None)

Factory that returns a usable object for the type of file presented.

Parameters storefile (file or str or TranslationStore) – File object or file
name.

4.1. API 425

https://docs.python.org/3.8/library/stdtypes.html#str

Translate Toolkit Documentation, Release 3.0.0

Specify ignore to ignore some part at the back of the name (like .gz).

translate.storage.factory.supported_files()
Returns data about all supported files

Returns list of type that include (name, extensions, mimetypes)

Return type list

fpo

html

module for parsing html files for translation

class translate.storage.html.POHTMLParser(includeuntaggeddata=None, inputfile=None,
callback=None)

UnitClass
alias of htmlunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

close()
Handle any buffered data.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

do_encoding(htmlsrc)
Return the html text properly encoded based on a charset.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

feed(data)
Feed data to the parser.

Call this as often as you want, with as little or as much text as you want (may include ‘n’).

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

426 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

Return type TranslationUnit or None

get_starttag_text()
Return full source of start tag: ‘<. . . >’.

getids(filename=None)
return a list of unit ids

getpos()
Return current line number and offset.

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

guess_encoding(htmlsrc)
Returns the encoding of the html text.

We look for ‘charset=’ within a meta tag to do this.

handle_charref(name)
Handle entries in the form &#NNNN; e.g. ⃡

handle_entityref(name)
Handle named entities of the form &aaaa; e.g. ’

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(htmlsrc)
parser to process the given source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

reset()
Reset this instance. Loses all unprocessed data.

4.1. API 427

Translate Toolkit Documentation, Release 3.0.0

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.html.htmlfile(includeuntaggeddata=None, inputfile=None, call-
back=None)

EMPTY_HTML_ELEMENTS = ['area', 'base', 'br', 'col', 'embed', 'hr', 'img', 'input', 'link', 'meta', 'param', 'source', 'track', 'wbr']
An empty element is an element that cannot have any child nodes (i.e., nested elements or text nodes). In
HTML, using a closing tag on an empty element is usually invalid. Reference https://developer.mozilla.
org/en-US/docs/Glossary/Empty_element

TRANSLATABLE_ATTRIBUTES = ['abbr', 'alt', 'lang', 'summary', 'title', 'value']
Text from these HTML attributes will be extracted as translation units. Note: the content attribute of meta
tags is a special case.

TRANSLATABLE_ELEMENTS = ['address', 'article', 'aside', 'blockquote', 'caption', 'dd', 'dt', 'div', 'figcaption', 'footer', 'header', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'main', 'nav', 'option', 'p', 'pre', 'section', 'td', 'th', 'title']
These HTML elements (tags) will be extracted as translation units, unless they lack translatable text con-
tent. In case one translatable element is embedded in another, the outer translation unit will be split into
the parts before and after the inner translation unit.

TRANSLATABLE_METADATA = ['description', 'keywords']
Document metadata from meta elements with these names will be extracted as translation units. Reference
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta/name

UnitClass
alias of htmlunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

428 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Glossary/Empty_element
https://developer.mozilla.org/en-US/docs/Glossary/Empty_element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta/name

Translate Toolkit Documentation, Release 3.0.0

Parameters unit (TranslationUnit) – The unit that will be added.

close()
Handle any buffered data.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

do_encoding(htmlsrc)
Return the html text properly encoded based on a charset.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

feed(data)
Feed data to the parser.

Call this as often as you want, with as little or as much text as you want (may include ‘n’).

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

get_starttag_text()
Return full source of start tag: ‘<. . . >’.

getids(filename=None)
return a list of unit ids

getpos()
Return current line number and offset.

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

guess_encoding(htmlsrc)
Returns the encoding of the html text.

We look for ‘charset=’ within a meta tag to do this.

handle_charref(name)
Handle entries in the form &#NNNN; e.g. ⃡

handle_entityref(name)
Handle named entities of the form &aaaa; e.g. ’

4.1. API 429

Translate Toolkit Documentation, Release 3.0.0

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(htmlsrc)
parser to process the given source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

reset()
Reset this instance. Loses all unprocessed data.

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.html.htmlunit(source=None)
A unit of translatable/localisable HTML content

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

430 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

4.1. API 431

Translate Toolkit Documentation, Release 3.0.0

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

432 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

ical

Class that manages iCalender files for translation.

iCalendar files follow the RFC2445 specification.

4.1. API 433

https://tools.ietf.org/html/rfc2445

Translate Toolkit Documentation, Release 3.0.0

The iCalendar specification uses the following naming conventions:

• Component: an event, journal entry, timezone, etc

• Property: a property of a component: summary, description, start time, etc

• Attribute: an attribute of a property, e.g. language

The following are localisable in this implementation:

• VEVENT component: SUMMARY, DESCRIPTION, COMMENT and LOCATION properties

While other items could be localised this is not seen as important until use cases arise. In such a case simply adjusting
the component.name and property.name lists to include these will allow expanded localisation.

LANGUAGE Attribute While the iCalendar format allows items to have a language attribute this is not used. The
reason being that for most of the items that we localise they are only allowed to occur zero or once. Thus
‘summary’ would ideally be present in multiple languages in one file, the format does not allow such multiple
entries. This is unfortunate as it prevents the creation of a single multilingual iCalendar file.

Future Format Support As this format used vobject which supports various formats including vCard it is possible
to expand this format to understand those if needed.

class translate.storage.ical.icalfile(inputfile=None, **kwargs)
An ical file

UnitClass
alias of icalunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

434 Chapter 4. API Reference

http://eventable.github.io/vobject/
http://en.wikipedia.org/wiki/VCard

Translate Toolkit Documentation, Release 3.0.0

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

4.1. API 435

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

unit_iter()
Iterator over all the units in this store.

class translate.storage.ical.icalunit(source=None, **kwargs)
An ical entry that is translatable

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

436 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

4.1. API 437

Translate Toolkit Documentation, Release 3.0.0

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

438 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

unit_iter()
Iterator that only returns this unit.

ini

Class that manages .ini files for translation

a comment ; a comment

[Section] a = a string b : a string

class translate.storage.ini.Dialect
Base class for differentiating dialect options and functions

class translate.storage.ini.DialectDefault

class translate.storage.ini.DialectInno

class translate.storage.ini.inifile(inputfile=None, dialect=’default’, **kwargs)
An INI file

UnitClass
alias of iniunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

4.1. API 439

Translate Toolkit Documentation, Release 3.0.0

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
Parse the given file or file source string.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

440 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.ini.iniunit(source=None, **kwargs)
A INI file entry

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

4.1. API 441

Translate Toolkit Documentation, Release 3.0.0

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

442 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

4.1. API 443

Translate Toolkit Documentation, Release 3.0.0

translate.storage.ini.register_dialect(dialect)
Decorator that registers the dialect.

jsonl10n

Class that manages JSON data files for translation

JSON is an acronym for JavaScript Object Notation, it is an open standard designed for human-readable data inter-
change.

JSON basic types:

• Number (integer or real)

• String (double-quoted Unicode with backslash escaping)

• Boolean (true or false)

• Array (an ordered sequence of values, comma-separated and enclosed in square brackets)

• Object (a collection of key:value pairs, comma-separated and enclosed in curly braces)

• null

Example:

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber": [

{
"type": "home",
"number": "212 555-1234"

},
{
"type": "fax",
"number": "646 555-4567"

}
]

}

TODO:

• Handle \u and other escapes in Unicode

• Manage data type storage and conversion. True –> “True” –> True

class translate.storage.jsonl10n.ARBJsonFile(inputfile=None, filter=None, **kwargs)
ARB JSON file

See following URLs for doc:

https://github.com/google/app-resource-bundle/wiki/ApplicationResourceBundleSpecification https://flutter.
dev/docs/development/accessibility-and-localization/internationalization#appendix-using-the-dart-intl-tools

444 Chapter 4. API Reference

https://github.com/google/app-resource-bundle/wiki/ApplicationResourceBundleSpecification
https://flutter.dev/docs/development/accessibility-and-localization/internationalization#appendix-using-the-dart-intl-tools
https://flutter.dev/docs/development/accessibility-and-localization/internationalization#appendix-using-the-dart-intl-tools

Translate Toolkit Documentation, Release 3.0.0

UnitClass
alias of ARBJsonUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

4.1. API 445

Translate Toolkit Documentation, Release 3.0.0

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.jsonl10n.ARBJsonUnit(source=None, item=None, notes=None,
placeholders=None, metadata=None,
**kwargs)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

446 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

4.1. API 447

Translate Toolkit Documentation, Release 3.0.0

getunits()
This unit in a list.

getvalue()
Return value to be stored in JSON file.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

448 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.jsonl10n.GoI18NJsonFile(inputfile=None, filter=None,
**kwargs)

go-i18n JSON file

See following URLs for doc:

https://github.com/nicksnyder/go-i18n https://godoc.org/github.com/nicksnyder/go-i18n/v2

UnitClass
alias of GoI18NJsonUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

4.1. API 449

https://github.com/nicksnyder/go-i18n
https://godoc.org/github.com/nicksnyder/go-i18n/v2

Translate Toolkit Documentation, Release 3.0.0

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

450 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.jsonl10n.GoI18NJsonUnit(source=None, item=None,
notes=None, placeholders=None,
**kwargs)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

4.1. API 451

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

getvalue()
Return value to be stored in JSON file.

hasplural()
Tells whether or not this specific unit has plural strings.

452 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

4.1. API 453

Translate Toolkit Documentation, Release 3.0.0

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.jsonl10n.I18NextFile(inputfile=None, filter=None, **kwargs)
A i18next v3 format, this is nested JSON with several additions.

See https://www.i18next.com/

UnitClass
alias of I18NextUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

454 Chapter 4. API Reference

https://www.i18next.com/

Translate Toolkit Documentation, Release 3.0.0

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

4.1. API 455

Translate Toolkit Documentation, Release 3.0.0

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.jsonl10n.I18NextUnit(source=None, item=None, notes=None,
placeholders=None, **kwargs)

A i18next v3 format, JSON with plurals.

See https://www.i18next.com/

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

456 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None
https://www.i18next.com/

Translate Toolkit Documentation, Release 3.0.0

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

getvalue()
Return value to be stored in JSON file.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

4.1. API 457

Translate Toolkit Documentation, Release 3.0.0

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

458 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.jsonl10n.JsonFile(inputfile=None, filter=None, **kwargs)
A JSON file

UnitClass
alias of JsonUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

4.1. API 459

Translate Toolkit Documentation, Release 3.0.0

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

460 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.jsonl10n.JsonNestedFile(inputfile=None, filter=None,
**kwargs)

A JSON file with nested keys

UnitClass
alias of JsonNestedUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

4.1. API 461

Translate Toolkit Documentation, Release 3.0.0

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.jsonl10n.JsonNestedUnit(source=None, item=None,
notes=None, placeholders=None,
**kwargs)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

462 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

4.1. API 463

Translate Toolkit Documentation, Release 3.0.0

Note: Plural forms might be combined.

getunits()
This unit in a list.

getvalue()
Return value to be stored in JSON file.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

464 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.jsonl10n.JsonUnit(source=None, item=None, notes=None, place-
holders=None, **kwargs)

A JSON entry

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

4.1. API 465

Translate Toolkit Documentation, Release 3.0.0

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

466 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

getvalue()
Return value to be stored in JSON file.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

4.1. API 467

Translate Toolkit Documentation, Release 3.0.0

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.jsonl10n.WebExtensionJsonFile(inputfile=None, filter=None,
**kwargs)

WebExtension JSON file

See following URLs for doc:

https://developer.chrome.com/extensions/i18n https://developer.mozilla.org/en-US/Add-ons/WebExtensions/
Internationalization

UnitClass
alias of WebExtensionJsonUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

468 Chapter 4. API Reference

https://developer.chrome.com/extensions/i18n
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Internationalization
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Internationalization

Translate Toolkit Documentation, Release 3.0.0

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parse the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

4.1. API 469

Translate Toolkit Documentation, Release 3.0.0

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.jsonl10n.WebExtensionJsonUnit(source=None, item=None,
notes=None, placehold-
ers=None, **kwargs)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

470 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

getvalue()
Return value to be stored in JSON file.

4.1. API 471

Translate Toolkit Documentation, Release 3.0.0

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,

(continues on next page)

472 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

lisa

Parent class for LISA standards (TMX, TBX, XLIFF)

class translate.storage.lisa.LISAfile(inputfile=None, sourcelanguage=’en’, target-
language=None, **kwargs)

A class representing a file store for one of the LISA file formats.

UnitClass
alias of LISAunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Method to be overridden to initialise headers, etc.

addsourceunit(source)
Adds and returns a new unit with the given string as first entry.

4.1. API 473

Translate Toolkit Documentation, Release 3.0.0

addunit(unit, new=True)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

initbody()
Initialises self.body so it never needs to be retrieved from the XML again.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

474 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out=None)
Converts to a string containing the file’s XML

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.lisa.LISAunit(source, empty=False, **kwargs)
A single unit in the file. Provisional work is done to make several languages possible.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

4.1. API 475

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

createlanguageNode(lang, text, purpose=None)
Returns a xml Element setup with given parameters to represent a single language entry. Has to be over-
ridden.

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
Returns a list of all nodes that contain per language information.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

476 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

4.1. API 477

Translate Toolkit Documentation, Release 3.0.0

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

478 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

settarget(target, lang=’xx’, append=False)
Sets the “target” string (second language), or alternatively appends to the list

unit_iter()
Iterator that only returns this unit.

mo

Module for parsing Gettext .mo files for translation.

The coding of .mo files was produced from Gettext documentation, Pythons msgfmt.py and by observing and testing
existing .mo files in the wild.

The hash algorithm is implemented for MO files, this should result in faster access of the MO file. The hash is optional
for Gettext and is not needed for reading or writing MO files, in this implementation it is always on and does produce
sometimes different results to Gettext in very small files.

class translate.storage.mo.mofile(inputfile=None, **kwargs)
A class representing a .mo file.

UnitClass
alias of mounit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getheaderplural()
Returns the nplural and plural values from the header.

getids(filename=None)
return a list of unit ids

4.1. API 479

http://www.gnu.org/software/gettext/manual/gettext.html#MO-Files

Translate Toolkit Documentation, Release 3.0.0

getprojectstyle()
Return the project based on information in the header.

The project is determined in the following sequence:

1. Use the ‘X-Project-Style’ entry in the header.

2. Use ‘Report-Msgid-Bug-To’ entry

3. Use the ‘X-Accelerator’ entry

4. Use the Project ID

5. Analyse the file itself (not yet implemented)

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Return the target language based on information in the header.

The target language is determined in the following sequence:

1. Use the ‘Language’ entry in the header.

2. Poedit’s custom headers.

3. Analysing the ‘Language-Team’ entry.

getunits()
Return a list of all units in this store.

header()
Returns the header element, or None. Only the first element is allowed to be a header. Note that this could
still return an empty header element, if present.

init_headers(charset=’UTF-8’, encoding=’8bit’, **kwargs)
sets default values for po headers

isempty()
Return True if the object doesn’t contain any translation units.

makeheader(**kwargs)
Create a header for the given filename.

Check .makeheaderdict() for information on parameters.

makeheaderdict(charset=’CHARSET’, encoding=’ENCODING’, project_id_version=None,
pot_creation_date=None, po_revision_date=None, last_translator=None,
language_team=None, mime_version=None, plural_forms=None, re-
port_msgid_bugs_to=None, **kwargs)

Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string) po_revision_date can be None
(form), False (=pot_creation_date), True (=now), or a value (datetime or string)

Returns Dictionary with the header items

Return type dict of strings

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

480 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type string

mergeheaders(otherstore)
Merges another header with this header.

This header is assumed to be the template.

parse(input)
parses the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

parseheader()
Parses the PO header and returns the interpreted values as a dictionary.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Output a string representation of the MO data file

setprojectstyle(project_style)
Set the project in the header.

Parameters project_style (str) – the new project

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(lang)
Set the target language in the header.

This removes any custom Poedit headers if they exist.

Parameters lang (str) – the new target language code

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

updatecontributor(name, email=None)
Add contribution comments if necessary.

updateheader(add=False, **kwargs)
Updates the fields in the PO style header.

This will create a header if add == True.

4.1. API 481

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

updateheaderplural(nplurals, plural)
Update the Plural-Form PO header.

class translate.storage.mo.mounit(source=None, **kwargs)
A class representing a .mo translation message.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

482 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Is this a header entry?

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Is this message translateable?

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

4.1. API 483

Translate Toolkit Documentation, Release 3.0.0

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

484 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

translate.storage.mo.mounpack(filename=’messages.mo’)
Helper to unpack Gettext MO files into a Python string

mozilla_lang

A class to manage Mozilla .lang files.

See https://github.com/mozilla-l10n/langchecker/wiki/.lang-files-format for specifications on the format.

class translate.storage.mozilla_lang.LangStore(inputfile=None, mark_active=False,
**kwargs)

We extend TxtFile, since that has a lot of useful stuff for encoding

UnitClass
alias of LangUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

4.1. API 485

https://github.com/mozilla-l10n/langchecker/wiki/.lang-files-format

Translate Toolkit Documentation, Release 3.0.0

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(lines)
Read in text lines and create txtunits from the blocks of text

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.mozilla_lang.LangUnit(source=None)
This is just a normal unit with a weird string output

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

486 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

4.1. API 487

Translate Toolkit Documentation, Release 3.0.0

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

488 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

odf_io

odf_shared

omegat

Manage the OmegaT glossary format

4.1. API 489

Translate Toolkit Documentation, Release 3.0.0

OmegaT glossary format is used by the OmegaT computer aided translation tool.

It is a bilingual base class derived format with OmegaTFile and OmegaTUnit providing file and unit level access.

Format Implementation The OmegaT glossary format is a simple Tab Separated Value (TSV) file with the columns:
source, target, comment.

The dialect of the TSV files is specified by OmegaTDialect.

Encoding The files are either UTF-8 or encoded using the system default. UTF-8 encoded files use the .utf8 extension
while system encoded files use the .tab extension.

translate.storage.omegat.OMEGAT_FIELDNAMES = ['source', 'target', 'comment']
Field names for an OmegaT glossary unit

class translate.storage.omegat.OmegaTDialect
Describe the properties of an OmegaT generated TAB-delimited glossary file.

class translate.storage.omegat.OmegaTFile(inputfile=None, **kwargs)
An OmegaT glossary file

UnitClass
alias of OmegaTUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

490 Chapter 4. API Reference

http://www.omegat.org/en/omegat.html

Translate Toolkit Documentation, Release 3.0.0

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parsese the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.omegat.OmegaTFileTab(inputfile=None, **kwargs)
An OmegaT glossary file in the default system encoding

4.1. API 491

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

UnitClass
alias of OmegaTUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

492 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

parse(input)
parsese the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.omegat.OmegaTUnit(source=None)
An OmegaT glossary unit

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

4.1. API 493

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

dict
Get the dictionary of values for a OmegaT line

getcontext()
Get the message context.

getdict()
Get the dictionary of values for a OmegaT line

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

494 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

4.1. API 495

Translate Toolkit Documentation, Release 3.0.0

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setdict(newdict)
Set the dictionary of values for a OmegaT line

Parameters newdict (Dict) – a new dictionary with OmegaT line elements

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

oo

Classes that hold units of .oo files (oounit) or entire files (oofile).

These are specific .oo files for localisation exported by OpenOffice.org - SDF format (previously knows as GSI files).

The behaviour in terms of escaping is explained in detail in the programming comments.

translate.storage.oo.escape_help_text(text)
Escapes the help text as it would be in an SDF file.

496 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

<, >, ” are only escaped in <[[:lower:]]> tags. Some HTML tags make it in in lowercase so those are dealt with.
Some OpenOffice.org help tags are not escaped.

translate.storage.oo.escape_text(text)
Escapes SDF text to be suitable for unit consumption.

translate.storage.oo.int2byte()
S.pack(v1, v2, . . .) -> bytes

Return a bytes object containing values v1, v2, . . . packed according to the format string S.format. See
help(struct) for more on format strings.

translate.storage.oo.makekey(ookey, long_keys)
converts an oo key tuple into a unique identifier

Parameters

• ookey (tuple) – an oo key

• long_keys (Boolean) – Use long keys

Return type str

Returns unique ascii identifier

translate.storage.oo.normalizefilename(filename)
converts any non-alphanumeric (standard roman) characters to _

class translate.storage.oo.oofile(input=None)
this represents an entire .oo file

UnitClass
alias of oounit

addline(thisline)
adds a parsed line to the file

getoutput(skip_source=False, fallback_lang=None)
converts all the lines back to tab-delimited form

parse(input)
parses lines and adds them to the file

serialize(out, skip_source=False, fallback_lang=None)
convert to a string. double check that unicode is handled

class translate.storage.oo.ooline(parts=None)
this represents one line, one translation in an .oo file

getkey()
get the key that identifies the resource

getoutput()
return a line in tab-delimited form

getparts()
return a list of parts in this line

gettext()
Obtains the text column and handle escaping.

setparts(parts)
create a line from its tab-delimited parts

4.1. API 497

https://docs.python.org/3.8/library/stdtypes.html#tuple
https://docs.python.org/3.8/library/stdtypes.html#str

Translate Toolkit Documentation, Release 3.0.0

settext(text)
Sets the text column and handle escaping.

text
Obtains the text column and handle escaping.

class translate.storage.oo.oomultifile(filename, mode=None, multifilestyle=’single’)
this takes a huge GSI file and represents it as multiple smaller files. . .

createsubfileindex()
reads in all the lines and works out the subfiles

getoofile(subfile)
returns an oofile built up from the given subfile’s lines

getsubfilename(line)
looks up the subfile name for the line

getsubfilesrc(subfile)
returns the list of lines matching the subfile

listsubfiles()
returns a list of subfiles in the file

openinputfile(subfile)
returns a pseudo-file object for the given subfile

openoutputfile(subfile)
returns a pseudo-file object for the given subfile

class translate.storage.oo.oounit
this represents a number of translations of a resource

addline(line)
add a line to the oounit

getoutput(skip_source=False, fallback_lang=None)
return the lines in tab-delimited form

translate.storage.oo.unescape_help_text(text)
Unescapes normal text to be suitable for writing to the SDF file.

translate.storage.oo.unescape_text(text)
Unescapes SDF text to be suitable for unit consumption.

class translate.storage.oo.unormalizechar(normalchars)

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get()
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

498 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

placeables

This module implements basic functionality to support placeables.

A placeable is used to represent things like:

1. Substitutions

For example, in ODF, footnotes appear in the ODF XML where they are defined; so if we extract a
paragraph with some footnotes, the translator will have a lot of additional XML to with; so we separate the
footnotes out into separate translation units and mark their positions in the original text with placeables.

2. Hiding of inline formatting data

The translator doesn’t want to have to deal with all the weird formatting conventions of wherever the text
came from.

3. Marking variables

This is an old issue - translators translate variable names which should remain untranslated. We can wrap
placeables around variable names to avoid this.

The placeables model follows the XLIFF standard’s list of placeables. Please refer to the XLIFF specification to get a
better understanding.

base

Contains base placeable classes with names based on XLIFF placeables. See the XLIFF standard for more information
about what the names mean.

class translate.storage.placeables.base.Bpt(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

4.1. API 499

Translate Toolkit Documentation, Release 3.0.0

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

500 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.Ept(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

4.1. API 501

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

502 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.placeables.base.Ph(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

4.1. API 503

Translate Toolkit Documentation, Release 3.0.0

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.It(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

504 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

4.1. API 505

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.G(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

506 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.Bx(id=None, xid=None, **kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

4.1. API 507

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

508 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.Ex(id=None, xid=None, **kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

4.1. API 509

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

510 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.X(id=None, xid=None, **kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

4.1. API 511

Translate Toolkit Documentation, Release 3.0.0

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.base.Sub(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

512 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

4.1. API 513

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

general

Contains general placeable implementations. That is placeables that does not fit into any other sub-category.

class translate.storage.placeables.general.AltAttrPlaceable(sub=None,
id=None, rid=None,
xid=None,
**kwargs)

Placeable for the “alt=. . . ” attributes inside XML tags.

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

514 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

classmethod parse(pstr)
A parser method to extract placeables from a string based on a regular expression. Use this function as the
@parse() method of a placeable class.

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

4.1. API 515

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.general.XMLEntityPlaceable(sub=None,
id=None,
rid=None,
xid=None,
**kwargs)

Placeable handling XML entities (&xxxxx;-style entities).

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

516 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

classmethod parse(pstr)
A parser method to extract placeables from a string based on a regular expression. Use this function as the
@parse() method of a placeable class.

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.general.XMLTagPlaceable(sub=None, id=None,
rid=None, xid=None,
**kwargs)

Placeable handling XML tags.

4.1. API 517

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

518 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

classmethod parse(pstr)
A parser method to extract placeables from a string based on a regular expression. Use this function as the
@parse() method of a placeable class.

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

interfaces

This file contains abstract (semantic) interfaces for placeable implementations.

class translate.storage.placeables.interfaces.BasePlaceable(sub=None,
id=None, rid=None,
xid=None,
**kwargs)

Base class for all placeables.

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

4.1. API 519

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

520 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.interfaces.InvisiblePlaceable(sub=None,
id=None,
rid=None,
xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

4.1. API 521

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

522 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.interfaces.MaskingPlaceable(sub=None,
id=None,
rid=None,
xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

4.1. API 523

Translate Toolkit Documentation, Release 3.0.0

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.interfaces.ReplacementPlaceable(sub=None,
id=None,
rid=None,
xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

524 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

4.1. API 525

Translate Toolkit Documentation, Release 3.0.0

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.interfaces.SubflowPlaceable(sub=None,
id=None,
rid=None,
xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

526 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

4.1. API 527

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

lisa

parse

Contains the parse function that parses normal strings into StringElem- based “rich” string element trees.

translate.storage.placeables.parse.parse(tree, parse_funcs)
Parse placeables from the given string or sub-tree by using the parsing functions provided.

The output of this function is heavily dependent on the order of the parsing functions. This is because of the
algorithm used.

An over-simplification of the algorithm: the leaves in the StringElem tree are expanded to the output of the
first parsing function in parse_funcs. The next level of recursion is then started on the new set of leaves
with the used parsing function removed from parse_funcs.

Parameters tree (unicode|StringElem) – The string or string element sub-tree to parse.

strelem

Contains the base StringElem class that represents a node in a parsed rich-string tree. It is the base class of all
placeables.

exception translate.storage.placeables.strelem.ElementNotFoundError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class translate.storage.placeables.strelem.StringElem(sub=None, id=None,
rid=None, xid=None,
**kwargs)

This class represents a sub-tree of a string parsed into a rich structure. It is also the base class of all placeables.

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

528 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

has_content = True
Whether this string can have sub-elements.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

iseditable = True
Whether this string should be changable by the user. Not used at the moment.

isfragile = False
Whether this element should be deleted in its entirety when partially deleted. Only checked when
iseditable = False

4.1. API 529

Translate Toolkit Documentation, Release 3.0.0

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

istranslatable = True
Whether this string is translatable into other languages.

isvisible = True
Whether this string should be visible to the user. Not used at the moment.

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

classmethod parse(pstr)
Parse an instance of this class from the start of the given string. This method should be implemented by
any sub-class that wants to parseable by translate.storage.placeables.parse.

Parameters pstr (unicode) – The string to parse into an instance of this class.

Returns An instance of the current class, or None if the string not parseable by this class.

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

renderer = None
An optional function that returns the Unicode representation of the string.

sub = []
The sub-elements that make up this this string.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

terminology

Contains the placeable that represents a terminology term.

class translate.storage.placeables.terminology.TerminologyPlaceable(*args,
**kwargs)

Terminology distinguished from the rest of a string by being a placeable.

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

530 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

4.1. API 531

Translate Toolkit Documentation, Release 3.0.0

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

matchers = []
A list of matcher objects to use to identify terminology.

classmethod parse(pstr)
Parse an instance of this class from the start of the given string. This method should be implemented by
any sub-class that wants to parseable by translate.storage.placeables.parse.

Parameters pstr (unicode) – The string to parse into an instance of this class.

Returns An instance of the current class, or None if the string not parseable by this class.

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

translations = []
The available translations for this placeable.

xliff

Contains XLIFF-specific placeables.

class translate.storage.placeables.xliff.Bpt(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

532 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

4.1. API 533

Translate Toolkit Documentation, Release 3.0.0

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.Ept(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

534 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

4.1. API 535

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.placeables.xliff.X(id=None, xid=None, **kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

536 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.Bx(id=None, xid=None, **kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

4.1. API 537

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

538 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.Ex(id=None, xid=None, **kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

4.1. API 539

Translate Toolkit Documentation, Release 3.0.0

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.G(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

540 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

4.1. API 541

Translate Toolkit Documentation, Release 3.0.0

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.It(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

542 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

4.1. API 543

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.Sub(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

544 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.Ph(sub=None, id=None, rid=None, xid=None,
**kwargs)

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

4.1. API 545

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

546 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

class translate.storage.placeables.xliff.UnknownXML(sub=None, id=None, rid=None,
xid=None, xml_node=None,
**kwargs)

Placeable for unrecognized or umimplemented XML nodes. It’s main purpose is to preserve all associated XML
data.

apply_to_strings(f)
Apply f to all actual strings in the tree.

Parameters f – Must take one (str or unicode) argument and return a string or unicode.

copy()
Returns a copy of the sub-tree. This should be overridden in sub-classes with more data.

Note: self.renderer is not copied.

delete_range(start_index, end_index)
Delete the text in the range given by the string-indexes start_index and end_index.

Partial nodes will only be removed if they are editable.

Returns A StringElem representing the removed sub-string, the parent node from which it
was deleted as well as the offset at which it was deleted from. None is returned for the
parent value if the root was deleted. If the parent and offset values are not None, parent.
insert(offset, deleted) effectively undoes the delete.

depth_first(filter=None)
Returns a list of the nodes in the tree in depth-first order.

elem_at_offset(offset)
Get the StringElem in the tree that contains the string rendered at the given offset.

elem_offset(elem)
Find the offset of elem in the current tree.

This cannot be reliably used if self.renderer is used and even less so if the rendering function renders
the string differently upon different calls. In Virtaal the StringElemGUI.index() method is used as
replacement for this one.

Returns The string index where element e starts, or -1 if e was not found.

encode(encoding=’utf-8’)
More unicode class emulation.

4.1. API 547

Translate Toolkit Documentation, Release 3.0.0

find(x)
Find sub-string x in this string tree and return the position at which it starts.

find_elems_with(x)
Find all elements in the current sub-tree containing x.

flatten(filter=None)
Flatten the tree by returning a depth-first search over the tree’s leaves.

get_index_data(index)
Get info about the specified range in the tree.

Returns

A dictionary with the following items:

• elem: The element in which index resides.

• index: Copy of the index parameter

• offset: The offset of index into 'elem'.

get_parent_elem(child)
Searches the current sub-tree for and returns the parent of the child element.

insert(offset, text, preferred_parent=None)
Insert the given text at the specified offset of this string-tree’s string (Unicode) representation.

insert_between(left, right, text)
Insert the given text between the two parameter StringElems.

isleaf()
Whether or not this instance is a leaf node in the StringElem tree.

A node is a leaf node if it is a StringElem (not a sub-class) and contains only sub-elements of type str
or unicode.

Return type bool

iter_depth_first(filter=None)
Iterate through the nodes in the tree in dept-first order.

map(f, filter=None)
Apply f to all nodes for which filter returned True (optional).

classmethod parse(pstr)
Parse an instance of this class from the start of the given string. This method should be implemented by
any sub-class that wants to parseable by translate.storage.placeables.parse.

Parameters pstr (unicode) – The string to parse into an instance of this class.

Returns An instance of the current class, or None if the string not parseable by this class.

print_tree(indent=0, verbose=False)
Print the tree from the current instance’s point in an indented manner.

prune()
Remove unnecessary nodes to make the tree optimal.

remove_type(ptype)
Replace nodes with type ptype with base StringElems, containing the same sub-elements. This is
only applicable to elements below the element tree root node.

548 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool

Translate Toolkit Documentation, Release 3.0.0

translate()
Transform the sub-tree according to some class-specific needs. This method should be either overridden
in implementing sub-classes or dynamically replaced by specific applications.

Returns The transformed Unicode string representing the sub-tree.

php

Classes that hold units of PHP localisation files phpunit or entire files phpfile. These files are used in translating
many PHP based applications.

Only PHP files written with these conventions are supported:

<?php
$lang['item'] = "vale"; # Array of values
$some_entity = "value"; # Named variables
define("ENTITY", "value");
$lang = array(

'item1' => 'value1' , #Supports space before comma
'item2' => 'value2',

);
$lang = array(# Nested arrays

'item1' => 'value1',
'item2' => array(

'key' => 'value' , #Supports space before comma
'key2' => 'value2',

),
);

Nested arrays without key for nested array are not supported:

<?php
$lang = array(array('key' => 'value'));

The working of PHP strings and specifically the escaping conventions which differ between single quote (‘) and double
quote (“) characters are implemented as outlined in the PHP documentation for the String type.

class translate.storage.php.LaravelPHPFile(inputfile=None, **kwargs)

UnitClass
alias of LaravelPHPUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

4.1. API 549

http://www.php.net/language.types.string

Translate Toolkit Documentation, Release 3.0.0

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(phpsrc)
Read the source of a PHP file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

550 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

serialize(out)
Convert the units back to lines.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.php.LaravelPHPUnit(source=”)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

4.1. API 551

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getoutput(indent=”, name=None)
Convert the unit back into formatted lines for a php file.

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Return whether this is a blank element, containing only comments.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

552 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

4.1. API 553

Translate Toolkit Documentation, Release 3.0.0

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

translate.storage.php.phpdecode(text, quotechar="’")
Convert PHP escaped string to a Python string.

translate.storage.php.phpencode(text, quotechar="’")
Convert Python string to PHP escaping.

The encoding is implemented for ‘single quote’ and “double quote” syntax.

heredoc and nowdoc are not implemented and it is not certain whether this would ever be needed for PHP
localisation needs.

class translate.storage.php.phpfile(inputfile=None, **kwargs)
This class represents a PHP file, made up of phpunits.

UnitClass
alias of phpunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

554 Chapter 4. API Reference

http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single
http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double

Translate Toolkit Documentation, Release 3.0.0

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(phpsrc)
Read the source of a PHP file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Convert the units back to lines.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

4.1. API 555

Translate Toolkit Documentation, Release 3.0.0

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.php.phpunit(source=”)
A unit of a PHP file: a name, a value, and any comments associated.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

556 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getoutput(indent=”, name=None)
Convert the unit back into formatted lines for a php file.

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Return whether this is a blank element, containing only comments.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

4.1. API 557

Translate Toolkit Documentation, Release 3.0.0

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

558 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

unit_iter()
Iterator that only returns this unit.

translate.storage.php.wrap_production(func)
Decorator for production functions to store lexer positions.

pocommon

translate.storage.pocommon.extract_msgid_comment(text)
The one definitive way to extract a msgid comment out of an unescaped unicode string that might contain it.

Return type unicode

class translate.storage.pocommon.pofile(inputfile=None, **kwargs)

UnitClass
alias of translate.storage.base.TranslationUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getheaderplural()
Returns the nplural and plural values from the header.

getids(filename=None)
return a list of unit ids

getprojectstyle()
Return the project based on information in the header.

The project is determined in the following sequence:

4.1. API 559

Translate Toolkit Documentation, Release 3.0.0

1. Use the ‘X-Project-Style’ entry in the header.

2. Use ‘Report-Msgid-Bug-To’ entry

3. Use the ‘X-Accelerator’ entry

4. Use the Project ID

5. Analyse the file itself (not yet implemented)

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Return the target language based on information in the header.

The target language is determined in the following sequence:

1. Use the ‘Language’ entry in the header.

2. Poedit’s custom headers.

3. Analysing the ‘Language-Team’ entry.

getunits()
Return a list of all units in this store.

header()
Returns the header element, or None. Only the first element is allowed to be a header. Note that this could
still return an empty header element, if present.

init_headers(charset=’UTF-8’, encoding=’8bit’, **kwargs)
sets default values for po headers

isempty()
Return True if the object doesn’t contain any translation units.

makeheader(**kwargs)
Create a header for the given filename.

Check .makeheaderdict() for information on parameters.

makeheaderdict(charset=’CHARSET’, encoding=’ENCODING’, project_id_version=None,
pot_creation_date=None, po_revision_date=None, last_translator=None,
language_team=None, mime_version=None, plural_forms=None, re-
port_msgid_bugs_to=None, **kwargs)

Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string) po_revision_date can be None
(form), False (=pot_creation_date), True (=now), or a value (datetime or string)

Returns Dictionary with the header items

Return type dict of strings

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

mergeheaders(otherstore)
Merges another header with this header.

This header is assumed to be the template.

560 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

parse(data)
parser to process the given source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

parseheader()
Parses the PO header and returns the interpreted values as a dictionary.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project in the header.

Parameters project_style (str) – the new project

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(lang)
Set the target language in the header.

This removes any custom Poedit headers if they exist.

Parameters lang (str) – the new target language code

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

updatecontributor(name, email=None)
Add contribution comments if necessary.

updateheader(add=False, **kwargs)
Updates the fields in the PO style header.

This will create a header if add == True.

updateheaderplural(nplurals, plural)
Update the Plural-Form PO header.

class translate.storage.pocommon.pounit(source=None)

4.1. API 561

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

adderror(errorname, errortext)
Adds an error message to this unit.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

562 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(present=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review. Adds an optional explanation as a note.

4.1. API 563

Translate Toolkit Documentation, Release 3.0.0

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

translate.storage.pocommon.quote_plus(text)
Quote the query fragment of a URL; replacing ‘ ‘ with ‘+’

translate.storage.pocommon.unquote_plus(text)
unquote(‘%7e/abc+def’) -> ‘~/abc def’

poheader

class that handles all header functions for a header in a po file

translate.storage.poheader.parseheaderstring(input)
Parses an input string with the definition of a PO header and returns the interpreted values as a dictionary.

564 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.poheader.poheader
This class implements functionality for manipulation of po file headers. This class is a mix-in class and useless
on its own. It must be used from all classes which represent a po file

getheaderplural()
Returns the nplural and plural values from the header.

getprojectstyle()
Return the project based on information in the header.

The project is determined in the following sequence:

1. Use the ‘X-Project-Style’ entry in the header.

2. Use ‘Report-Msgid-Bug-To’ entry

3. Use the ‘X-Accelerator’ entry

4. Use the Project ID

5. Analyse the file itself (not yet implemented)

gettargetlanguage()
Return the target language based on information in the header.

The target language is determined in the following sequence:

1. Use the ‘Language’ entry in the header.

2. Poedit’s custom headers.

3. Analysing the ‘Language-Team’ entry.

header()
Returns the header element, or None. Only the first element is allowed to be a header. Note that this could
still return an empty header element, if present.

init_headers(charset=’UTF-8’, encoding=’8bit’, **kwargs)
sets default values for po headers

makeheader(**kwargs)
Create a header for the given filename.

Check .makeheaderdict() for information on parameters.

makeheaderdict(charset=’CHARSET’, encoding=’ENCODING’, project_id_version=None,
pot_creation_date=None, po_revision_date=None, last_translator=None,
language_team=None, mime_version=None, plural_forms=None, re-
port_msgid_bugs_to=None, **kwargs)

Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string) po_revision_date can be None
(form), False (=pot_creation_date), True (=now), or a value (datetime or string)

Returns Dictionary with the header items

Return type dict of strings

mergeheaders(otherstore)
Merges another header with this header.

This header is assumed to be the template.

parseheader()
Parses the PO header and returns the interpreted values as a dictionary.

4.1. API 565

Translate Toolkit Documentation, Release 3.0.0

setprojectstyle(project_style)
Set the project in the header.

Parameters project_style (str) – the new project

settargetlanguage(lang)
Set the target language in the header.

This removes any custom Poedit headers if they exist.

Parameters lang (str) – the new target language code

updatecontributor(name, email=None)
Add contribution comments if necessary.

updateheader(add=False, **kwargs)
Updates the fields in the PO style header.

This will create a header if add == True.

updateheaderplural(nplurals, plural)
Update the Plural-Form PO header.

translate.storage.poheader.tzstring()
Returns the timezone as a string in the format [+-]0000, eg +0200.

Return type str

translate.storage.poheader.update(existing, add=False, **kwargs)
Update an existing header dictionary with the values in kwargs, adding new values only if add is true.

Returns Updated dictionary of header entries

Return type dict of strings

poparser

translate.storage.poparser.decode_header(unit, decode)
The header has been arbitrarily decoded with a single-byte encoding. We re-encode it to decode values with the
proper encoding defined in the header (using decode_list above).

translate.storage.poparser.read_obsolete_lines(parse_state)
Read all the lines belonging to the current unit if obsolete.

translate.storage.poparser.read_prevmsgid_lines(parse_state)
Read all the lines belonging starting with #|. These lines contain the previous msgid and msgctxt info. We strip
away the leading ‘#| ‘ and read until we stop seeing #|.

po

A class loader that will load C or Python implementations of the PO class depending on the USECPO variable.

Use the environment variable USECPO=2 (or USECPO=1) to choose the C implementation which uses Gettext’s
libgettextpo for high parsing speed. Otherwise the local Python based parser is used (slower but very well tested).

poxliff

XLIFF classes specifically suited for handling the PO representation in XLIFF.

This way the API supports plurals as if it was a PO file, for example.

566 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.poxliff.PoXliffFile(*args, **kwargs)
a file for the po variant of Xliff files

UnitClass
alias of PoXliffUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Initialise the file header.

addplural(source, target, filename, createifmissing=False)
This method should now be unnecessary, but is left for reference

addsourceunit(source, filename=’NoName’, createifmissing=False)
adds the given trans-unit to the last used body node if the filename has changed it uses the slow method
instead (will create the nodes required if asked). Returns success

addunit(unit, new=True)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

createfilenode(filename, sourcelanguage=’en-US’, datatype=’po’)
creates a filenode with the given filename. All parameters are needed for XLIFF compliance.

creategroup(filename=’NoName’, createifmissing=False, restype=None)
adds a group tag into the specified file

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getbodynode(filenode, createifmissing=False)
finds the body node for the given filenode

getdatatype(filename=None)
Returns the datatype of the stored file. If no filename is given, the datatype of the first file is given.

getdate(filename=None)
Returns the date attribute for the file.

If no filename is given, the date of the first file is given. If the date attribute is not specified, None is
returned.

Returns Date attribute of file

4.1. API 567

Translate Toolkit Documentation, Release 3.0.0

Return type Date or None

getfilename(filenode)
returns the name of the given file

getfilenames()
returns all filenames in this XLIFF file

getfilenode(filename, createifmissing=False)
finds the filenode with the given name

getheadernode(filenode, createifmissing=False)
finds the header node for the given filenode

getheaderplural()
Returns the nplural and plural values from the header.

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

header()
Returns the header element, or None. Only the first element is allowed to be a header. Note that this could
still return an empty header element, if present.

init_headers(charset=’UTF-8’, encoding=’8bit’, **kwargs)
sets default values for po headers

initbody()
Initialises self.body so it never needs to be retrieved from the XML again.

isempty()
Return True if the object doesn’t contain any translation units.

makeheader(**kwargs)
Create a header for the given filename.

Check .makeheaderdict() for information on parameters.

makeheaderdict(charset=’CHARSET’, encoding=’ENCODING’, project_id_version=None,
pot_creation_date=None, po_revision_date=None, last_translator=None,
language_team=None, mime_version=None, plural_forms=None, re-
port_msgid_bugs_to=None, **kwargs)

Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string) po_revision_date can be None
(form), False (=pot_creation_date), True (=now), or a value (datetime or string)

Returns Dictionary with the header items

Return type dict of strings

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

568 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

mergeheaders(otherstore)
Merges another header with this header.

This header is assumed to be the template.

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

parseheader()
Parses the PO header and returns the interpreted values as a dictionary.

classmethod parsestring(storestring)
Parses the string to return the correct file object

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

removedefaultfile()
We want to remove the default file-tag as soon as possible if we know if still present and empty.

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a string containing the file’s XML

setfilename(filenode, filename)
set the name of the given file

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(language)
Set the source language for this store.

settargetlanguage(language)
Set the target language for this store.

4.1. API 569

Translate Toolkit Documentation, Release 3.0.0

switchfile(filename, createifmissing=False)
Adds the given trans-unit (will create the nodes required if asked).

Returns Success

Return type Boolean

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

updatecontributor(name, email=None)
Add contribution comments if necessary.

updateheader(add=False, **kwargs)
Updates the fields in the PO style header.

This will create a header if add == True.

updateheaderplural(nplurals, plural)
Update the Plural-Form PO header.

class translate.storage.poxliff.PoXliffUnit(source=None, empty=False, **kwargs)
A class to specifically handle the plural units created from a po file.

addalttrans(txt, origin=None, lang=None, sourcetxt=None, matchquality=None)
Adds an alt-trans tag and alt-trans components to the unit.

Parameters txt (String) – Alternative translation of the source text.

adderror(errorname, errortext)
Adds an error message to this unit.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Add a note specifically in a “note” tag

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

correctorigin(node, origin)
Check against node tag’s origin (e.g note or alt-trans)

570 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

createcontextgroup(name, contexts=None, purpose=None)
Add the context group to the trans-unit with contexts a list with (type, text) tuples describing each context.

createlanguageNode(lang, text, purpose)
Returns an xml Element setup with given parameters.

delalttrans(alternative)
Removes the supplied alternative from the list of alt-trans tags

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

get_rich_target(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

getalttrans(origin=None)
Returns <alt-trans> for the given origin as a list of units. No origin means all alternatives.

getautomaticcomments()
Returns the automatic comments (x-po-autocomment), which corresponds to the #. style po comments.

getcontext()
Get the message context.

getcontextgroups(name)
Returns the contexts in the context groups with the specified name

geterrors()
Get all error messages.

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
We override this to get source and target nodes.

getlocations()
Returns all the references (source locations)

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getrestype()
returns the restype attribute in the trans-unit tag

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

gettargetlen()
Returns the length of the target string.

Return type Integer

4.1. API 571

Translate Toolkit Documentation, Release 3.0.0

Note: Plural forms might be combined.

gettranslatorcomments()
Returns the translator comments (x-po-trancomment), which corresponds to the # style po comments.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isapproved()
States whether this unit is approved.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
States whether this unit needs to be reviewed

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markapproved(value=True)
Mark this unit as approved.

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

572 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(id)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settarget(target, lang=’xx’, append=False)
Sets the target string to the given value.

unit_iter()
Iterator that only returns this unit.

4.1. API 573

Translate Toolkit Documentation, Release 3.0.0

project

class translate.storage.project.Project(projstore=None)
Manages a project store as well as the processes involved in a project workflow.

add_source(srcfile, src_fname=None)
Proxy for self.store.append_sourcefile().

add_source_convert(srcfile, src_fname=None, convert_options=None, extension=None)
Convenience method that calls add_source() and convert_forward() and returns the results
from both.

close()
Proxy for self.store.close().

convert_forward(input_fname, template=None, output_fname=None, **options)
Convert the given input file to the next type in the process:

Source document (eg. ODT) -> Translation file (eg. XLIFF) -> Translated document (eg. ODT).

Parameters

• input_fname (basestring) – The project name of the file to convert

• convert_options (Dictionary (optional)) – Passed as-is to translate.
convert.factory.convert().

Returns 2-tuple the converted file object and its project name.

export_file(fname, destfname)
Export the file with the specified filename to the given destination. This method will raise
FileNotInProjectError via the call to get_file() if fname is not found in the project.

get_file(fname)
Proxy for self.store.get_file().

get_proj_filename(realfname)
Proxy for self.store.get_proj_filename().

get_real_filename(projfname)
Try and find a real file name for the given project file name.

remove_file(projfname, ftype=None)
Proxy for self.store.remove_file().

save(filename=None)
Proxy for self.store.save().

update_file(proj_fname, infile)
Proxy for self.store.update_file().

projstore

exception translate.storage.projstore.FileExistsInProjectError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception translate.storage.projstore.FileNotInProjectError

574 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class translate.storage.projstore.ProjectStore
Basic project file container.

append_file(afile, fname, ftype=’trans’, delete_orig=False)
Append the given file to the project with the given filename, marked to be of type ftype (‘src’, ‘trans’,
‘tgt’).

Parameters delete_orig (bool) – Whether or not the original (given) file should be deleted
after being appended. This is set to True by convert_forward() . Not used in this
class.

get_file(fname, mode=’rb’)
Retrieve the file with the given name from the project store.

The file is looked up in the self._files dictionary. The values in this dictionary may be None, to
indicate that the file is not cacheable and needs to be retrieved in a special way. This special way must be
defined in this method of sub-classes. The value may also be a string, which indicates that it is a real file
accessible via open.

Parameters mode (str) – The mode in which to re-open the file (if it is closed).

get_filename_type(fname)
Get the type of file (‘src’, ‘trans’, ‘tgt’) with the given name.

get_proj_filename(realfname)
Try and find a project file name for the given real file name.

load(*args, **kwargs)
Load the project in some way. Undefined for this (base) class.

remove_file(fname, ftype=None)
Remove the file with the given project name from the project. If the file type (‘src’, ‘trans’ or ‘tgt’) is not
given, it is guessed.

save(filename=None, *args, **kwargs)
Save the project in some way. Undefined for this (base) class.

sourcefiles
Read-only access to self._sourcefiles.

targetfiles
Read-only access to self._targetfiles.

transfiles
Read-only access to self._transfiles.

update_file(pfname, infile)
Remove the project file with name pfname and add the contents from infile to the project under the
same file name.

Returns the results from ProjectStore.append_file().

properties

Classes that hold units of .properties, and similar, files that are used in translating Java, Mozilla, MacOS and other
software.

The propfile class is a monolingual class with propunit providing unit level access.

4.1. API 575

https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/stdtypes.html#str

Translate Toolkit Documentation, Release 3.0.0

The .properties store has become a general key value pair class with Dialect providing the ability to change the
behaviour of the parsing and handling of the various dialects.

Currently we support:

• Java .properties

• Mozilla .properties

• Adobe Flex files

• MacOS X .strings files

• Skype .lang files

The following provides references and descriptions of the various dialects supported:

Java Java .properties are supported completely except for the ability to drop pairs that are not translated.

The following .properties file description gives a good references to the .properties specification.

Properties file may also hold Java MessageFormat messages. No special handling is provided in this storage
class for MessageFormat, but this may be implemented in future.

All delimiter types, comments, line continuations and spaces handling in delimeters are supported.

Mozilla Mozilla files use ‘=’ as a delimiter, are UTF-8 encoded and thus don’t need \u escaping. Any \U values will
be converted to correct Unicode characters.

Strings Mac OS X strings files are implemented using these two articles as references.

Flex Adobe Flex files seem to be normal .properties files but in UTF-8 just like Mozilla files. This page provides the
information used to implement the dialect.

Skype Skype .lang files seem to be UTF-16 encoded .properties files.

A simple summary of what is permissible follows.

Comments supported:

a comment
// a comment (only at the beginning of a line)

The following are # escaped to render in docs
! is standard but not widely supported
#! a comment
/* is non-standard but used on some implementations
#/* a comment (not across multiple lines) */

Name and Value pairs:

Delimiters
key = value
key : value
Whitespace delimiter
key[sp]value

Space in key and around value
\ key\ = \ value

Note that the b and c are escaped for reST rendering
b = a string with escape sequences \\t \\n \\r \\\\ \\" \\' \\ (space) \u0123
c = a string with a continuation line \\

continuation line

(continues on next page)

576 Chapter 4. API Reference

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load(java.io.Reader)
http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html
https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingResources/Strings/Strings.html
http://livedocs.adobe.com/flex/3/html/help.html?content=l10n_3.html

Translate Toolkit Documentation, Release 3.0.0

(continued from previous page)

Special cases
key with no value
//key (escaped; doesn't render in docs)
value no key (extractable in prop2po but not mergeable in po2prop)
=value

.strings specific
"key" = "value";

class translate.storage.properties.Dialect
Settings for the various behaviours in key=value files.

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectFlex

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

4.1. API 577

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectGaia

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectGwt

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectJava

classmethod encode(string, encoding=None)
Encode the string

578 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectJavaUtf16

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectJavaUtf8

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

4.1. API 579

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectJoomla

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectMozilla

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

580 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.properties.DialectSkype

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectStrings

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

class translate.storage.properties.DialectStringsUtf8

classmethod encode(string, encoding=None)
Encode the string

classmethod find_delimiter(line)
Find the type and position of the delimiter in a property line.

4.1. API 581

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

Property files can be delimited by “=”, “:” or whitespace (space for now). We find the position of each
delimiter, then find the one that appears first.

Parameters

• line (str) – A properties line

• delimiters (list) – valid delimiters

Returns delimiter character and offset within line

Return type Tuple (delimiter char, Offset Integer)

classmethod key_strip(key)
Strip unneeded characters from the key

classmethod value_strip(value)
Strip unneeded characters from the value

translate.storage.properties.accesskeysuffixes = ('.accesskey', '.accessKey', '.akey')
Accesskey Suffixes: entries with this suffix may be combined with labels ending in labelsuffixes into
accelerator notation

class translate.storage.properties.gwtfile(*args, **kwargs)

UnitClass
alias of propunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

582 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list

Translate Toolkit Documentation, Release 3.0.0

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

4.1. API 583

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

translate.storage.properties.is_comment_end(line)
Determine whether a line ends a new multi-line comment.

Parameters line (unicode) – A properties line

Returns True if line ends a new multi-line comment

Return type bool

translate.storage.properties.is_comment_one_line(line)
Determine whether a line is a one-line comment.

Parameters line (unicode) – A properties line

Returns True if line is a one-line comment

Return type bool

translate.storage.properties.is_comment_start(line)
Determine whether a line starts a new multi-line comment.

Parameters line (unicode) – A properties line

Returns True if line starts a new multi-line comment

Return type bool

translate.storage.properties.is_line_continuation(line)
Determine whether line has a line continuation marker.

.properties files can be terminated with a backslash () indicating that the ‘value’ continues on the next line.
Continuation is only valid if there are an odd number of backslashses (an even number would result in a set of
N/2 slashes not an escape)

Parameters line (str) – A properties line

Returns Does line end with a line continuation

Return type Boolean

class translate.storage.properties.javafile(*args, **kwargs)

UnitClass
alias of propunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

584 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/stdtypes.html#str

Translate Toolkit Documentation, Release 3.0.0

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

4.1. API 585

Translate Toolkit Documentation, Release 3.0.0

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.properties.javautf16file(*args, **kwargs)

UnitClass
alias of propunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

586 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.properties.javautf8file(*args, **kwargs)

UnitClass
alias of propunit

4.1. API 587

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

588 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.properties.joomlafile(*args, **kwargs)

UnitClass
alias of propunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

4.1. API 589

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

590 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

translate.storage.properties.labelsuffixes = ('.label', '.title')
Label suffixes: entries with this suffix are able to be comibed with accesskeys found in in entries ending with
accesskeysuffixes

class translate.storage.properties.propfile(inputfile=None, personality=’java’, encod-
ing=None)

this class represents a .properties file, made up of propunits

UnitClass
alias of propunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

4.1. API 591

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

592 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

class translate.storage.properties.proppluralunit(source=”, personality=’java’)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

4.1. API 593

Translate Toolkit Documentation, Release 3.0.0

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural(key=None)
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
returns whether this is a blank element, containing only comments.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

594 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.properties.propunit(source=”, personality=’java’)
An element of a properties file i.e. a name and value, and any comments associated.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

4.1. API 595

Translate Toolkit Documentation, Release 3.0.0

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

596 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getoutput()
Convert the element back into formatted lines for a .properties file

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
returns whether this is a blank element, containing only comments.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

4.1. API 597

Translate Toolkit Documentation, Release 3.0.0

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

translate.storage.properties.register_dialect(dialect)
Decorator that registers the dialect.

class translate.storage.properties.stringsfile(*args, **kwargs)

UnitClass
alias of propunit

598 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

4.1. API 599

Translate Toolkit Documentation, Release 3.0.0

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.properties.stringsutf8file(*args, **kwargs)

UnitClass
alias of propunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

600 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(propsrc)
Read the source of a properties file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the units back to file.

4.1. API 601

Translate Toolkit Documentation, Release 3.0.0

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

pypo

Classes that hold units of Gettext .po files (pounit) or entire files (pofile).

class translate.storage.pypo.PoWrapper(width=77, replace_whitespace=False, ex-
pand_tabs=False, drop_whitespace=False)

fill(text : string)→ string
Reformat the single paragraph in ‘text’ to fit in lines of no more than ‘self.width’ columns, and return a
new string containing the entire wrapped paragraph.

wrap(text : string)→ [string]
Reformat the single paragraph in ‘text’ so it fits in lines of no more than ‘self.width’ columns, and return
a list of wrapped lines. Tabs in ‘text’ are expanded with string.expandtabs(), and all other whitespace
characters (including newline) are converted to space.

translate.storage.pypo.escapeforpo(line)
Escapes a line for po format. assumes no occurs in the line.

param line unescaped text

translate.storage.pypo.lsep = '\n#: '
Separator for #: entries

class translate.storage.pypo.pofile(inputfile=None, width=None, **kwargs)
A .po file containing various units

UnitClass
alias of pounit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

602 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

decode(lines)
decode any non-unicode strings in lines with self.encoding

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

encode(lines)
encode any unicode strings in lines in self.encoding

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getheaderplural()
Returns the nplural and plural values from the header.

getids(filename=None)
return a list of unit ids

getprojectstyle()
Return the project based on information in the header.

The project is determined in the following sequence:

1. Use the ‘X-Project-Style’ entry in the header.

2. Use ‘Report-Msgid-Bug-To’ entry

3. Use the ‘X-Accelerator’ entry

4. Use the Project ID

5. Analyse the file itself (not yet implemented)

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Return the target language based on information in the header.

The target language is determined in the following sequence:

1. Use the ‘Language’ entry in the header.

2. Poedit’s custom headers.

3. Analysing the ‘Language-Team’ entry.

getunits()
Return a list of all units in this store.

header()
Returns the header element, or None. Only the first element is allowed to be a header. Note that this could
still return an empty header element, if present.

4.1. API 603

Translate Toolkit Documentation, Release 3.0.0

init_headers(charset=’UTF-8’, encoding=’8bit’, **kwargs)
sets default values for po headers

isempty()
Return True if the object doesn’t contain any translation units.

makeheader(**kwargs)
Create a header for the given filename.

Check .makeheaderdict() for information on parameters.

makeheaderdict(charset=’CHARSET’, encoding=’ENCODING’, project_id_version=None,
pot_creation_date=None, po_revision_date=None, last_translator=None,
language_team=None, mime_version=None, plural_forms=None, re-
port_msgid_bugs_to=None, **kwargs)

Create a header dictionary with useful defaults.

pot_creation_date can be None (current date) or a value (datetime or string) po_revision_date can be None
(form), False (=pot_creation_date), True (=now), or a value (datetime or string)

Returns Dictionary with the header items

Return type dict of strings

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

mergeheaders(otherstore)
Merges another header with this header.

This header is assumed to be the template.

parse(input)
Parses the given file or file source string.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

parseheader()
Parses the PO header and returns the interpreted values as a dictionary.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

removeduplicates(duplicatestyle=’merge’)
Make sure each msgid is unique ; merge comments etc from duplicates into original

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

604 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

serialize(out)
Write to file

setprojectstyle(project_style)
Set the project in the header.

Parameters project_style (str) – the new project

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(lang)
Set the target language in the header.

This removes any custom Poedit headers if they exist.

Parameters lang (str) – the new target language code

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

updatecontributor(name, email=None)
Add contribution comments if necessary.

updateheader(add=False, **kwargs)
Updates the fields in the PO style header.

This will create a header if add == True.

updateheaderplural(nplurals, plural)
Update the Plural-Form PO header.

class translate.storage.pypo.pounit(source=None, wrapper=None, **kwargs)

adderror(errorname, errortext)
Adds an error message to this unit.

addlocation(location)
Add a location to sourcecomments in the PO unit

Parameters location (String) – Text location e.g. ‘file.c:23’ does not include #:

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
This is modeled on the XLIFF method.

See translate.storage.xliff.xliffunit.addnote()

4.1. API 605

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getalttrans()
Return a list of alternate units.

Previous msgid and current msgstr is combined to form a single alternative unit.

getcontext()
Get the message context.

geterrors()
Get all error messages.

getid()
Returns a unique identifier for this unit.

getlocations()
Get a list of locations from sourcecomments in the PO unit

rtype: List return: A list of the locations with ‘#: ‘ stripped

getnotes(origin=None)
Return comments based on origin value.

Parameters origin – programmer, developer, source code, translator or None

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasmarkedcomment(commentmarker)
Check whether the given comment marker is present.

These should appear as:

(commentmarker) ...

hasplural()
returns whether this pounit contains plural strings. . .

hastypecomment(typecomment, parsed=None)
Check whether the given type comment is present

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

606 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Makes this unit obsolete

markfuzzy(present=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review. Adds an optional explanation as a note.

merge(otherpo, overwrite=False, comments=True, authoritative=False)
Merges the otherpo (with the same msgid) into this one.

Overwrite non-blank self.msgstr only if overwrite is True merge comments only if comments is True

msgidcomment
Extract KDE style msgid comments from the unit.

Return type String

Returns Returns the extracted msgidcomments found in this unit’s msgid.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

prev_source
Returns the unescaped msgid

removenotes(origin=None)
Remove all the translator’s notes (other comments)

resurrect()
Makes an obsolete unit normal

4.1. API 607

Translate Toolkit Documentation, Release 3.0.0

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settypecomment(typecomment, present=True)
Alters whether a given typecomment is present

source
Returns the unescaped msgid

target
Returns the unescaped msgstr

unit_iter()
Iterator that only returns this unit.

translate.storage.pypo.quoteforpo(text, wrapper_obj=None)
Quotes the given text for a PO file, returning quoted and escaped lines

translate.storage.pypo.splitlines(text)
Split lines based on first newline char.

Can not use univerzal newlines as they match any newline like character inside text and that breaks on files with
unix newlines and LF chars inside comments.

The code looks for first msgid and looks for newline used after it. This should safely cover weird newlines used
in comments or filenames, while properly parsing po files with any newlines.

translate.storage.pypo.unescape(line)
Unescape the given line.

Quotes on either side should already have been removed.

qm

Module for parsing Qt .qm files.

608 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Note: Based on documentation from Gettext’s .qm implementation (see write-qt.c) and on observation of the output
of lrelease.

Note: Certain deprecated section tags are not implemented. These will break and print out the missing tag. They are
easy to implement and should follow the structure in 03 (Translation). We could find no examples that use these so
we’d rather leave it unimplemented until we actually have test data.

Note: Many .qm files are unable to be parsed as they do not have the source text. We assume that since they use a
hash table to lookup the data there is actually no need for the source text. It seems however that in Qt4’s lrelease all
data is included in the resultant .qm file.

Note: We can only parse, not create, a .qm file. The main issue is that we need to implement the hashing algorithm
(which seems to be identical to the Gettext hash algorithm). Unlike Gettext it seems that the hash is required, but that
has not been validated.

Note: The code can parse files correctly. But it could be cleaned up to be more readable, especially the part that
breaks the file into sections.

http://qt.gitorious.org/+kde-developers/qt/kde-qt/blobs/master/tools/linguist/shared/qm.cpp Plural information QLo-
cale languages

class translate.storage.qm.qmfile(inputfile=None, **kwargs)
A class representing a .qm file.

UnitClass
alias of qmunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

4.1. API 609

http://qt.gitorious.org/+kde-developers/qt/kde-qt/blobs/master/tools/linguist/shared/qm.cpp
http://qt.gitorious.org/+kde-developers/qt/kde-qt/blobs/master/tools/linguist/shared/numerus.cpp
http://docs.huihoo.com/qt/4.5/qlocale.html#Language-enum
http://docs.huihoo.com/qt/4.5/qlocale.html#Language-enum

Translate Toolkit Documentation, Release 3.0.0

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
Parses the given file or file source string.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Output a string representation of the .qm data file

setprojectstyle(project_style)
Set the project type for this store.

610 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.qm.qmunit(source=None)
A class representing a .qm translation message.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

4.1. API 611

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

612 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

4.1. API 613

Translate Toolkit Documentation, Release 3.0.0

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

translate.storage.qm.qmunpack(file_=’messages.qm’)
Helper to unpack Qt .qm files into a Python string

qph

Module for handling Qt Linguist Phrase Book (.qph) files.

Extract from the Qt Linguist Manual: Translators: .qph Qt Phrase Book Files are human-readable XML files contain-
ing standard phrases and their translations. These files are created and updated by Qt Linguist and may be used by any
number of projects and applications.

A DTD to define the format does not seem to exist, but the following code provides the reference implementation for
the Qt Linguist product.

class translate.storage.qph.QphFile(inputfile=None, sourcelanguage=’en’, target-
language=None, **kwargs)

Class representing a QPH file store.

UnitClass
alias of QphUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Method to be overridden to initialise headers, etc.

addsourceunit(source)
Adds and returns a new unit with the given string as first entry.

addunit(unit, new=True)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

614 Chapter 4. API Reference

http://doc.trolltech.com/4.3/linguist-translators.html
http://qt.gitorious.org/qt/qt/blobs/4.7/tools/linguist/shared/qph.cpp

Translate Toolkit Documentation, Release 3.0.0

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this .qph file.

We don’t implement setsourcelanguage as users really shouldn’t be altering the source language in .qph
files, it should be set correctly by the extraction tools.

Returns ISO code e.g. af, fr, pt_BR

Return type String

gettargetlanguage()
Get the target language for this .qph file.

Returns ISO code e.g. af, fr, pt_BR

Return type String

getunits()
Return a list of all units in this store.

initbody()
Initialises self.body so it never needs to be retrieved from the XML again.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

4.1. API 615

Translate Toolkit Documentation, Release 3.0.0

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the XML document to the file out.

We have to override this to ensure mimic the Qt convention:

• no XML declaration

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this .qph file to targetlanguage.

Parameters targetlanguage (String) – ISO code e.g. af, fr, pt_BR

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.qph.QphUnit(source, empty=False, **kwargs)
A single term in the qph file.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

616 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Add a note specifically in a “definition” tag

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

createlanguageNode(lang, text, purpose)
Returns an xml Element setup with given parameters.

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
We override this to get source and target nodes.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

4.1. API 617

Translate Toolkit Documentation, Release 3.0.0

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

618 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settarget(target, lang=’xx’, append=False)
Sets the “target” string (second language), or alternatively appends to the list

unit_iter()
Iterator that only returns this unit.

rc

Classes that hold units of .rc files (rcunit) or entire files (rcfile) used in translating Windows Resources.

translate.storage.rc.escape_to_python(string)
Escape a given .rc string into a valid Python string.

4.1. API 619

Translate Toolkit Documentation, Release 3.0.0

translate.storage.rc.escape_to_rc(string)
Escape a given Python string into a valid .rc string.

translate.storage.rc.generate_dialog_caption_name(block_type, identifier)
Return the name generated for a caption of a dialog.

translate.storage.rc.generate_dialog_control_name(block_type, block_id, control_type,
identifier)

Return the name generated for a control of a dialog.

translate.storage.rc.generate_menu_pre_name(block_type, block_id)
Return the pre-name generated for elements of a menu.

translate.storage.rc.generate_menuitem_name(pre_name, block_type, identifier)
Return the name generated for a menuitem of a popup.

translate.storage.rc.generate_popup_caption_name(pre_name)
Return the name generated for a caption of a popup.

translate.storage.rc.generate_popup_pre_name(pre_name, caption)
Return the pre-name generated for subelements of a popup.

Parameters

• pre_name – The pre_name that already have the popup.

• caption – The caption (whitout quotes) of the popup.

Returns The subelements pre-name based in the pre-name of the popup and its caption.

translate.storage.rc.generate_stringtable_name(identifier)
Return the name generated for a stringtable element.

translate.storage.rc.rc_statement()
Generate a RC statement parser that can be used to parse a RC file

Return type pyparsing.ParserElement

class translate.storage.rc.rcfile(inputfile=None, lang=None, sublang=None, **kwargs)
This class represents a .rc file, made up of rcunits.

UnitClass
alias of rcunit

add_popup_units(pre_name, popup)
Transverses the popup tree making new units as needed.

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

620 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(rcsrc)
Read the source of a .rc file in and include them as units.

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

4.1. API 621

Translate Toolkit Documentation, Release 3.0.0

serialize(out)
Write the units back to file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.rc.rcunit(source=”, **kwargs)
A unit of an rc file

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

622 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getoutput()
Convert the element back into formatted lines for a .rc file.

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Returns whether this is a blank element, containing only comments.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

4.1. API 623

Translate Toolkit Documentation, Release 3.0.0

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

624 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

statistics

Module to provide statistics and related functionality.

class translate.storage.statistics.Statistics(sourcelanguage=’en’, target-
language=’en’, checkerstyle=None)

Manages statistics for storage objects.

classifyunit(unit)
Returns a list of the classes that the unit belongs to.

Parameters unit – the unit to classify

classifyunits()
Makes a dictionary of which units fall into which classifications.

This method iterates over all units.

countwords()
Counts the source and target words in each of the units.

fuzzy_unitcount()
Returns the number of fuzzy units.

fuzzy_units()
Return a list of fuzzy units.

get_source_text(units)
Joins the unit source strings in a single string of text.

getunits()
Returns a list of all units in this object.

reclassifyunit(item)
Updates the classification of a unit in self.classification.

Parameters item – an integer that is an index in .getunits().

source_wordcount()
Returns the number of words in the source text.

translated_unitcount()
Returns the number of translated units.

translated_units()
Return a list of translated units.

4.1. API 625

Translate Toolkit Documentation, Release 3.0.0

translated_wordcount()
Returns the number of translated words in this object.

untranslated_unitcount()
Returns the number of untranslated units.

untranslated_units()
Return a list of untranslated units.

untranslated_wordcount()
Returns the number of untranslated words in this object.

wordcount(text)
Returns the number of words in the given text.

statsdb

Module to provide a cache of statistics in a database.

class translate.storage.statsdb.StatsCache
An object instantiated as a singleton for each statsfile that provides access to the database cache from a pool of
StatsCache objects.

con = None
This cache’s connection

cur = None
The current cursor

filechecks(filename, checker, store=None)
Retrieves the error statistics for the given file if possible, otherwise delegates to cachestorechecks().

filestatestats(filename, store=None, extended=False)
Return a dictionary of unit stats mapping sets of unit indices with those states

filestats(filename, checker, store=None, extended=False)
Return a dictionary of property names mapping sets of unit indices with those properties.

filetotals(filename, store=None, extended=False)
Retrieves the statistics for the given file if possible, otherwise delegates to cachestore().

unitstats(filename, _lang=None, store=None)
Return a dictionary of property names mapping to arrays which map unit indices to property values.

Please note that this is different from filestats, since filestats supplies sets of unit indices with a given
property, whereas this method supplies arrays which map unit indices to given values.

translate.storage.statsdb.emptyfiletotals()
Returns a dictionary with all statistics initalised to 0.

translate.storage.statsdb.statefordb(unit)
Returns the numeric database state for the unit.

translate.storage.statsdb.transaction(f)
Modifies f to commit database changes if it executes without exceptions. Otherwise it rolls back the database.

ALL publicly accessible methods in StatsCache MUST be decorated with this decorator.

translate.storage.statsdb.wordsinunit(unit)
Counts the words in the unit’s source and target, taking plurals into account. The target words are only counted
if the unit is translated.

626 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

subtitles

Class that manages subtitle files for translation.

This class makes use of the subtitle functionality of gaupol.

See also:

gaupol/agents/open.py::open_main

A patch to gaupol is required to open utf-8 files successfully.

class translate.storage.subtitles.AdvSubStationAlphaFile(*args, **kwargs)
specialized class for SubRipFile’s only

UnitClass
alias of SubtitleUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

4.1. API 627

Translate Toolkit Documentation, Release 3.0.0

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parser to process the given source string

classmethod parsefile(storefile)
parse the given file

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.subtitles.MicroDVDFile(*args, **kwargs)
specialized class for SubRipFile’s only

UnitClass
alias of SubtitleUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

628 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parser to process the given source string

classmethod parsefile(storefile)
parse the given file

4.1. API 629

Translate Toolkit Documentation, Release 3.0.0

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.subtitles.SubRipFile(*args, **kwargs)
specialized class for SubRipFile’s only

UnitClass
alias of SubtitleUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

630 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parser to process the given source string

classmethod parsefile(storefile)
parse the given file

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

4.1. API 631

Translate Toolkit Documentation, Release 3.0.0

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.subtitles.SubStationAlphaFile(*args, **kwargs)
specialized class for SubRipFile’s only

UnitClass
alias of SubtitleUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

632 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parser to process the given source string

classmethod parsefile(storefile)
parse the given file

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.subtitles.SubtitleFile(inputfile=None, **kwargs)
A subtitle file

UnitClass
alias of SubtitleUnit

4.1. API 633

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parser to process the given source string

634 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

classmethod parsefile(storefile)
parse the given file

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.subtitles.SubtitleUnit(source=None, **kwargs)
A subtitle entry that is translatable

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

4.1. API 635

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

636 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

4.1. API 637

Translate Toolkit Documentation, Release 3.0.0

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

symbian

tbx

module for handling TBX glossary files

class translate.storage.tbx.tbxfile(inputfile=None, sourcelanguage=’en’, target-
language=None, **kwargs)

Class representing a TBX file store.

UnitClass
alias of tbxunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Initialise headers with TBX specific things.

638 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

addsourceunit(source)
Adds and returns a new unit with the given string as first entry.

addunit(unit, new=True)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

initbody()
Initialises self.body so it never needs to be retrieved from the XML again.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

4.1. API 639

Translate Toolkit Documentation, Release 3.0.0

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out=None)
Converts to a string containing the file’s XML

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.tbx.tbxunit(source, empty=False, **kwargs)
A single term in the TBX file. Provisional work is done to make several languages possible.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

640 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Add a note specifically in a “note” tag

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

createlanguageNode(lang, text, purpose)
returns a langset xml Element setup with given parameters

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
Returns a list of all nodes that contain per language information.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

4.1. API 641

Translate Toolkit Documentation, Release 3.0.0

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

642 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settarget(target, lang=’xx’, append=False)
Sets the “target” string (second language), or alternatively appends to the list

unit_iter()
Iterator that only returns this unit.

4.1. API 643

Translate Toolkit Documentation, Release 3.0.0

tiki

Class that manages TikiWiki files for translation. Tiki files are <strike>ugly and inconsistent</strike> formatted as a
single large PHP array with several special sections identified by comments. Example current as of 2008-12-01:

<?php
// Many comments at the top
$lang=Array(
// ### Start of unused words
"aaa" => "zzz",
// ### end of unused words

// ### start of untranslated words
// "bbb" => "yyy",
// ### end of untranslated words

// ### start of possibly untranslated words
"ccc" => "xxx",
// ### end of possibly untranslated words

"ddd" => "www",
"###end###"=>"###end###");

?>

In addition there are several auto-generated //-style comments scattered through the page and array, some of which
matter when being parsed.

This has all been gleaned from the TikiWiki source. As far as I know no detailed documentation exists for the tiki
language.php files.

class translate.storage.tiki.TikiStore(inputfile=None)
Represents a tiki language.php file.

UnitClass
alias of TikiUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

644 Chapter 4. API Reference

http://tikiwiki.svn.sourceforge.net/viewvc/tikiwiki/trunk/get_strings.php?view=markup

Translate Toolkit Documentation, Release 3.0.0

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
Parse the given input into source units.

Parameters input – the source, either a string or filehandle

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Will return a formatted tiki-style language.php file.

setprojectstyle(project_style)
Set the project type for this store.

4.1. API 645

Translate Toolkit Documentation, Release 3.0.0

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.tiki.TikiUnit(source=None, **kwargs)
A tiki unit entry.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Location is defined by the comments in the file. This function will only set valid locations.

Parameters location – Where the string is located in the file. Must be a valid location.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

646 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
Returns the a list of the location(s) of the string.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

4.1. API 647

Translate Toolkit Documentation, Release 3.0.0

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

648 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

tmdb

Module to provide a translation memory database.

exception translate.storage.tmdb.LanguageError(value)

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

tmx

module for parsing TMX translation memeory files

class translate.storage.tmx.tmxfile(inputfile=None, sourcelanguage=’en’, target-
language=None, **kwargs)

Class representing a TMX file store.

UnitClass
alias of tmxunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Method to be overridden to initialise headers, etc.

addsourceunit(source)
Adds and returns a new unit with the given string as first entry.

addtranslation(source, srclang, translation, translang, comment=None)
addtranslation method for testing old unit tests

addunit(unit, new=True)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

4.1. API 649

Translate Toolkit Documentation, Release 3.0.0

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

initbody()
Initialises self.body so it never needs to be retrieved from the XML again.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out=None)
Converts to a string containing the file’s XML

650 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(sourcetext, sourcelang=None, targetlang=None)
method to test old unit tests

unit_iter()
Iterator over all the units in this store.

class translate.storage.tmx.tmxunit(source, empty=False, **kwargs)
A single unit in the TMX file.

adderror(errorname, errortext)
Adds an error message to this unit.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Add a note specifically in a “note” tag.

The origin parameter is ignored

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

copy()
Make a copy of the translation unit.

We don’t want to make a deep copy - this could duplicate the whole XML tree. For now we just serialise
and reparse the unit’s XML.

createlanguageNode(lang, text, purpose)
returns a langset xml Element setup with given parameters

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

getcontext()
Get the message context.

4.1. API 651

Translate Toolkit Documentation, Release 3.0.0

geterrors()
Get all error messages.

getid()
Returns the identifier for this unit. The optional tuid property is used if available, otherwise we inherit
.getid(). Note that the tuid property is only mandated to be unique from TMX 2.0.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
Returns a list of all nodes that contain per language information.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

652 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

4.1. API 653

Translate Toolkit Documentation, Release 3.0.0

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settarget(target, lang=’xx’, append=False)
Sets the “target” string (second language), or alternatively appends to the list

unit_iter()
Iterator that only returns this unit.

trados

Manage the Trados .txt Translation Memory format

A Trados file looks like this:

<TrU>
<CrD>18012000, 13:18:35
<CrU>CAROL-ANN
<UsC>0
<Seg L=EN_GB>Association for Road Safety \endash Conference
<Seg L=DE_DE>Tagung der Gesellschaft für Verkehrssicherheit
</TrU>
<TrU>
<CrD>18012000, 13:19:14
<CrU>CAROL-ANN
<UsC>0
<Seg L=EN_GB>Road Safety Education in our Schools
<Seg L=DE_DE>Verkehrserziehung an Schulen
</TrU>

translate.storage.trados.TRADOS_TIMEFORMAT = '%d%m%Y, %H:%M:%S'
Time format used by Trados .txt

translate.storage.trados.RTF_ESCAPES = {'\\-': '\xad', '_': '-', '\\bullet': '•', '\\emdash': '--', '\\emspace': '\u2003', '\\endash': '-', '\\enspace': '\u2002', '\\ldblquote': '“', '\\lquote': '‘', '\\rdblquote': '”', '\\rquote': '’', '\\~': '\xa0'}
RTF control to Unicode map. See http://msdn.microsoft.com/en-us/library/aa140283(v=office.10).aspx

translate.storage.trados.escape(text)
Convert Unicode string to Trodas escapes

654 Chapter 4. API Reference

http://msdn.microsoft.com/en-us/library/aa140283(v=office.10).aspx

Translate Toolkit Documentation, Release 3.0.0

translate.storage.trados.unescape(text)
Convert Trados text to normal Unicode string

class translate.storage.trados.TradosTxtDate(newtime=None)
Manages the timestamps in the Trados .txt format of DDMMYYY, hh:mm:ss

get_time()
Get the time_struct object

get_timestring()
Get the time in the Trados time format

set_time(newtime)
Set the time_struct object

Parameters newtime (time.time_struct) – a new time object

set_timestring(timestring)
Set the time_struct object using a Trados time formated string

Parameters timestring (String) – A Trados time string (DDMMYYYY, hh:mm:ss)

time
Get the time_struct object

timestring
Get the time in the Trados time format

class translate.storage.trados.TradosUnit(source=None)

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

4.1. API 655

Translate Toolkit Documentation, Release 3.0.0

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

656 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

4.1. API 657

Translate Toolkit Documentation, Release 3.0.0

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

class translate.storage.trados.TradosTxtTmFile(inputfile=None, **kwargs)
A Trados translation memory file

UnitClass
alias of TradosUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

658 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parser to process the given source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

4.1. API 659

Translate Toolkit Documentation, Release 3.0.0

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

ts2

Module for handling Qt linguist (.ts) files.

This will eventually replace the older ts.py which only supports the older format. While converters haven’t been
updated to use this module, we retain both.

TS file format 4.3, 4.8, 5. Example.

Specification of the valid variable entries, 2

class translate.storage.ts2.tsfile(*args, **kwargs)
Class representing a TS file store.

UnitClass
alias of tsunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Method to be overridden to initialise headers, etc.

addsourceunit(source)
Adds and returns a new unit with the given string as first entry.

addunit(unit, new=True, contextname=None, comment=None, createifmissing=True)
Adds the given unit to the last used body node (current context).

If the contextname is specified, switch to that context (creating it if allowed by createifmissing).

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

660 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None
http://doc.qt.io/archives/4.3/linguist-ts-file-format.html
http://doc.qt.io/qt-4.8/linguist-ts-file-format.html
http://doc.qt.io/qt-5/linguist-ts-file-format.html
http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt
http://doc.qt.io/qt-5/qstring.html#arg
http://doc.qt.io/qt-5/qstring.html#arg-2

Translate Toolkit Documentation, Release 3.0.0

getsourcelanguage()
Get the source language for this .ts file.

The ‘sourcelanguage’ attribute was only added to the TS format in Qt v4.5. We return ‘en’ if there is no
sourcelanguage set.

We don’t implement setsourcelanguage as users really shouldn’t be altering the source language in .ts files,
it should be set correctly by the extraction tools.

Returns ISO code e.g. af, fr, pt_BR

Return type String

gettargetlanguage()
Get the target language for this .ts file.

Returns ISO code e.g. af, fr, pt_BR

Return type String

getunits()
Return a list of all units in this store.

initbody()
Initialises self.body.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

4.1. API 661

Translate Toolkit Documentation, Release 3.0.0

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Write the XML document to a file.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this .ts file to targetlanguage.

Parameters targetlanguage (String) – ISO code e.g. af, fr, pt_BR

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.ts2.tsunit(source, empty=False, **kwargs)
A single term in the TS file.

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Add a note specifically in the appropriate comment tag

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

createlanguageNode(lang, text, purpose)
Returns an xml Element setup with given parameters.

662 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
We override this to get source and target nodes.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

4.1. API 663

Translate Toolkit Documentation, Release 3.0.0

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
States whether this unit needs to be reviewed

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

664 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(value)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settarget(target, lang=’xx’, append=False)
Sets the “target” string (second language), or alternatively appends to the list

statemap = {'obsolete': -100, 'unfinished': 30, '': 100, None: 100}
This maps the unit “type” attribute to state.

unit_iter()
Iterator that only returns this unit.

ts

Module for parsing Qt .ts files for translation.

Currently this module supports the old format of .ts files. Some applictaions use the newer .ts format which are
documented here: TS file format 4.3, Example

Specification of the valid variable entries, 2

txt

This class implements the functionality for handling plain text files, or similar wiki type files.

Supported formats are

• Plain text

4.1. API 665

http://doc.qt.io/archives/4.3/linguist-ts-file-format.html
http://svn.ez.no/svn/ezcomponents/trunk/Translation/docs/linguist-format.txt
http://doc.qt.io/qt-5/qstring.html#arg
http://doc.qt.io/qt-5/qstring.html#arg-2

Translate Toolkit Documentation, Release 3.0.0

• dokuwiki

• MediaWiki

class translate.storage.txt.TxtFile(inputfile=None, flavour=None, no_segmentation=False,
**kwargs)

This class represents a text file, made up of txtunits

UnitClass
alias of TxtUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

666 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(lines)
Read in text lines and create txtunits from the blocks of text

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.txt.TxtUnit(source=”, **kwargs)
This class represents a block of text from a text file

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

4.1. API 667

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

getcontext()
Get the message context.

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

668 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

4.1. API 669

Translate Toolkit Documentation, Release 3.0.0

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

target
gets the unquoted target string

unit_iter()
Iterator that only returns this unit.

utx

Manage the Universal Terminology eXchange (UTX) format

UTX is a format for terminology exchange, designed it seems with Machine Translation (MT) as it’s primary consumer.
The format is created by the Asia-Pacific Association for Machine Translation (AAMT).

It is a bilingual base class derived format with UtxFile and UtxUnit providing file and unit level access.

The format can manage monolingual dictionaries but these classes don’t implement that.

670 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Specification The format is implemented according to UTX v1.0 (No longer available from their website. The current
UTX version may be downloaded instead).

Format Implementation The UTX format is a Tab Seperated Value (TSV) file in UTF-8. The first two lines are
headers with subsequent lines containing a single source target definition.

Encoding The files are UTF-8 encoded with no BOM and CR+LF line terminators.

class translate.storage.utx.UtxDialect
Describe the properties of an UTX generated TAB-delimited dictionary file.

class translate.storage.utx.UtxFile(inputfile=None, **kwargs)
A UTX dictionary file

UnitClass
alias of UtxUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

4.1. API 671

http://www.aamt.info/english/utx/#Download

Translate Toolkit Documentation, Release 3.0.0

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parsese the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.utx.UtxHeader
A UTX header entry

A UTX header is a single line that looks like this:: #UTX-S <version>; < source language >/< target lan-
guage>; <date created>; <optional fields (creator, license, etc.)>

Where::

• UTX-S version is currently 1.00.

672 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

• Source language/target language: ISO 639, 3166 formats. In the case of monolingual dictionary,
target language should be omitted.

• Date created: ISO 8601 format

• Optional fields (creator, license, etc.)

class translate.storage.utx.UtxUnit(source=None)
A UTX dictionary unit

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

dict
Get the dictionary of values for a UTX line

getcontext()
Get the message context.

getdict()
Get the dictionary of values for a UTX line

geterrors()
Get all error messages.

Return type Dictionary

4.1. API 673

Translate Toolkit Documentation, Release 3.0.0

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

674 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

4.1. API 675

Translate Toolkit Documentation, Release 3.0.0

setcontext(context)
Set the message context

setdict(newdict)
Set the dictionary of values for a UTX line

Parameters newdict (Dict) – a new dictionary with UTX line elements

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

versioncontrol

This module manages interaction with version control systems.

To implement support for a new version control system, inherit from GenericRevisionControlSystem.

TODO:

• Add authentication handling

• commitdirectory() should do a single commit instead of one for each file

• Maybe implement some caching for get_versioned_object() - check profiler

translate.storage.versioncontrol.DEFAULT_RCS = ['svn', 'cvs', 'darcs', 'git', 'bzr', 'hg']
the names of all supported revision control systems

modules of the same name containing a class with the same name are expected to be defined below ‘trans-
late.storage.versioncontrol’

class translate.storage.versioncontrol.GenericRevisionControlSystem(location,
old-
est_parent=None)

Bases: object

The super class for all version control classes.

Always inherit from this class to implement another RC interface.

At least the two attributes RCS_METADIR and SCAN_PARENTS must be overriden by all implementations that
derive from this class.

By default, all implementations can rely on the following attributes:

• root_dir: the parent of the metadata directory of the working copy

• location_abs: the absolute path of the RCS object

• location_rel: the path of the RCS object relative to root_dir

RCS_METADIR = None
The name of the metadata directory of the RCS

e.g.: for Subversion -> “.svn”

SCAN_PARENTS = None
Whether to check the parent directories for the metadata directory of the RCS working copy

676 Chapter 4. API Reference

https://docs.python.org/3.8/library/functions.html#object

Translate Toolkit Documentation, Release 3.0.0

Some revision control systems store their metadata directory only in the base of the working copy (e.g.
bzr, GIT and Darcs) use True for these RCS

Other RCS store a metadata directory in every single directory of the working copy (e.g. Subversion and
CVS) use False for these RCS

add(files, message=None, author=None)
Dummy to be overridden by real implementations

commit(message=None, author=None)
Dummy to be overridden by real implementations

getcleanfile(revision=None)
Dummy to be overridden by real implementations

update(revision=None, needs_revert=True)
Dummy to be overridden by real implementations

translate.storage.versioncontrol.commitdirectory(directory, message=None, au-
thor=None)

Commit all files below the given directory.

Files that are just symlinked into the directory are supported, too

translate.storage.versioncontrol.get_available_version_control_systems()
return the class objects of all locally available version control systems

translate.storage.versioncontrol.get_versioned_object(location, version-
ing_systems=None, fol-
low_symlinks=True, old-
est_parent=None)

return a versioned object for the given file

translate.storage.versioncontrol.get_versioned_objects_recursive(location,
version-
ing_systems=None,
fol-
low_symlinks=True)

return a list of objects, each pointing to a file below this directory

translate.storage.versioncontrol.run_command(command, cwd=None)
Runs a command (array of program name and arguments) and returns the exitcode, the output and the error as a
tuple.

Parameters

• command (list) – list of arguments to be joined for a program call

• cwd (str) – optional directory where the command should be executed

translate.storage.versioncontrol.updatedirectory(directory)
Update all files below the given directory.

Files that are just symlinked into the directory are supported, too

bzr

class translate.storage.versioncontrol.bzr.bzr(location, oldest_parent=None)
Class to manage items under revision control of bzr.

add(files, message=None, author=None)
Add and commit files.

4.1. API 677

https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str

Translate Toolkit Documentation, Release 3.0.0

commit(message=None, author=None)
Commits the file and supplies the given commit message if present

getcleanfile(revision=None)
Get a clean version of a file from the bzr repository

update(revision=None, needs_revert=True)
Does a clean update of the given path

translate.storage.versioncontrol.bzr.get_version()
return a tuple of (major, minor) for the installed bazaar client

translate.storage.versioncontrol.bzr.is_available()
check if bzr is installed

cvs

class translate.storage.versioncontrol.cvs.cvs(location, oldest_parent=None)
Class to manage items under revision control of CVS.

add(files, message=None, author=None)
Add and commit the new files.

commit(message=None, author=None)
Commits the file and supplies the given commit message if present

the ‘author’ parameter is not suitable for CVS, thus it is ignored

getcleanfile(revision=None)
Get the content of the file for the given revision

update(revision=None, needs_revert=True)
Does a clean update of the given path

translate.storage.versioncontrol.cvs.is_available()
check if cvs is installed

darcs

class translate.storage.versioncontrol.darcs.darcs(location, oldest_parent=None)
Class to manage items under revision control of darcs.

add(files, message=None, author=None)
Add and commit files.

commit(message=None, author=None)
Commits the file and supplies the given commit message if present

getcleanfile(revision=None)
Get a clean version of a file from the darcs repository

Parameters revision – ignored for darcs

update(revision=None, needs_revert=True)
Does a clean update of the given path

Parameters revision – ignored for darcs

translate.storage.versioncontrol.darcs.is_available()
check if darcs is installed

678 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

git

class translate.storage.versioncontrol.git.git(location, oldest_parent=None)
Class to manage items under revision control of git.

add(files, message=None, author=None)
Add and commit the new files.

commit(message=None, author=None, add=True)
Commits the file and supplies the given commit message if present

getcleanfile(revision=None)
Get a clean version of a file from the git repository

update(revision=None, needs_revert=True)
Does a clean update of the given path

translate.storage.versioncontrol.git.is_available()
check if git is installed

hg

translate.storage.versioncontrol.hg.get_version()
Return a tuple of (major, minor) for the installed mercurial client.

class translate.storage.versioncontrol.hg.hg(location, oldest_parent=None)
Class to manage items under revision control of mercurial.

add(files, message=None, author=None)
Add and commit the new files.

commit(message=None, author=None)
Commits the file and supplies the given commit message if present

getcleanfile(revision=None)
Get a clean version of a file from the hg repository

update(revision=None, needs_revert=True)
Does a clean update of the given path

Parameters revision – ignored for hg

translate.storage.versioncontrol.hg.is_available()
check if hg is installed

svn

translate.storage.versioncontrol.svn.get_version()
return a tuple of (major, minor) for the installed subversion client

translate.storage.versioncontrol.svn.is_available()
check if svn is installed

class translate.storage.versioncontrol.svn.svn(location, oldest_parent=None)
Class to manage items under revision control of Subversion.

add(files, message=None, author=None)
Add and commit the new files.

4.1. API 679

Translate Toolkit Documentation, Release 3.0.0

commit(message=None, author=None)
commit the file and return the given message if present

the ‘author’ parameter is used for revision property ‘translate:author’

getcleanfile(revision=None)
return the content of the ‘head’ revision of the file

update(revision=None, needs_revert=True)
update the working copy - remove local modifications if necessary

wordfast

Manage the Wordfast Translation Memory format

Wordfast TM format is the Translation Memory format used by the Wordfast computer aided translation tool.

It is a bilingual base class derived format with WordfastTMFile and WordfastUnit providing file and unit level
access.

Wordfast is a computer aided translation tool. It is an application built on top of Microsoft Word and is implemented
as a rather sophisticated set of macros. Understanding that helps us understand many of the seemingly strange choices
around this format including: encoding, escaping and file naming.

Implementation The implementation covers the full requirements of a Wordfast TM file. The files are simple Tab
Separated Value (TSV) files that can be read by Microsoft Excel and other spreadsheet programs. They use the
.txt extension which does make it more difficult to automatically identify such files.

The dialect of the TSV files is specified by WordfastDialect.

Encoding The files are UTF-16 or ISO-8859-1 (Latin1) encoded. These choices are most likely because Microsoft
Word is the base editing tool for Wordfast.

The format is tab separated so we are able to detect UTF-16 vs Latin-1 by searching for the occurance of a
UTF-16 tab character and then continuing with the parsing.

Timestamps WordfastTime allows for the correct management of the Wordfast YYYYMMDD~HHMMSS times-
tamps. However, timestamps on individual units are not updated when edited.

Header WordfastHeader provides header management support. The header functionality is fully implemented
through observing the behaviour of the files in real use cases, input from the Wordfast programmers and public
documentation.

Escaping Wordfast TM implements a form of escaping that covers two aspects:

1. Placeable: bold, formating, etc. These are left as is and ignored. It is up to the editor and future placeable
implementation to manage these.

2. Escapes: items that may confuse Excel or translators are escaped as &'XX;. These are fully implemented
and are converted to and from Unicode. By observing behaviour and reading documentation we where
able to observe all possible escapes. Unfortunately the escaping differs slightly between Windows and
Mac version. This might cause errors in future. Functions allow for <_wf_to_char> and back to
Wordfast escape (<_char_to_wf>).

Extended Attributes The last 4 columns allow users to define and manage extended attributes. These are left as is
and are not directly managed byour implemenation.

translate.storage.wordfast.TAB_UTF16 = b'\x00\t'
The tab t character as it would appear in UTF-16 encoding

translate.storage.wordfast.WF_ESCAPE_MAP = (("&'26;", '&'), ("&'82;", '‚'), ("&'85;", '...'), ("&'91;", '‘'), ("&'92;", '’'), ("&'93;", '“'), ("&'94;", '”'), ("&'96;", '-'), ("&'97;", '--'), ("&'99;", '™'), ("&'A0;", '\xa0'), ("&'A9;", '©'), ("&'AE;", '®'), ("&'BC;", '¼'), ("&'BD;", '½'), ("&'BE;", '¾'), ("&'A8;", '®'), ("&'AA;", '™'), ("&'C7;", '«'), ("&'C8;", '»'), ("&'C9;", '...'), ("&'CA;", '\xa0'), ("&'D0;", '-'), ("&'D1;", '--'), ("&'D2;", '“'), ("&'D3;", '”'), ("&'D4;", '‘'), ("&'D5;", '’'), ("&'E2;", '‚'), ("&'E3;", '„'))
Mapping of Wordfast &’XX; escapes to correct Unicode characters

680 Chapter 4. API Reference

http://www.wordfast.net/

Translate Toolkit Documentation, Release 3.0.0

translate.storage.wordfast.WF_FIELDNAMES = ['date', 'user', 'reuse', 'src-lang', 'source', 'target-lang', 'target', 'attr1', 'attr2', 'attr3', 'attr4']
Field names for a Wordfast TU

translate.storage.wordfast.WF_FIELDNAMES_HEADER = ['date', 'userlist', 'tucount', 'src-lang', 'version', 'target-lang', 'license', 'attr1list', 'attr2list', 'attr3list', 'attr4list', 'attr5list']
Field names for the Wordfast header

translate.storage.wordfast.WF_FIELDNAMES_HEADER_DEFAULTS = {'attr1list': '', 'attr2list': '', 'attr3list': '', 'attr4list': '', 'attr5list': '', 'date': '%19000101~121212', 'license': '%---00000001', 'src-lang': '%EN-US', 'target-lang': '', 'tucount': '%TU=00000001', 'userlist': '%User ID,TT,TT Translate-Toolkit', 'version': '%Wordfast TM v.5.51w9/00'}
Default or minimum header entries for a Wordfast file

translate.storage.wordfast.WF_TIMEFORMAT = '%Y%m%d~%H%M%S'
Time format used by Wordfast

class translate.storage.wordfast.WordfastDialect
Describe the properties of a Wordfast generated TAB-delimited file.

class translate.storage.wordfast.WordfastHeader(header=None)
A wordfast translation memory header

getheader()
Get the header dictionary

header
Get the header dictionary

class translate.storage.wordfast.WordfastTMFile(inputfile=None, **kwargs)
A Wordfast translation memory file

UnitClass
alias of WordfastUnit

add_unit_to_index(unit)
Add a unit to source and location idexes

addsourceunit(source)
Add and returns a new unit with the given source string.

Return type TranslationUnit

addunit(unit)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

4.1. API 681

Translate Toolkit Documentation, Release 3.0.0

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

isempty()
Return True if the object doesn’t contain any translation units.

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

parse(input)
parsese the given file or file source string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Convert the string representation back to an object.

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a bytes representation that can be parsed back using parsestring(). out should be an
open file-like objects to write to.

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(sourcelanguage)
Set the source language for this store.

settargetlanguage(targetlanguage)
Set the target language for this store.

translate(source)
Return the translated string for a given source string.

682 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.wordfast.WordfastTime(newtime=None)
Manages time stamps in the Wordfast format of YYYYMMDD~hhmmss

get_time()
Get the time_struct object

get_timestring()
Get the time in the Wordfast time format

set_time(newtime)
Set the time_struct object

Parameters newtime (time.time_struct) – a new time object

set_timestring(timestring)
Set the time_sturct object using a Wordfast time formated string

Parameters timestring (String) – A Wordfast time string (YYYMMDD~hhmmss)

time
Get the time_struct object

timestring
Get the time in the Wordfast time format

class translate.storage.wordfast.WordfastUnit(source=None)
A Wordfast translation memory unit

adderror(errorname, errortext)
Adds an error message to this unit.

Parameters

• errorname (string) – A single word to id the error.

• errortext (string) – The text describing the error.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Adds a note (comment).

Parameters

4.1. API 683

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

• text (string) – Usually just a sentence or two.

• origin (string) – Specifies who/where the comment comes from. Origin can be one
of the following text strings: - ‘translator’ - ‘developer’, ‘programmer’, ‘source code’
(synonyms)

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

dict
Get the dictionary of values for a Wordfast line

getcontext()
Get the message context.

getdict()
Get the dictionary of values for a Wordfast line

geterrors()
Get all error messages.

Return type Dictionary

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

684 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
Indicates whether this unit needs review.

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Parameters

• needsreview – Defaults to True.

• explanation – Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

multistring_to_rich(mulstring)
Convert a multistring to a list of “rich” string trees:

>>> target = multistring(['foo', 'bar', 'baz'])
>>> TranslationUnit.multistring_to_rich(target)
[<StringElem([<StringElem(['foo'])>])>,
<StringElem([<StringElem(['bar'])>])>,
<StringElem([<StringElem(['baz'])>])>]

removenotes(origin=None)
Remove all the translator’s notes.

4.1. API 685

Translate Toolkit Documentation, Release 3.0.0

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Convert a “rich” string tree to a multistring:

>>> from translate.storage.placeables.interfaces import X
>>> rich = [StringElem(['foo', X(id='xxx', sub=[' ']), 'bar'])]
>>> TranslationUnit.rich_to_multistring(rich)
multistring('foo bar')

setcontext(context)
Set the message context

setdict(newdict)
Set the dictionary of values for a Wordfast line

Parameters newdict (Dict) – a new dictionary with Wordfast line elements

setid(value)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

unit_iter()
Iterator that only returns this unit.

workflow

A workflow is defined by a set of states that a translation unit can be in and the (allowed) transitions between these
states. A state is defined by a range between -128 and 127, indicating its level of “completeness”. The range is closed
at the beginning and open at the end. That is, if a workflow contains states A, B and C where A < B < C, a unit with
state number n is in state A if A <= n < B, state B if B <= n < C or state C if C <= n < MAX.

A value of 0 is typically the “empty” or “new” state with negative values reserved for states like “obsolete” or “do not
use”.

Format specific workflows should be defined in such a way that the numeric state values correspond to similar states.
For example state 0 should be “untranslated” in PO and “new” or “empty” in XLIFF, state 100 should be “translated”
in PO and “final” in XLIFF. This allows formats to implicitly define similar states.

exception translate.storage.workflow.InvalidStateObjectError(obj)

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception translate.storage.workflow.NoInitialStateError

686 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class translate.storage.workflow.StateEnum
Only contains the constants for default states.

exception translate.storage.workflow.StateNotInWorkflowError(state)

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception translate.storage.workflow.TransitionError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception translate.storage.workflow.WorkflowError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

xliff

Module for handling XLIFF files for translation.

The official recommendation is to use the extention .xlf for XLIFF files.

class translate.storage.xliff.xlifffile(*args, **kwargs)
Class representing a XLIFF file store.

UnitClass
alias of xliffunit

add_unit_to_index(unit)
Add a unit to source and location idexes

addheader()
Initialise the file header.

addsourceunit(source, filename=’NoName’, createifmissing=False)
adds the given trans-unit to the last used body node if the filename has changed it uses the slow method
instead (will create the nodes required if asked). Returns success

addunit(unit, new=True)
Append the given unit to the object’s list of units.

This method should always be used rather than trying to modify the list manually.

Parameters unit (TranslationUnit) – The unit that will be added.

createfilenode(filename, sourcelanguage=None, targetlanguage=None, datatype=’plaintext’)
creates a filenode with the given filename. All parameters are needed for XLIFF compliance.

creategroup(filename=’NoName’, createifmissing=False, restype=None)
adds a group tag into the specified file

detect_encoding(text, default_encodings=None)
Try to detect a file encoding from text, using either the chardet lib or by trying to decode the file.

4.1. API 687

Translate Toolkit Documentation, Release 3.0.0

fallback_detection(text)
Simple detection based on BOM in case chardet is not available.

findid(id)
find unit with matching id by checking id_index

findunit(source)
Find the unit with the given source string.

Return type TranslationUnit or None

findunits(source)
Find the units with the given source string.

Return type TranslationUnit or None

getbodynode(filenode, createifmissing=False)
finds the body node for the given filenode

getdatatype(filename=None)
Returns the datatype of the stored file. If no filename is given, the datatype of the first file is given.

getdate(filename=None)
Returns the date attribute for the file.

If no filename is given, the date of the first file is given. If the date attribute is not specified, None is
returned.

Returns Date attribute of file

Return type Date or None

getfilename(filenode)
returns the name of the given file

getfilenames()
returns all filenames in this XLIFF file

getfilenode(filename, createifmissing=False)
finds the filenode with the given name

getheadernode(filenode, createifmissing=False)
finds the header node for the given filenode

getids(filename=None)
return a list of unit ids

getprojectstyle()
Get the project type for this store.

getsourcelanguage()
Get the source language for this store.

gettargetlanguage()
Get the target language for this store.

getunits()
Return a list of all units in this store.

initbody()
Initialises self.body so it never needs to be retrieved from the XML again.

isempty()
Return True if the object doesn’t contain any translation units.

688 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

makeindex()
Indexes the items in this store. At least .sourceindex should be useful.

merge_on
The matching criterion to use when merging on.

Returns The default matching criterion for all the subclasses.

Return type string

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

parse(xml)
Populates this object from the given xml string

classmethod parsefile(storefile)
Reads the given file (or opens the given filename) and parses back to an object.

classmethod parsestring(storestring)
Parses the string to return the correct file object

remove_unit_from_index(unit)
Remove a unit from source and locaton indexes

removedefaultfile()
We want to remove the default file-tag as soon as possible if we know if still present and empty.

require_index()
make sure source index exists

save()
Save to the file that data was originally read from, if available.

savefile(storefile)
Write the string representation to the given file (or filename).

serialize(out)
Converts to a string containing the file’s XML

setfilename(filenode, filename)
set the name of the given file

setprojectstyle(project_style)
Set the project type for this store.

setsourcelanguage(language)
Set the source language for this store.

settargetlanguage(language)
Set the target language for this store.

suggestions_in_format = True
xliff units have alttrans tags which can be used to store suggestions

switchfile(filename, createifmissing=False)
Adds the given trans-unit (will create the nodes required if asked).

Returns Success

4.1. API 689

Translate Toolkit Documentation, Release 3.0.0

Return type Boolean

translate(source)
Return the translated string for a given source string.

Return type String or None

unit_iter()
Iterator over all the units in this store.

class translate.storage.xliff.xliffunit(source, empty=False, **kwargs)
A single term in the xliff file.

addalttrans(txt, origin=None, lang=None, sourcetxt=None, matchquality=None)
Adds an alt-trans tag and alt-trans components to the unit.

Parameters txt (String) – Alternative translation of the source text.

adderror(errorname, errortext)
Adds an error message to this unit.

addlocation(location)
Add one location to the list of locations.

Note: Shouldn’t be implemented if the format doesn’t support it.

addlocations(location)
Add a location or a list of locations.

Note: Most classes shouldn’t need to implement this, but should rather implement
TranslationUnit.addlocation().

Warning: This method might be removed in future.

addnote(text, origin=None, position=’append’)
Add a note specifically in a “note” tag

classmethod buildfromunit(unit)
Build a native unit from a foreign unit, preserving as much information as possible.

correctorigin(node, origin)
Check against node tag’s origin (e.g note or alt-trans)

createcontextgroup(name, contexts=None, purpose=None)
Add the context group to the trans-unit with contexts a list with (type, text) tuples describing each context.

createlanguageNode(lang, text, purpose)
Returns an xml Element setup with given parameters.

delalttrans(alternative)
Removes the supplied alternative from the list of alt-trans tags

getNodeText(languageNode, xml_space=’preserve’)
Retrieves the term from the given languageNode.

get_rich_target(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

690 Chapter 4. API Reference

https://docs.python.org/3.8/library/constants.html#None

Translate Toolkit Documentation, Release 3.0.0

getalttrans(origin=None)
Returns <alt-trans> for the given origin as a list of units. No origin means all alternatives.

getcontext()
Get the message context.

getcontextgroups(name)
Returns the contexts in the context groups with the specified name

geterrors()
Get all error messages.

getid()
A unique identifier for this unit.

Return type string

Returns an identifier for this unit that is unique in the store

Derived classes should override this in a way that guarantees a unique identifier for each unit in the store.

getlanguageNode(lang=None, index=None)
Retrieves a languageNode either by language or by index.

getlanguageNodes()
We override this to get source and target nodes.

getlocations()
A list of source code locations.

Return type List

Note: Shouldn’t be implemented if the format doesn’t support it.

getnotes(origin=None)
Returns all notes about this unit.

It will probably be freeform text or something reasonable that can be synthesised by the format. It should
not include location comments (see getlocations()).

getrestype()
returns the restype attribute in the trans-unit tag

gettarget(lang=None)
retrieves the “target” text (second entry), or the entry in the specified language, if it exists

gettargetlen()
Returns the length of the target string.

Return type Integer

Note: Plural forms might be combined.

getunits()
This unit in a list.

hasplural()
Tells whether or not this specific unit has plural strings.

4.1. API 691

Translate Toolkit Documentation, Release 3.0.0

infer_state()
Empty method that should be overridden in sub-classes to infer the current state(_n) of the unit from its
current state.

isapproved()
States whether this unit is approved.

isblank()
Used to see if this unit has no source or target string.

Note: This is probably used more to find translatable units, and we might want to move in that direction
rather and get rid of this.

isfuzzy()
Indicates whether this unit is fuzzy.

isheader()
Indicates whether this unit is a header.

isobsolete()
indicate whether a unit is obsolete

isreview()
States whether this unit needs to be reviewed

istranslatable()
Indicates whether this unit can be translated.

This should be used to distinguish real units for translation from header, obsolete, binary or other blank
units.

istranslated()
Indicates whether this unit is translated.

This should be used rather than deducing it from .target, to ensure that other classes can implement more
functionality (as XLIFF does).

makeobsolete()
Make a unit obsolete

markapproved(value=True)
Mark this unit as approved.

markfuzzy(value=True)
Marks the unit as fuzzy or not.

markreviewneeded(needsreview=True, explanation=None)
Marks the unit to indicate whether it needs review.

Adds an optional explanation as a note.

merge(otherunit, overwrite=False, comments=True, authoritative=False)
Do basic format agnostic merging.

classmethod multistring_to_rich(mstr)
Override TranslationUnit.multistring_to_rich() which is used by the rich_source
and rich_target properties.

namespaced(name)
Returns name in Clark notation.

For example namespaced("source") in an XLIFF document might return:

692 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

{urn:oasis:names:tc:xliff:document:1.1}source

This is needed throughout lxml.

removenotes(origin=None)
Remove all the translator notes.

rich_source

See also:

rich_to_multistring(), multistring_to_rich()

rich_target

See also:

rich_to_multistring(), multistring_to_rich()

classmethod rich_to_multistring(elem_list)
Override TranslationUnit.rich_to_multistring() which is used by the rich_source
and rich_target properties.

setcontext(context)
Set the message context

setid(id)
Sets the unique identified for this unit.

only implemented if format allows ids independant from other unit properties like source or context

settarget(target, lang=’xx’, append=False)
Sets the target string to the given value.

unit_iter()
Iterator that only returns this unit.

xml_extract

extract

class translate.storage.xml_extract.extract.ParseState(no_translate_content_elements,
inline_elements={},
nsmap={})

Maintain constants and variables used during the walking of a DOM tree (via the function apply).

class translate.storage.xml_extract.extract.Translatable(placeable_name, xpath,
dom_node, source,
is_inline=False)

A node corresponds to a translatable element. A node may have children, which correspond to placeables.

has_translatable_text
Check if it contains any chunk of text with more than whitespace.

If not, then there’s nothing to translate.

translate.storage.xml_extract.extract.build_idml_store(odf_file, store, parse_state,
store_adder=None)

Build a store for the given IDML file.

4.1. API 693

Translate Toolkit Documentation, Release 3.0.0

translate.storage.xml_extract.extract.build_store(odf_file, store, parse_state,
store_adder=None)

Build a store for the given XML file.

translate.storage.xml_extract.extract.make_postore_adder(store, id_maker, file-
name)

Return a function which, when called with a Translatable will add a unit to ‘store’. The placeables will be
represented as strings according to ‘placeable_quoter’.

translate.storage.xml_extract.extract.process_translatable(dom_node, state)
Process a translatable DOM node.

Any translatable content present in a child node is treated as a placeable.

generate

translate.storage.xml_extract.generate.find_dom_root(parent_dom_node, dom_node)

See also:

find_placeable_dom_tree_roots()

translate.storage.xml_extract.generate.find_placeable_dom_tree_roots(unit_node)
For an inline placeable, find the root DOM node for the placeable in its parent.

Consider the diagram. In this pseudo-ODF example, there is an inline span element. However, the span is
contained in other tags (which we never process). When splicing the template DOM tree (that is, the DOM
which comes from the XML document we’re using to generate a translated XML document), we’ll need to
move DOM sub-trees around and we need the roots of these sub-trees:

<p> This is text \/ <- Paragraph containing an inline placeable
<blah> <- Inline placeable's root (which we want to

→˓find)
... <- Any number of intermediate DOM nodes
 bold text <- The inline placeable's Translatable

holds a reference to this DOM node

translate.storage.xml_extract.generate.get_xliff_source_target_doms(unit)
Return a tuple with unit source and target DOM objects.

This method is method is meant to provide a way to retrieve the DOM objects for the unit source and target for
XLIFF stores.

translate.storage.xml_extract.generate.replace_dom_text(make_parse_state,
dom_retriever=<function
get_xliff_source_target_doms>,
pro-
cess_translatable=<function
process_translatable>)

Return a function:

action: etree_Element x base.TranslationUnit -> None

which takes a dom_node and a translation unit. The dom_node is rearranged according to rearrangement of
placeables in unit.target (relative to their positions in unit.source).

694 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

misc

translate.storage.xml_extract.misc.compose_mappings(left, right)
Given two mappings left: A -> B and right: B -> C, create a hash result_map: A -> C. Only values in left (i.e.
things from B) which have corresponding keys in right will have their keys mapped to values in right.

translate.storage.xml_extract.misc.parse_tag(full_tag)

>>> parse_tag('{urn:oasis:names:tc:opendocument:xmlns:office:1.0}document-content
→˓')
('urn:oasis:names:tc:opendocument:xmlns:office:1.0', 'document-content')
>>> parse_tag('document-content')
('', 'document-content')

translate.storage.xml_extract.misc.reduce_tree(f, parent_unit_node, unit_node,
get_children, *state)

Enumerate a tree, applying f to in a pre-order fashion to each node.

parent_unit_node contains the parent of unit_node. For the root of the tree, parent_unit_node == unit_node.

get_children is a single argument function applied to a unit_node to get a list/iterator to its children.

state is used by f to modify state information relating to whatever f does to the tree.

unit_tree

translate.storage.xml_extract.unit_tree.build_unit_tree(store, filename=None)
Enumerate a translation store and build a tree with XPath components as nodes and where a node contains a unit
if a path from the root of the tree to the node containing the unit, is equal to the XPath of the unit.

The tree looks something like this:

root
`- ('document-content', 1)

`- ('body', 2)
|- ('text', 1)
| `- ('p', 1)
| `- <reference to a unit>
|- ('text', 2)
| `- ('p', 1)
| `- <reference to a unit>
`- ('text', 3)

`- ('p', 1)
`- <reference to a unit>

xpath_breadcrumb

class translate.storage.xml_extract.xpath_breadcrumb.XPathBreadcrumb
A class which is used to build XPath-like paths as a DOM tree is walked. It keeps track of the number of times
which it has seen a certain tag, so that it will correctly create indices for tags.

Initially, the path is empty. Thus >>> xb = XPathBreadcrumb() >>> xb.xpath “”

Suppose we walk down a DOM node for the tag <foo> and we want to record this, we simply do >>>
xb.start_tag(‘foo’)

4.1. API 695

Translate Toolkit Documentation, Release 3.0.0

Now, the path is no longer empty. Thus >>> xb.xpath foo[0]

Now suppose there are two <bar> tags under the tag <foo> (that is <foo><bar></bar><bar></bar><foo>), then
the breadcrumb will keep track of the number of times it sees <bar>. Thus

>>> xb.start_tag('bar')
>>> xb.xpath
foo[0]/bar[0]
>>> xb.end_tag()
>>> xb.xpath
foo[0]
>>> xb.start_tag('bar')
>>> xb.xpath
foo[0]/bar[1]

xml_name

class translate.storage.xml_name.XmlNamer(dom_node)
Initialize me with a DOM node or a DOM document node (the toplevel node you get when parsing an XML
file). Then use me to generate fully qualified XML names.

>>> xml = '<office:document-styles xmlns:office=
→˓"urn:oasis:names:tc:opendocument:xmlns:office:1.0"></office>'
>>> from lxml import etree
>>> namer = XmlNamer(etree.fromstring(xml))
>>> namer.name('office', 'blah')
{urn:oasis:names:tc:opendocument:xmlns:office:1.0}blah
>>> namer.name('office:blah')
{urn:oasis:names:tc:opendocument:xmlns:office:1.0}blah

I can also give you XmlNamespace objects if you give me the abbreviated namespace name. These are useful if
you need to reference a namespace continuously.

>>> office_ns = name.namespace('office')
>>> office_ns.name('foo')
{urn:oasis:names:tc:opendocument:xmlns:office:1.0}foo

zip

This module provides functionality to work with zip files.

class translate.storage.zip.ZIPFile(filename=None)
This class represents a ZIP file like a directory.

file_iter()
Iterator over (dir, filename) for all files in this directory.

getfiles()
Returns a list of (dir, filename) tuples for all the file names in this directory.

getunits()
List of all the units in all the files in this directory.

scanfiles()
Populate the internal file data.

696 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

unit_iter()
Iterator over all the units in all the files in this zip file.

tools

Code to perform various operations, mostly on po files.

build_tmdb

Import units from translations files into tmdb.

phppo2pypo

Convert PHP format .po files to Python format .po files.

translate.tools.phppo2pypo.convertphp2py(inputfile, outputfile, template=None)
Converts from PHP .po format to Python .po format

Parameters

• inputfile – file handle of the source

• outputfile – file handle to write to

• template – unused

translate.tools.phppo2pypo.main(argv=None)
Converts PHP .po files to Python .po files.

poclean

Produces a clean file from an unclean file (Trados/Wordfast) by stripping out the tw4win indicators.

This does not convert an RTF file to PO/XLIFF, but produces the target file with only the target text in from a text
version of the RTF.

translate.tools.poclean.cleanfile(thefile)
cleans the given file

translate.tools.poclean.cleanunit(unit)
cleans the targets in the given unit

translate.tools.poclean.runclean(inputfile, outputfile, templatefile)
reads in inputfile, cleans, writes to outputfile

pocompile

Compile XLIFF and Gettext PO localization files into Gettext MO (Machine Object) files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocompile.html for examples and
usage instructions.

translate.tools.pocompile.convertmo(inputfile, outputfile, templatefile, includefuzzy=False)
reads in a base class derived inputfile, converts using pocompile, writes to outputfile

4.1. API 697

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocompile.html

Translate Toolkit Documentation, Release 3.0.0

poconflicts

Conflict finder for Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poconflicts.html for examples and
usage instructions.

class translate.tools.poconflicts.ConflictOptionParser(formats, usetem-
plates=False, allowmiss-
ingtemplate=False, descrip-
tion=None)

a specialized Option Parser for the conflict tool. . .

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

buildconflictmap()
work out which strings are conflicting

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

clean(string, options)
returns the cleaned string that contains the text to be matched

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

flatten(text, joinchar)
flattens text to just be words

format_manpage()
returns a formatted manpage

698 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poconflicts.html

Translate Toolkit Documentation, Release 3.0.0

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

outputconflicts(options)
saves the result of the conflict match

parse_args(args=None, values=None)
parses the command line options, handling implicit input/output args

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

4.1. API 699

Translate Toolkit Documentation, Release 3.0.0

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath)
process an individual file

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
recurse through directories and process files

run()
Parses the arguments, and runs recursiveprocess with the resulting options. . .

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setprogressoptions()
Sets the progress options.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

700 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

pocount

Count strings and words for supported localization files.

These include: XLIFF, TMX, Gettex PO and MO, Qt .ts and .qm, Wordfast TM, etc

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html for examples and us-
age instructions.

class translate.tools.pocount.ConsoleColor
Class to implement color mode.

translate.tools.pocount.calcstats_old(filename)
This is the previous implementation of calcstats() and is left for comparison and debuging purposes.

translate.tools.pocount.summarize(title, stats, style=0, indent=8, incomplete_only=False)
Print summary for a .po file in specified format.

Parameters

• title – name of .po file

• stats – array with translation statistics for the file specified

• indent – indentation of the 2nd column (length of longest filename)

• incomplete_only (Boolean) – omit fully translated files

Return type Boolean

Returns 1 if counting incomplete files (incomplete_only=True) and the file is completely translated,
0 otherwise

podebug

Insert debug messages into XLIFF and Gettext PO localization files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/podebug.html for examples and us-
age instructions.

translate.tools.podebug.convertpo(inputfile, outputfile, templatefile, format=None,
rewritestyle=None, ignoreoption=None, preserveplace-
holders=None)

Reads in inputfile, changes it to have debug strings, writes to outputfile.

pogrep

Grep XLIFF, Gettext PO and TMX localization files.

Matches are output to snippet files of the same type which can then be reviewed and later merged using pomerge.

4.1. API 701

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pocount.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/podebug.html

Translate Toolkit Documentation, Release 3.0.0

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html for examples and usage
instructions.

class translate.tools.pogrep.GrepMatch(unit, part=’target’, part_n=0, start=0, end=0)
Just a small data structure that represents a search match.

class translate.tools.pogrep.GrepOptionParser(formats, usetemplates=False, allowmiss-
ingtemplate=False, description=None)

a specialized Option Parser for the grep tool. . .

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

702 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pogrep.html

Translate Toolkit Documentation, Release 3.0.0

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
parses the command line options, handling implicit input/output args

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

4.1. API 703

Translate Toolkit Documentation, Release 3.0.0

processfile(fileprocessor, options, fullinputpath, fulloutputpath, fulltemplatepath)
Process an individual file.

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
Recurse through directories and process files.

run()
parses the arguments, and runs recursiveprocess with the resulting options

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setprogressoptions()
Sets the progress options.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

translate.tools.pogrep.find_matches(unit, part, strings, re_search)
Return the GrepFilter objects where re_search matches in strings.

704 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

translate.tools.pogrep.real_index(string, nfc_index)
Calculate the real index in the unnormalized string that corresponds to the index nfc_index in the normalized
string.

translate.tools.pogrep.rungrep(inputfile, outputfile, templatefile, checkfilter)
reads in inputfile, filters using checkfilter, writes to outputfile

pomerge

Merges XLIFF and Gettext PO localization files.

Snippet file produced by e.g. pogrep and updated by a translator can be merged back into the original files.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html for examples and us-
age instructions.

translate.tools.pomerge.mergestores(store1, store2, mergeblanks, mergefuzzy, mergecom-
ments)

Take any new translations in store2 and write them into store1.

translate.tools.pomerge.str2bool(option)
Convert a string value to boolean

Parameters option (String) – yes, true, 1, no, false, 0

Return type Boolean

porestructure

Restructure Gettxt PO files produced by poconflicts into the original directory tree for merging using pomerge.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html for examples and us-
age instructions.

class translate.tools.porestructure.SplitOptionParser(formats, usetemplates=False,
allowmissingtemplate=False,
description=None)

a specialized Option Parser for posplit

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

4.1. API 705

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pomerge.html

Translate Toolkit Documentation, Release 3.0.0

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

706 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

parse_args(args=None, values=None)
parses the command line options, handling implicit input/output args

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(options, fullinputpath)
process an individual file

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
recurse through directories and process files

run()
Parses the arguments, and runs recursiveprocess with the resulting options. . .

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

4.1. API 707

Translate Toolkit Documentation, Release 3.0.0

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setprogressoptions()
Sets the progress options.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

templateexists(options, templatepath)
Returns whether the given template exists. . .

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

posegment

Segment Gettext PO, XLIFF and TMX localization files at the sentence level.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/posegment.html for examples and
usage instructions.

translate.tools.posegment.segmentfile(inputfile, outputfile, templatefile, source-
language=’en’, targetlanguage=None,
stripspaces=True, onlyaligned=False)

reads in inputfile, segments it then, writes to outputfile

poswap

Builds a new translation file with the target of the input language as source language.

Note: Ensure that the two po files correspond 100% to the same pot file before using this.

To translate Kurdish (ku) through French:

poswap -i fr/ -t ku -o fr-ku

To convert the fr-ku files back to en-ku:

poswap --reverse -i fr/ -t fr-ku -o en-ku

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poswap.html for examples and usage
instructions.

translate.tools.poswap.convertpo(inputpofile, outputpotfile, template, reverse=False)
reads in inputpofile, removes the header, writes to outputpotfile.

708 Chapter 4. API Reference

https://docs.python.org/3.8/library/stdtypes.html#tuple
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/posegment.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poswap.html

Translate Toolkit Documentation, Release 3.0.0

translate.tools.poswap.swapdir(store)
Swap the source and target of each unit.

poterminology

Create a terminology file by reading a set of .po or .pot files to produce a pootle-terminology.pot.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poterminology.html for examples
and usage instructions.

class translate.tools.poterminology.TerminologyOptionParser(formats, usetem-
plates=False,
allowmissingtem-
plate=False, de-
scription=None)

a specialized Option Parser for the terminology tool. . .

add_option(Option)
add_option(opt_str, . . . , kwarg=val, . . .)

check_values(values : Values, args : [string])
-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are valid. Returns the option values and left-
over arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation
just returns the passed-in values; subclasses may override as desired.

checkoutputsubdir(options, subdir)
Checks to see if subdir under options.output needs to be created, creates if neccessary.

define_option(option)
Defines the given option, replacing an existing one of the same short name if neccessary. . .

destroy()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and
all objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser
is unusable.

disable_interspersed_args()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior. See also disable_interspersed_args() and the class documentation description
of the attribute allow_interspersed_args.

error(msg : string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should
not return – it should either exit or raise an exception.

finalizetempoutputfile(options, outputfile, fulloutputpath)
Write the temp outputfile to its final destination.

format_manpage()
returns a formatted manpage

getformathelp(formats)
Make a nice help string for describing formats. . .

4.1. API 709

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/poterminology.html

Translate Toolkit Documentation, Release 3.0.0

getfullinputpath(options, inputpath)
Gets the absolute path to an input file.

getfulloutputpath(options, outputpath)
Gets the absolute path to an output file.

getfulltemplatepath(options, templatepath)
Gets the absolute path to a template file.

getoutputname(options, inputname, outputformat)
Gets an output filename based on the input filename.

getoutputoptions(options, inputpath, templatepath)
Works out which output format and processor method to use. . .

getpassthroughoptions(options)
Get the options required to pass to the filtermethod. . .

gettemplatename(options, inputname)
Gets an output filename based on the input filename.

getusageman(option)
returns the usage string for the given option

getusagestring(option)
returns the usage string for the given option

isexcluded(options, inputpath)
Checks if this path has been excluded.

isrecursive(fileoption, filepurpose=’input’)
Checks if fileoption is a recursive file.

isvalidinputname(inputname)
Checks if this is a valid input filename.

mkdir(parent, subdir)
Makes a subdirectory (recursively if neccessary).

openinputfile(options, fullinputpath)
Opens the input file.

openoutputfile(options, fulloutputpath)
Opens the output file.

opentemplatefile(options, fulltemplatepath)
Opens the template file (if required).

opentempoutputfile(options, fulloutputpath)
Opens a temporary output file.

outputterminology(options)
saves the generated terminology glossary

parse_args(args=None, values=None)
parses the command line options, handling implicit input/output args

print_help(file : file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default
stdout).

print_manpage(file=None)
outputs a manpage for the program using the help information

710 Chapter 4. API Reference

Translate Toolkit Documentation, Release 3.0.0

print_usage(file : file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]).
Does nothing if self.usage is empty or not defined.

print_version(file : file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(),
any occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if
self.version is empty or undefined.

processfile(fileprocessor, options, fullinputpath)
process an individual file

recurseinputfilelist(options)
Use a list of files, and find a common base directory for them.

recurseinputfiles(options)
Recurse through directories and return files to be processed.

recursiveprocess(options)
recurse through directories and process files

run()
parses the arguments, and runs recursiveprocess with the resulting options

set_usage(usage=None)
sets the usage string - if usage not given, uses getusagestring for each option

seterrorleveloptions()
Sets the errorlevel options.

setformats(formats, usetemplates)
Sets the format options using the given format dictionary.

Parameters formats (Dictionary or iterable) – The dictionary keys should be:

• Single strings (or 1-tuples) containing an input format (if not usetemplates)

• Tuples containing an input format and template format (if usetemplates)

• Formats can be None to indicate what to do with standard input

The dictionary values should be tuples of outputformat (string) and processor method.

setmanpageoption()
creates a manpage option that allows the optionparser to generate a manpage

setprogressoptions()
Sets the progress options.

splitext(pathname)
Splits pathname into name and ext, and removes the extsep.

Parameters pathname (string) – A file path

Returns root, ext

Return type tuple

splitinputext(inputpath)
Splits an inputpath into name and extension.

splittemplateext(templatepath)
Splits a templatepath into name and extension.

4.1. API 711

https://docs.python.org/3.8/library/stdtypes.html#tuple

Translate Toolkit Documentation, Release 3.0.0

templateexists(options, templatepath)
Returns whether the given template exists. . .

warning(msg, options=None, exc_info=None)
Print a warning message incorporating ‘msg’ to stderr and exit.

pretranslate

Fill localization files with suggested translations based on translation memory and existing translations.

See: http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pretranslate.html for examples and
usage instructions.

translate.tools.pretranslate.match_fuzzy(input_unit, matchers)
Return a fuzzy match from a queue of matchers.

translate.tools.pretranslate.match_source(input_unit, template_store)
Returns a matching unit from a template. matching based on unit id

translate.tools.pretranslate.match_template_id(input_unit, template_store)
Returns a matching unit from a template. matching based on unit id

translate.tools.pretranslate.match_template_location(input_unit, template_store)
Returns a matching unit from a template. matching based on locations

translate.tools.pretranslate.memory(tmfiles, max_candidates=1, min_similarity=75,
max_length=1000)

Returns the TM store to use. Only initialises on first call.

translate.tools.pretranslate.pretranslate_file(input_file, output_file, template_file,
tm=None, min_similarity=75, fuzzy-
matching=True)

Pretranslate any factory supported file with old translations and translation memory.

translate.tools.pretranslate.pretranslate_store(input_store, template_store, tm=None,
min_similarity=75, fuzzymatch-
ing=True)

Do the actual pretranslation of a whole store.

translate.tools.pretranslate.pretranslate_unit(input_unit, template_store, match-
ers=None, mark_reused=False,
merge_on=’id’)

Pretranslate a unit or return unchanged if no translation was found.

Parameters

• input_unit – Unit that will be pretranslated.

• template_store – Fill input unit with units matching in this store.

• matchers – List of fuzzy matcher objects.

• mark_reused – Whether to mark old translations as reused or not.

• merge_on – Where will the merge matching happen on.

pydiff

diff tool like GNU diff, but lets you have special options that are useful in dealing with PO files

712 Chapter 4. API Reference

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/pretranslate.html

Translate Toolkit Documentation, Release 3.0.0

class translate.tools.pydiff.DirDiffer(fromdir, todir, options)
generates diffs between directories

isexcluded(difffile)
checks if the given filename has been excluded from the diff

writediff(outfile)
writes the actual diff to the given file

class translate.tools.pydiff.FileDiffer(fromfile, tofile, options)
generates diffs between files

get_from_lines(group)
returns the lines referred to by group, from the fromfile

get_to_lines(group)
returns the lines referred to by group, from the tofile

unified_diff(group)
takes the group of opcodes and generates a unified diff line by line

writediff(outfile)
writes the actual diff to the given file

translate.tools.pydiff.main()
main program for pydiff

pypo2phppo

Convert Python format .po files to PHP format .po files.

translate.tools.pypo2phppo.convertpy2php(inputfile, outputfile, template=None)
Converts from Python .po to PHP .po

Parameters

• inputfile – file handle of the source

• outputfile – file handle to write to

• template – unused

translate.tools.pypo2phppo.main(argv=None)
Converts from Python .po to PHP .po

4.1. API 713

Translate Toolkit Documentation, Release 3.0.0

714 Chapter 4. API Reference

Python Module Index

t
translate.convert, 234
translate.convert.accesskey, 234
translate.convert.convert, 235
translate.convert.csv2po, 242
translate.convert.csv2tbx, 243
translate.convert.dtd2po, 243
translate.convert.factory, 244
translate.convert.html2po, 244
translate.convert.ical2po, 244
translate.convert.ini2po, 245
translate.convert.json2po, 245
translate.convert.moz2po, 246
translate.convert.mozfunny2prop, 246
translate.convert.mozlang2po, 246
translate.convert.odf2xliff, 247
translate.convert.oo2po, 247
translate.convert.oo2xliff, 247
translate.convert.php2po, 248
translate.convert.po2csv, 248
translate.convert.po2dtd, 248
translate.convert.po2html, 249
translate.convert.po2ical, 249
translate.convert.po2ini, 249
translate.convert.po2json, 250
translate.convert.po2moz, 251
translate.convert.po2mozlang, 250
translate.convert.po2oo, 254
translate.convert.po2php, 254
translate.convert.po2prop, 254
translate.convert.po2rc, 255
translate.convert.po2resx, 255
translate.convert.po2sub, 255
translate.convert.po2symb, 255
translate.convert.po2tiki, 255
translate.convert.po2tmx, 256
translate.convert.po2ts, 260
translate.convert.po2txt, 260
translate.convert.po2web2py, 260

translate.convert.po2wordfast, 261
translate.convert.po2xliff, 264
translate.convert.po2yaml, 264
translate.convert.pot2po, 265
translate.convert.prop2mozfunny, 265
translate.convert.prop2po, 266
translate.convert.rc2po, 267
translate.convert.resx2po, 267
translate.convert.sub2po, 267
translate.convert.symb2po, 268
translate.convert.tiki2po, 268
translate.convert.ts2po, 268
translate.convert.txt2po, 269
translate.convert.web2py2po, 269
translate.convert.xliff2odf, 269
translate.convert.xliff2oo, 270
translate.convert.xliff2po, 270
translate.convert.yaml2po, 270
translate.filters, 270
translate.filters.autocorrect, 271
translate.filters.checks, 271
translate.filters.decoration, 349
translate.filters.helpers, 350
translate.filters.pofilter, 350
translate.filters.prefilters, 353
translate.filters.spelling, 354
translate.lang, 354
translate.lang.af, 355
translate.lang.am, 356
translate.lang.ar, 356
translate.lang.bn, 357
translate.lang.code_or, 358
translate.lang.common, 359
translate.lang.data, 362
translate.lang.de, 363
translate.lang.el, 364
translate.lang.es, 365
translate.lang.fa, 366
translate.lang.factory, 366
translate.lang.fi, 367

715

Translate Toolkit Documentation, Release 3.0.0

translate.lang.fr, 367
translate.lang.gu, 368
translate.lang.he, 369
translate.lang.hi, 370
translate.lang.hy, 371
translate.lang.identify, 371
translate.lang.ja, 371
translate.lang.km, 372
translate.lang.kn, 373
translate.lang.ko, 374
translate.lang.ml, 375
translate.lang.mr, 375
translate.lang.ne, 376
translate.lang.ngram, 377
translate.lang.pa, 377
translate.lang.poedit, 378
translate.lang.si, 378
translate.lang.st, 379
translate.lang.sv, 380
translate.lang.ta, 381
translate.lang.te, 382
translate.lang.team, 381
translate.lang.th, 382
translate.lang.ug, 383
translate.lang.ur, 384
translate.lang.vi, 385
translate.lang.zh, 386
translate.misc, 386
translate.misc.dictutils, 386
translate.misc.file_discovery, 387
translate.misc.multistring, 387
translate.misc.optrecurse, 391
translate.misc.ourdom, 395
translate.misc.progressbar, 396
translate.misc.quote, 397
translate.misc.wsgi, 398
translate.misc.xml_helpers, 398
translate.search, 399
translate.search.lshtein, 399
translate.search.match, 399
translate.search.terminology, 401
translate.services, 401
translate.services.tmserver, 401
translate.storage, 401
translate.storage._factory_classes, 425
translate.storage.base, 401
translate.storage.benchmark, 407
translate.storage.bundleprojstore, 407
translate.storage.catkeys, 408
translate.storage.csvl10n, 413
translate.storage.directory, 419
translate.storage.dtd, 419
translate.storage.factory, 425
translate.storage.html, 426

translate.storage.ical, 433
translate.storage.ini, 439
translate.storage.jsonl10n, 444
translate.storage.lisa, 473
translate.storage.mo, 479
translate.storage.mozilla_lang, 485
translate.storage.odf_io, 489
translate.storage.odf_shared, 489
translate.storage.omegat, 489
translate.storage.oo, 496
translate.storage.php, 549
translate.storage.placeables, 499
translate.storage.placeables.base, 499
translate.storage.placeables.general,

514
translate.storage.placeables.interfaces,

519
translate.storage.placeables.lisa, 528
translate.storage.placeables.parse, 528
translate.storage.placeables.strelem,

528
translate.storage.placeables.terminology,

530
translate.storage.placeables.xliff, 532
translate.storage.po, 566
translate.storage.pocommon, 559
translate.storage.poheader, 564
translate.storage.poparser, 566
translate.storage.poxliff, 566
translate.storage.project, 574
translate.storage.projstore, 574
translate.storage.properties, 575
translate.storage.pypo, 602
translate.storage.qm, 608
translate.storage.qph, 614
translate.storage.rc, 619
translate.storage.statistics, 625
translate.storage.statsdb, 626
translate.storage.subtitles, 627
translate.storage.symbian, 638
translate.storage.tbx, 638
translate.storage.tiki, 644
translate.storage.tmdb, 649
translate.storage.tmx, 649
translate.storage.trados, 654
translate.storage.ts, 665
translate.storage.ts2, 660
translate.storage.txt, 665
translate.storage.utx, 670
translate.storage.versioncontrol, 676
translate.storage.versioncontrol.bzr,

677
translate.storage.versioncontrol.cvs,

678

716 Python Module Index

Translate Toolkit Documentation, Release 3.0.0

translate.storage.versioncontrol.darcs,
678

translate.storage.versioncontrol.git,
679

translate.storage.versioncontrol.hg, 679
translate.storage.versioncontrol.svn,

679
translate.storage.wordfast, 680
translate.storage.workflow, 686
translate.storage.xliff, 687
translate.storage.xml_extract, 693
translate.storage.xml_extract.extract,

693
translate.storage.xml_extract.generate,

694
translate.storage.xml_extract.misc, 695
translate.storage.xml_extract.unit_tree,

695
translate.storage.xml_extract.xpath_breadcrumb,

695
translate.storage.xml_name, 696
translate.storage.zip, 696
translate.tools, 697
translate.tools.build_tmdb, 697
translate.tools.phppo2pypo, 697
translate.tools.poclean, 697
translate.tools.pocompile, 697
translate.tools.poconflicts, 698
translate.tools.pocount, 701
translate.tools.podebug, 701
translate.tools.pogrep, 701
translate.tools.pomerge, 705
translate.tools.porestructure, 705
translate.tools.posegment, 708
translate.tools.poswap, 708
translate.tools.poterminology, 709
translate.tools.pretranslate, 712
translate.tools.pydiff, 712
translate.tools.pypo2phppo, 713

Python Module Index 717

Translate Toolkit Documentation, Release 3.0.0

718 Python Module Index

Index

A
accelerators() (trans-

late.filters.checks.CCLicenseChecker method),
271

accelerators() (trans-
late.filters.checks.DrupalChecker method),
277

accelerators() (trans-
late.filters.checks.GnomeChecker method),
283

accelerators() (translate.filters.checks.IOSChecker
method), 289

accelerators() (trans-
late.filters.checks.KdeChecker method),
294

accelerators() (trans-
late.filters.checks.L20nChecker method),
300

accelerators() (trans-
late.filters.checks.LibreOfficeChecker method),
306

accelerators() (trans-
late.filters.checks.MinimalChecker method),
312

accelerators() (trans-
late.filters.checks.MozillaChecker method),
317

accelerators() (trans-
late.filters.checks.OpenOfficeChecker method),
323

accelerators() (trans-
late.filters.checks.ReducedChecker method),
329

accelerators() (trans-
late.filters.checks.StandardChecker method),
335

accelerators() (trans-
late.filters.checks.TermChecker method),
342

accesskeysuffixes (in module trans-
late.storage.dtd), 420

accesskeysuffixes (in module trans-
late.storage.properties), 582

acronyms() (translate.filters.checks.CCLicenseChecker
method), 271

acronyms() (translate.filters.checks.DrupalChecker
method), 277

acronyms() (translate.filters.checks.GnomeChecker
method), 283

acronyms() (translate.filters.checks.IOSChecker
method), 289

acronyms() (translate.filters.checks.KdeChecker
method), 294

acronyms() (translate.filters.checks.L20nChecker
method), 300

acronyms() (translate.filters.checks.LibreOfficeChecker
method), 306

acronyms() (translate.filters.checks.MinimalChecker
method), 312

acronyms() (translate.filters.checks.MozillaChecker
method), 317

acronyms() (translate.filters.checks.OpenOfficeChecker
method), 323

acronyms() (translate.filters.checks.ReducedChecker
method), 329

acronyms() (translate.filters.checks.StandardChecker
method), 335

acronyms() (translate.filters.checks.TermChecker
method), 342

add() (translate.storage.versioncontrol.bzr.bzr method),
677

add() (translate.storage.versioncontrol.cvs.cvs
method), 678

add() (translate.storage.versioncontrol.darcs.darcs
method), 678

add() (translate.storage.versioncontrol.GenericRevisionControlSystem
method), 677

add() (translate.storage.versioncontrol.git.git method),
679

719

Translate Toolkit Documentation, Release 3.0.0

add() (translate.storage.versioncontrol.hg.hg method),
679

add() (translate.storage.versioncontrol.svn.svn
method), 679

add_duplicates_option() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 235

add_duplicates_option() (trans-
late.convert.convert.ConvertOptionParser
method), 239

add_duplicates_option() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

add_duplicates_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

add_duplicates_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

add_fuzzy_option() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 235

add_fuzzy_option() (trans-
late.convert.convert.ConvertOptionParser
method), 239

add_fuzzy_option() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

add_fuzzy_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

add_fuzzy_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

add_multifile_option() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 235

add_multifile_option() (trans-
late.convert.convert.ConvertOptionParser
method), 239

add_multifile_option() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

add_multifile_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

add_multifile_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

add_option() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 235

add_option() (trans-
late.convert.convert.ConvertOptionParser

method), 239
add_option() (trans-

late.convert.po2moz.MozConvertOptionParser
method), 251

add_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

add_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

add_option() (trans-
late.filters.pofilter.FilterOptionParser method),
350

add_option() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

add_option() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

add_option() (trans-
late.tools.pogrep.GrepOptionParser method),
702

add_option() (trans-
late.tools.porestructure.SplitOptionParser
method), 705

add_option() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

add_popup_units() (translate.storage.rc.rcfile
method), 620

add_remove_untranslated_option() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 235

add_remove_untranslated_option() (trans-
late.convert.convert.ConvertOptionParser
method), 239

add_remove_untranslated_option() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

add_remove_untranslated_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

add_remove_untranslated_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

add_source() (translate.storage.project.Project
method), 574

add_source_convert() (trans-
late.storage.project.Project method), 574

add_spreadsheet_escapes() (trans-
late.storage.csvl10n.csvunit method), 415

add_threshold_option() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 235

720 Index

Translate Toolkit Documentation, Release 3.0.0

add_threshold_option() (trans-
late.convert.convert.ConvertOptionParser
method), 239

add_threshold_option() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

add_threshold_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

add_threshold_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

add_unit_to_index() (trans-
late.storage.base.TranslationStore method),
402

add_unit_to_index() (trans-
late.storage.catkeys.CatkeysFile method),
408

add_unit_to_index() (trans-
late.storage.csvl10n.csvfile method), 414

add_unit_to_index() (translate.storage.dtd.dtdfile
method), 420

add_unit_to_index() (trans-
late.storage.html.htmlfile method), 428

add_unit_to_index() (trans-
late.storage.html.POHTMLParser method),
426

add_unit_to_index() (trans-
late.storage.ical.icalfile method), 434

add_unit_to_index() (translate.storage.ini.inifile
method), 439

add_unit_to_index() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

add_unit_to_index() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 449

add_unit_to_index() (trans-
late.storage.jsonl10n.I18NextFile method),
454

add_unit_to_index() (trans-
late.storage.jsonl10n.JsonFile method), 459

add_unit_to_index() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

add_unit_to_index() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 468

add_unit_to_index() (trans-
late.storage.lisa.LISAfile method), 473

add_unit_to_index() (translate.storage.mo.mofile
method), 479

add_unit_to_index() (trans-
late.storage.mozilla_lang.LangStore method),

485
add_unit_to_index() (trans-

late.storage.omegat.OmegaTFile method),
490

add_unit_to_index() (trans-
late.storage.omegat.OmegaTFileTab method),
492

add_unit_to_index() (trans-
late.storage.php.LaravelPHPFile method),
549

add_unit_to_index() (trans-
late.storage.php.phpfile method), 554

add_unit_to_index() (trans-
late.storage.pocommon.pofile method), 559

add_unit_to_index() (trans-
late.storage.poxliff.PoXliffFile method), 567

add_unit_to_index() (trans-
late.storage.properties.gwtfile method), 582

add_unit_to_index() (trans-
late.storage.properties.javafile method),
584

add_unit_to_index() (trans-
late.storage.properties.javautf16file method),
586

add_unit_to_index() (trans-
late.storage.properties.javautf8file method),
587

add_unit_to_index() (trans-
late.storage.properties.joomlafile method),
589

add_unit_to_index() (trans-
late.storage.properties.propfile method),
591

add_unit_to_index() (trans-
late.storage.properties.stringsfile method),
598

add_unit_to_index() (trans-
late.storage.properties.stringsutf8file method),
600

add_unit_to_index() (trans-
late.storage.pypo.pofile method), 602

add_unit_to_index() (translate.storage.qm.qmfile
method), 609

add_unit_to_index() (trans-
late.storage.qph.QphFile method), 614

add_unit_to_index() (translate.storage.rc.rcfile
method), 620

add_unit_to_index() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 627

add_unit_to_index() (trans-
late.storage.subtitles.MicroDVDFile method),
628

add_unit_to_index() (trans-

Index 721

Translate Toolkit Documentation, Release 3.0.0

late.storage.subtitles.SubRipFile method),
630

add_unit_to_index() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

add_unit_to_index() (trans-
late.storage.subtitles.SubtitleFile method),
633

add_unit_to_index() (translate.storage.tbx.tbxfile
method), 638

add_unit_to_index() (trans-
late.storage.tiki.TikiStore method), 644

add_unit_to_index() (trans-
late.storage.tmx.tmxfile method), 649

add_unit_to_index() (trans-
late.storage.trados.TradosTxtTmFile method),
658

add_unit_to_index() (translate.storage.ts2.tsfile
method), 660

add_unit_to_index() (trans-
late.storage.txt.TxtFile method), 666

add_unit_to_index() (trans-
late.storage.utx.UtxFile method), 671

add_unit_to_index() (trans-
late.storage.wordfast.WordfastTMFile method),
681

add_unit_to_index() (trans-
late.storage.xliff.xlifffile method), 687

addalttrans() (translate.storage.poxliff.PoXliffUnit
method), 570

addalttrans() (translate.storage.xliff.xliffunit
method), 690

adderror() (translate.storage.base.TranslationUnit
method), 403

adderror() (translate.storage.catkeys.CatkeysUnit
method), 410

adderror() (translate.storage.csvl10n.csvunit
method), 415

adderror() (translate.storage.dtd.dtdunit method),
422

adderror() (translate.storage.html.htmlunit method),
430

adderror() (translate.storage.ical.icalunit method),
436

adderror() (translate.storage.ini.iniunit method), 441
adderror() (translate.storage.jsonl10n.ARBJsonUnit

method), 446
adderror() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 451
adderror() (translate.storage.jsonl10n.I18NextUnit

method), 456
adderror() (translate.storage.jsonl10n.JsonNestedUnit

method), 462
adderror() (translate.storage.jsonl10n.JsonUnit

method), 465
adderror() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 470
adderror() (translate.storage.lisa.LISAunit method),

475
adderror() (translate.storage.mo.mounit method),

482
adderror() (translate.storage.mozilla_lang.LangUnit

method), 486
adderror() (translate.storage.omegat.OmegaTUnit

method), 493
adderror() (translate.storage.php.LaravelPHPUnit

method), 551
adderror() (translate.storage.php.phpunit method),

556
adderror() (translate.storage.pocommon.pounit

method), 561
adderror() (translate.storage.poxliff.PoXliffUnit

method), 570
adderror() (translate.storage.properties.proppluralunit

method), 593
adderror() (translate.storage.properties.propunit

method), 595
adderror() (translate.storage.pypo.pounit method),

605
adderror() (translate.storage.qm.qmunit method),

611
adderror() (translate.storage.qph.QphUnit method),

616
adderror() (translate.storage.rc.rcunit method), 622
adderror() (translate.storage.subtitles.SubtitleUnit

method), 635
adderror() (translate.storage.tbx.tbxunit method),

640
adderror() (translate.storage.tiki.TikiUnit method),

646
adderror() (translate.storage.tmx.tmxunit method),

651
adderror() (translate.storage.trados.TradosUnit

method), 655
adderror() (translate.storage.ts2.tsunit method), 662
adderror() (translate.storage.txt.TxtUnit method),

667
adderror() (translate.storage.utx.UtxUnit method),

673
adderror() (translate.storage.wordfast.WordfastUnit

method), 683
adderror() (translate.storage.xliff.xliffunit method),

690
addheader() (translate.storage.lisa.LISAfile method),

473
addheader() (translate.storage.poxliff.PoXliffFile

method), 567
addheader() (translate.storage.qph.QphFile method),

722 Index

Translate Toolkit Documentation, Release 3.0.0

614
addheader() (translate.storage.tbx.tbxfile method),

638
addheader() (translate.storage.tmx.tmxfile method),

649
addheader() (translate.storage.ts2.tsfile method), 660
addheader() (translate.storage.xliff.xlifffile method),

687
addline() (translate.storage.oo.oofile method), 497
addline() (translate.storage.oo.oounit method), 498
addlocation() (trans-

late.storage.base.TranslationUnit method),
404

addlocation() (trans-
late.storage.catkeys.CatkeysUnit method),
410

addlocation() (translate.storage.csvl10n.csvunit
method), 415

addlocation() (translate.storage.dtd.dtdunit
method), 422

addlocation() (translate.storage.html.htmlunit
method), 431

addlocation() (translate.storage.ical.icalunit
method), 436

addlocation() (translate.storage.ini.iniunit method),
441

addlocation() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
446

addlocation() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 451

addlocation() (trans-
late.storage.jsonl10n.I18NextUnit method),
456

addlocation() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
462

addlocation() (translate.storage.jsonl10n.JsonUnit
method), 465

addlocation() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 470

addlocation() (translate.storage.lisa.LISAunit
method), 475

addlocation() (translate.storage.mo.mounit
method), 482

addlocation() (trans-
late.storage.mozilla_lang.LangUnit method),
487

addlocation() (trans-
late.storage.omegat.OmegaTUnit method),
493

addlocation() (trans-

late.storage.php.LaravelPHPUnit method),
551

addlocation() (translate.storage.php.phpunit
method), 556

addlocation() (translate.storage.pocommon.pounit
method), 562

addlocation() (translate.storage.poxliff.PoXliffUnit
method), 570

addlocation() (trans-
late.storage.properties.proppluralunit method),
593

addlocation() (trans-
late.storage.properties.propunit method),
596

addlocation() (translate.storage.pypo.pounit
method), 605

addlocation() (translate.storage.qm.qmunit
method), 611

addlocation() (translate.storage.qph.QphUnit
method), 616

addlocation() (translate.storage.rc.rcunit method),
622

addlocation() (trans-
late.storage.subtitles.SubtitleUnit method),
635

addlocation() (translate.storage.tbx.tbxunit
method), 640

addlocation() (translate.storage.tiki.TikiUnit
method), 646

addlocation() (translate.storage.tmx.tmxunit
method), 651

addlocation() (translate.storage.trados.TradosUnit
method), 655

addlocation() (translate.storage.ts2.tsunit method),
662

addlocation() (translate.storage.txt.TxtUnit
method), 667

addlocation() (translate.storage.utx.UtxUnit
method), 673

addlocation() (trans-
late.storage.wordfast.WordfastUnit method),
683

addlocation() (translate.storage.xliff.xliffunit
method), 690

addlocations() (trans-
late.storage.base.TranslationUnit method),
404

addlocations() (trans-
late.storage.catkeys.CatkeysUnit method),
410

addlocations() (translate.storage.csvl10n.csvunit
method), 416

addlocations() (translate.storage.dtd.dtdunit
method), 422

Index 723

Translate Toolkit Documentation, Release 3.0.0

addlocations() (translate.storage.html.htmlunit
method), 431

addlocations() (translate.storage.ical.icalunit
method), 436

addlocations() (translate.storage.ini.iniunit
method), 441

addlocations() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
446

addlocations() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 451

addlocations() (trans-
late.storage.jsonl10n.I18NextUnit method),
456

addlocations() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
462

addlocations() (trans-
late.storage.jsonl10n.JsonUnit method),
466

addlocations() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 470

addlocations() (translate.storage.lisa.LISAunit
method), 475

addlocations() (translate.storage.mo.mounit
method), 482

addlocations() (trans-
late.storage.mozilla_lang.LangUnit method),
487

addlocations() (trans-
late.storage.omegat.OmegaTUnit method),
493

addlocations() (trans-
late.storage.php.LaravelPHPUnit method),
551

addlocations() (translate.storage.php.phpunit
method), 556

addlocations() (trans-
late.storage.pocommon.pounit method),
562

addlocations() (trans-
late.storage.poxliff.PoXliffUnit method),
570

addlocations() (trans-
late.storage.properties.proppluralunit method),
593

addlocations() (trans-
late.storage.properties.propunit method),
596

addlocations() (translate.storage.pypo.pounit
method), 605

addlocations() (translate.storage.qm.qmunit

method), 611
addlocations() (translate.storage.qph.QphUnit

method), 616
addlocations() (translate.storage.rc.rcunit

method), 622
addlocations() (trans-

late.storage.subtitles.SubtitleUnit method),
635

addlocations() (translate.storage.tbx.tbxunit
method), 640

addlocations() (translate.storage.tiki.TikiUnit
method), 646

addlocations() (translate.storage.tmx.tmxunit
method), 651

addlocations() (trans-
late.storage.trados.TradosUnit method),
655

addlocations() (translate.storage.ts2.tsunit
method), 662

addlocations() (translate.storage.txt.TxtUnit
method), 668

addlocations() (translate.storage.utx.UtxUnit
method), 673

addlocations() (trans-
late.storage.wordfast.WordfastUnit method),
683

addlocations() (translate.storage.xliff.xliffunit
method), 690

addnote() (translate.storage.base.TranslationUnit
method), 404

addnote() (translate.storage.catkeys.CatkeysUnit
method), 410

addnote() (translate.storage.csvl10n.csvunit method),
416

addnote() (translate.storage.dtd.dtdunit method), 422
addnote() (translate.storage.html.htmlunit method),

431
addnote() (translate.storage.ical.icalunit method),

436
addnote() (translate.storage.ini.iniunit method), 441
addnote() (translate.storage.jsonl10n.ARBJsonUnit

method), 447
addnote() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 451
addnote() (translate.storage.jsonl10n.I18NextUnit

method), 456
addnote() (translate.storage.jsonl10n.JsonNestedUnit

method), 463
addnote() (translate.storage.jsonl10n.JsonUnit

method), 466
addnote() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 471
addnote() (translate.storage.lisa.LISAunit method),

476

724 Index

Translate Toolkit Documentation, Release 3.0.0

addnote() (translate.storage.mo.mounit method), 482
addnote() (translate.storage.mozilla_lang.LangUnit

method), 487
addnote() (translate.storage.omegat.OmegaTUnit

method), 494
addnote() (translate.storage.php.LaravelPHPUnit

method), 551
addnote() (translate.storage.php.phpunit method),

556
addnote() (translate.storage.pocommon.pounit

method), 562
addnote() (translate.storage.poxliff.PoXliffUnit

method), 570
addnote() (translate.storage.properties.proppluralunit

method), 593
addnote() (translate.storage.properties.propunit

method), 596
addnote() (translate.storage.pypo.pounit method),

605
addnote() (translate.storage.qm.qmunit method), 611
addnote() (translate.storage.qph.QphUnit method),

617
addnote() (translate.storage.rc.rcunit method), 622
addnote() (translate.storage.subtitles.SubtitleUnit

method), 636
addnote() (translate.storage.tbx.tbxunit method), 641
addnote() (translate.storage.tiki.TikiUnit method),

646
addnote() (translate.storage.tmx.tmxunit method),

651
addnote() (translate.storage.trados.TradosUnit

method), 655
addnote() (translate.storage.ts2.tsunit method), 662
addnote() (translate.storage.txt.TxtUnit method), 668
addnote() (translate.storage.utx.UtxUnit method),

673
addnote() (translate.storage.wordfast.WordfastUnit

method), 683
addnote() (translate.storage.xliff.xliffunit method),

690
addplural() (translate.storage.poxliff.PoXliffFile

method), 567
addsourceunit() (trans-

late.storage.base.TranslationStore method),
402

addsourceunit() (trans-
late.storage.catkeys.CatkeysFile method),
408

addsourceunit() (translate.storage.csvl10n.csvfile
method), 414

addsourceunit() (translate.storage.dtd.dtdfile
method), 420

addsourceunit() (translate.storage.html.htmlfile
method), 428

addsourceunit() (trans-
late.storage.html.POHTMLParser method),
426

addsourceunit() (translate.storage.ical.icalfile
method), 434

addsourceunit() (translate.storage.ini.inifile
method), 439

addsourceunit() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

addsourceunit() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 449

addsourceunit() (trans-
late.storage.jsonl10n.I18NextFile method),
454

addsourceunit() (trans-
late.storage.jsonl10n.JsonFile method), 459

addsourceunit() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

addsourceunit() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 468

addsourceunit() (translate.storage.lisa.LISAfile
method), 473

addsourceunit() (translate.storage.mo.mofile
method), 479

addsourceunit() (trans-
late.storage.mozilla_lang.LangStore method),
485

addsourceunit() (trans-
late.storage.omegat.OmegaTFile method),
490

addsourceunit() (trans-
late.storage.omegat.OmegaTFileTab method),
492

addsourceunit() (trans-
late.storage.php.LaravelPHPFile method),
549

addsourceunit() (translate.storage.php.phpfile
method), 554

addsourceunit() (trans-
late.storage.pocommon.pofile method), 559

addsourceunit() (trans-
late.storage.poxliff.PoXliffFile method), 567

addsourceunit() (trans-
late.storage.properties.gwtfile method), 582

addsourceunit() (trans-
late.storage.properties.javafile method),
584

addsourceunit() (trans-
late.storage.properties.javautf16file method),
586

Index 725

Translate Toolkit Documentation, Release 3.0.0

addsourceunit() (trans-
late.storage.properties.javautf8file method),
588

addsourceunit() (trans-
late.storage.properties.joomlafile method),
589

addsourceunit() (trans-
late.storage.properties.propfile method),
591

addsourceunit() (trans-
late.storage.properties.stringsfile method),
599

addsourceunit() (trans-
late.storage.properties.stringsutf8file method),
600

addsourceunit() (translate.storage.pypo.pofile
method), 602

addsourceunit() (translate.storage.qm.qmfile
method), 609

addsourceunit() (translate.storage.qph.QphFile
method), 614

addsourceunit() (translate.storage.rc.rcfile
method), 620

addsourceunit() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 627

addsourceunit() (trans-
late.storage.subtitles.MicroDVDFile method),
628

addsourceunit() (trans-
late.storage.subtitles.SubRipFile method),
630

addsourceunit() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

addsourceunit() (trans-
late.storage.subtitles.SubtitleFile method),
634

addsourceunit() (translate.storage.tbx.tbxfile
method), 638

addsourceunit() (translate.storage.tiki.TikiStore
method), 644

addsourceunit() (translate.storage.tmx.tmxfile
method), 649

addsourceunit() (trans-
late.storage.trados.TradosTxtTmFile method),
658

addsourceunit() (translate.storage.ts2.tsfile
method), 660

addsourceunit() (translate.storage.txt.TxtFile
method), 666

addsourceunit() (translate.storage.utx.UtxFile
method), 671

addsourceunit() (trans-

late.storage.wordfast.WordfastTMFile method),
681

addsourceunit() (translate.storage.xliff.xlifffile
method), 687

addtranslation() (translate.storage.tmx.tmxfile
method), 649

addunit() (translate.storage.base.TranslationStore
method), 402

addunit() (translate.storage.catkeys.CatkeysFile
method), 408

addunit() (translate.storage.csvl10n.csvfile method),
414

addunit() (translate.storage.dtd.dtdfile method), 420
addunit() (translate.storage.html.htmlfile method),

428
addunit() (translate.storage.html.POHTMLParser

method), 426
addunit() (translate.storage.ical.icalfile method), 434
addunit() (translate.storage.ini.inifile method), 439
addunit() (translate.storage.jsonl10n.ARBJsonFile

method), 445
addunit() (translate.storage.jsonl10n.GoI18NJsonFile

method), 449
addunit() (translate.storage.jsonl10n.I18NextFile

method), 454
addunit() (translate.storage.jsonl10n.JsonFile

method), 459
addunit() (translate.storage.jsonl10n.JsonNestedFile

method), 461
addunit() (translate.storage.jsonl10n.WebExtensionJsonFile

method), 469
addunit() (translate.storage.lisa.LISAfile method),

473
addunit() (translate.storage.mo.mofile method), 479
addunit() (translate.storage.mozilla_lang.LangStore

method), 485
addunit() (translate.storage.omegat.OmegaTFile

method), 490
addunit() (translate.storage.omegat.OmegaTFileTab

method), 492
addunit() (translate.storage.php.LaravelPHPFile

method), 549
addunit() (translate.storage.php.phpfile method), 554
addunit() (translate.storage.pocommon.pofile

method), 559
addunit() (translate.storage.poxliff.PoXliffFile

method), 567
addunit() (translate.storage.properties.gwtfile

method), 582
addunit() (translate.storage.properties.javafile

method), 584
addunit() (translate.storage.properties.javautf16file

method), 586
addunit() (translate.storage.properties.javautf8file

726 Index

Translate Toolkit Documentation, Release 3.0.0

method), 588
addunit() (translate.storage.properties.joomlafile

method), 589
addunit() (translate.storage.properties.propfile

method), 591
addunit() (translate.storage.properties.stringsfile

method), 599
addunit() (translate.storage.properties.stringsutf8file

method), 600
addunit() (translate.storage.pypo.pofile method), 602
addunit() (translate.storage.qm.qmfile method), 609
addunit() (translate.storage.qph.QphFile method),

614
addunit() (translate.storage.rc.rcfile method), 620
addunit() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 627
addunit() (translate.storage.subtitles.MicroDVDFile

method), 629
addunit() (translate.storage.subtitles.SubRipFile

method), 630
addunit() (translate.storage.subtitles.SubStationAlphaFile

method), 632
addunit() (translate.storage.subtitles.SubtitleFile

method), 634
addunit() (translate.storage.tbx.tbxfile method), 639
addunit() (translate.storage.tiki.TikiStore method),

644
addunit() (translate.storage.tmx.tmxfile method), 649
addunit() (translate.storage.trados.TradosTxtTmFile

method), 658
addunit() (translate.storage.ts2.tsfile method), 660
addunit() (translate.storage.txt.TxtFile method), 666
addunit() (translate.storage.utx.UtxFile method), 671
addunit() (translate.storage.wordfast.WordfastTMFile

method), 681
addunit() (translate.storage.xliff.xlifffile method), 687
AdvSubStationAlphaFile (class in trans-

late.storage.subtitles), 627
af (class in translate.lang.af), 355
AltAttrPlaceable (class in trans-

late.storage.placeables.general), 514
alter_length() (translate.lang.af.af class method),

355
alter_length() (translate.lang.am.am class

method), 356
alter_length() (translate.lang.ar.ar class method),

356
alter_length() (translate.lang.bn.bn class method),

357
alter_length() (translate.lang.code_or.code_or

class method), 358
alter_length() (translate.lang.common.Common

class method), 359
alter_length() (translate.lang.de.de class method),

363
alter_length() (translate.lang.el.el class method),

364
alter_length() (translate.lang.es.es class method),

365
alter_length() (translate.lang.fa.fa class method),

366
alter_length() (translate.lang.fi.fi class method),

367
alter_length() (translate.lang.fr.fr class method),

367
alter_length() (translate.lang.gu.gu class method),

368
alter_length() (translate.lang.he.he class method),

369
alter_length() (translate.lang.hi.hi class method),

370
alter_length() (translate.lang.hy.hy class method),

371
alter_length() (translate.lang.ja.ja class method),

372
alter_length() (translate.lang.km.km class

method), 372
alter_length() (translate.lang.kn.kn class method),

373
alter_length() (translate.lang.ko.ko class method),

374
alter_length() (translate.lang.ml.ml class method),

375
alter_length() (translate.lang.mr.mr class

method), 375
alter_length() (translate.lang.ne.ne class method),

376
alter_length() (translate.lang.pa.pa class method),

377
alter_length() (translate.lang.si.si class method),

379
alter_length() (translate.lang.st.st class method),

379
alter_length() (translate.lang.sv.sv class method),

380
alter_length() (translate.lang.ta.ta class method),

381
alter_length() (translate.lang.te.te class method),

382
alter_length() (translate.lang.th.th class method),

383
alter_length() (translate.lang.ug.ug class method),

383
alter_length() (translate.lang.ur.ur class method),

384
alter_length() (translate.lang.vi.vi class method),

385
alter_length() (translate.lang.zh.zh class method),

Index 727

Translate Toolkit Documentation, Release 3.0.0

386
am (class in translate.lang.am), 356
append_file() (trans-

late.storage.bundleprojstore.BundleProjectStore
method), 407

append_file() (trans-
late.storage.projstore.ProjectStore method),
575

apply_to_strings() (trans-
late.storage.placeables.base.Bpt method),
499

apply_to_strings() (trans-
late.storage.placeables.base.Bx method),
507

apply_to_strings() (trans-
late.storage.placeables.base.Ept method),
501

apply_to_strings() (trans-
late.storage.placeables.base.Ex method),
509

apply_to_strings() (trans-
late.storage.placeables.base.G method),
506

apply_to_strings() (trans-
late.storage.placeables.base.It method),
504

apply_to_strings() (trans-
late.storage.placeables.base.Ph method),
503

apply_to_strings() (trans-
late.storage.placeables.base.Sub method),
512

apply_to_strings() (trans-
late.storage.placeables.base.X method),
511

apply_to_strings() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 514

apply_to_strings() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 516

apply_to_strings() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 517

apply_to_strings() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 519

apply_to_strings() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 521

apply_to_strings() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

apply_to_strings() (trans-

late.storage.placeables.interfaces.ReplacementPlaceable
method), 524

apply_to_strings() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 526

apply_to_strings() (trans-
late.storage.placeables.strelem.StringElem
method), 528

apply_to_strings() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 530

apply_to_strings() (trans-
late.storage.placeables.xliff.Bpt method),
532

apply_to_strings() (trans-
late.storage.placeables.xliff.Bx method),
537

apply_to_strings() (trans-
late.storage.placeables.xliff.Ept method),
534

apply_to_strings() (trans-
late.storage.placeables.xliff.Ex method),
539

apply_to_strings() (trans-
late.storage.placeables.xliff.G method), 540

apply_to_strings() (trans-
late.storage.placeables.xliff.It method), 542

apply_to_strings() (trans-
late.storage.placeables.xliff.Ph method),
545

apply_to_strings() (trans-
late.storage.placeables.xliff.Sub method),
544

apply_to_strings() (trans-
late.storage.placeables.xliff.UnknownXML
method), 547

apply_to_strings() (trans-
late.storage.placeables.xliff.X method), 536

applytranslation() (in module trans-
late.convert.po2dtd), 248

applytranslation() (in module trans-
late.convert.po2prop), 254

ar (class in translate.lang.ar), 356
ARBJsonFile (class in translate.storage.jsonl10n), 444
ARBJsonUnit (class in translate.storage.jsonl10n), 446
ArchiveConvertOptionParser (class in trans-

late.convert.convert), 235
attributes (translate.misc.ourdom.Element at-

tribute), 395

B
BasePlaceable (class in trans-

late.storage.placeables.interfaces), 519

728 Index

Translate Toolkit Documentation, Release 3.0.0

batchruntests() (in module trans-
late.filters.checks), 348

blank() (translate.filters.checks.CCLicenseChecker
method), 271

blank() (translate.filters.checks.DrupalChecker
method), 277

blank() (translate.filters.checks.GnomeChecker
method), 283

blank() (translate.filters.checks.IOSChecker method),
289

blank() (translate.filters.checks.KdeChecker method),
295

blank() (translate.filters.checks.L20nChecker
method), 300

blank() (translate.filters.checks.LibreOfficeChecker
method), 306

blank() (translate.filters.checks.MinimalChecker
method), 312

blank() (translate.filters.checks.MozillaChecker
method), 317

blank() (translate.filters.checks.OpenOfficeChecker
method), 323

blank() (translate.filters.checks.ReducedChecker
method), 329

blank() (translate.filters.checks.StandardChecker
method), 335

blank() (translate.filters.checks.TermChecker method),
342

bn (class in translate.lang.bn), 357
Bpt (class in translate.storage.placeables.base), 499
Bpt (class in translate.storage.placeables.xliff), 532
brackets() (translate.filters.checks.CCLicenseChecker

method), 271
brackets() (translate.filters.checks.DrupalChecker

method), 277
brackets() (translate.filters.checks.GnomeChecker

method), 283
brackets() (translate.filters.checks.IOSChecker

method), 289
brackets() (translate.filters.checks.KdeChecker

method), 295
brackets() (translate.filters.checks.L20nChecker

method), 300
brackets() (translate.filters.checks.LibreOfficeChecker

method), 306
brackets() (translate.filters.checks.MinimalChecker

method), 312
brackets() (translate.filters.checks.MozillaChecker

method), 318
brackets() (translate.filters.checks.OpenOfficeChecker

method), 323
brackets() (translate.filters.checks.ReducedChecker

method), 329
brackets() (translate.filters.checks.StandardChecker

method), 335
brackets() (translate.filters.checks.TermChecker

method), 342
build_checkerconfig() (trans-

late.filters.pofilter.FilterOptionParser method),
350

build_idml_store() (in module trans-
late.storage.xml_extract.extract), 693

build_store() (in module trans-
late.storage.xml_extract.extract), 693

build_unit_tree() (in module trans-
late.storage.xml_extract.unit_tree), 695

buildconflictmap() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

buildfromunit() (trans-
late.storage.base.TranslationUnit class
method), 404

buildfromunit() (trans-
late.storage.catkeys.CatkeysUnit class method),
411

buildfromunit() (translate.storage.csvl10n.csvunit
class method), 416

buildfromunit() (translate.storage.dtd.dtdunit
class method), 422

buildfromunit() (translate.storage.html.htmlunit
class method), 431

buildfromunit() (translate.storage.ical.icalunit
class method), 436

buildfromunit() (translate.storage.ini.iniunit class
method), 441

buildfromunit() (trans-
late.storage.jsonl10n.ARBJsonUnit class
method), 447

buildfromunit() (trans-
late.storage.jsonl10n.GoI18NJsonUnit class
method), 452

buildfromunit() (trans-
late.storage.jsonl10n.I18NextUnit class
method), 456

buildfromunit() (trans-
late.storage.jsonl10n.JsonNestedUnit class
method), 463

buildfromunit() (trans-
late.storage.jsonl10n.JsonUnit class method),
466

buildfromunit() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
class method), 471

buildfromunit() (translate.storage.lisa.LISAunit
class method), 476

buildfromunit() (translate.storage.mo.mounit class
method), 482

buildfromunit() (trans-

Index 729

Translate Toolkit Documentation, Release 3.0.0

late.storage.mozilla_lang.LangUnit class
method), 487

buildfromunit() (trans-
late.storage.omegat.OmegaTUnit class
method), 494

buildfromunit() (trans-
late.storage.php.LaravelPHPUnit class
method), 551

buildfromunit() (translate.storage.php.phpunit
class method), 556

buildfromunit() (trans-
late.storage.pocommon.pounit class method),
562

buildfromunit() (trans-
late.storage.poxliff.PoXliffUnit class method),
570

buildfromunit() (trans-
late.storage.properties.proppluralunit class
method), 593

buildfromunit() (trans-
late.storage.properties.propunit class method),
596

buildfromunit() (translate.storage.pypo.pounit
class method), 605

buildfromunit() (translate.storage.qm.qmunit class
method), 611

buildfromunit() (translate.storage.qph.QphUnit
class method), 617

buildfromunit() (translate.storage.rc.rcunit class
method), 622

buildfromunit() (trans-
late.storage.subtitles.SubtitleUnit class
method), 636

buildfromunit() (translate.storage.tbx.tbxunit class
method), 641

buildfromunit() (translate.storage.tiki.TikiUnit
class method), 646

buildfromunit() (translate.storage.tmx.tmxunit
class method), 651

buildfromunit() (trans-
late.storage.trados.TradosUnit class method),
656

buildfromunit() (translate.storage.ts2.tsunit class
method), 662

buildfromunit() (translate.storage.txt.TxtUnit
class method), 668

buildfromunit() (translate.storage.utx.UtxUnit
class method), 673

buildfromunit() (trans-
late.storage.wordfast.WordfastUnit class
method), 684

buildfromunit() (translate.storage.xliff.xliffunit
class method), 690

buildunits() (translate.search.match.matcher

method), 399
buildunits() (trans-

late.search.match.terminologymatcher
method), 400

BundleProjectStore (class in trans-
late.storage.bundleprojstore), 407

Bx (class in translate.storage.placeables.base), 507
Bx (class in translate.storage.placeables.xliff), 537
bzr (class in translate.storage.versioncontrol.bzr), 677

C
calcstats_old() (in module trans-

late.tools.pocount), 701
capitalize() (translate.misc.multistring.multistring

method), 387
capsstart() (translate.lang.af.af class method), 355
capsstart() (translate.lang.am.am class method),

356
capsstart() (translate.lang.ar.ar class method), 356
capsstart() (translate.lang.bn.bn class method), 357
capsstart() (translate.lang.code_or.code_or class

method), 358
capsstart() (translate.lang.common.Common class

method), 360
capsstart() (translate.lang.de.de class method), 363
capsstart() (translate.lang.el.el class method), 364
capsstart() (translate.lang.es.es class method), 365
capsstart() (translate.lang.fa.fa class method), 366
capsstart() (translate.lang.fi.fi class method), 367
capsstart() (translate.lang.fr.fr class method), 368
capsstart() (translate.lang.gu.gu class method), 368
capsstart() (translate.lang.he.he class method), 369
capsstart() (translate.lang.hi.hi class method), 370
capsstart() (translate.lang.hy.hy class method), 371
capsstart() (translate.lang.ja.ja class method), 372
capsstart() (translate.lang.km.km class method),

372
capsstart() (translate.lang.kn.kn class method), 373
capsstart() (translate.lang.ko.ko class method), 374
capsstart() (translate.lang.ml.ml class method), 375
capsstart() (translate.lang.mr.mr class method), 375
capsstart() (translate.lang.ne.ne class method), 376
capsstart() (translate.lang.pa.pa class method), 377
capsstart() (translate.lang.si.si class method), 379
capsstart() (translate.lang.st.st class method), 379
capsstart() (translate.lang.sv.sv class method), 380
capsstart() (translate.lang.ta.ta class method), 381
capsstart() (translate.lang.te.te class method), 382
capsstart() (translate.lang.th.th class method), 383
capsstart() (translate.lang.ug.ug class method), 383
capsstart() (translate.lang.ur.ur class method), 384
capsstart() (translate.lang.vi.vi class method), 385
capsstart() (translate.lang.zh.zh class method), 386

730 Index

Translate Toolkit Documentation, Release 3.0.0

casefold() (translate.misc.multistring.multistring
method), 387

categories (translate.filters.checks.TeeChecker at-
tribute), 341

categories (translate.filters.checks.UnitChecker at-
tribute), 348

CatkeysDialect (class in translate.storage.catkeys),
408

CatkeysFile (class in translate.storage.catkeys), 408
CatkeysHeader (class in translate.storage.catkeys),

410
CatkeysUnit (class in translate.storage.catkeys), 410
CCLicenseChecker (class in translate.filters.checks),

271
center() (translate.misc.multistring.multistring

method), 387
character_iter() (translate.lang.af.af class

method), 355
character_iter() (translate.lang.am.am class

method), 356
character_iter() (translate.lang.ar.ar class

method), 357
character_iter() (translate.lang.bn.bn class

method), 357
character_iter() (translate.lang.code_or.code_or

class method), 358
character_iter() (trans-

late.lang.common.Common class method),
360

character_iter() (translate.lang.de.de class
method), 364

character_iter() (translate.lang.el.el class
method), 364

character_iter() (translate.lang.es.es class
method), 365

character_iter() (translate.lang.fa.fa class
method), 366

character_iter() (translate.lang.fi.fi class
method), 367

character_iter() (translate.lang.fr.fr class
method), 368

character_iter() (translate.lang.gu.gu class
method), 368

character_iter() (translate.lang.he.he class
method), 369

character_iter() (translate.lang.hi.hi class
method), 370

character_iter() (translate.lang.hy.hy class
method), 371

character_iter() (translate.lang.ja.ja class
method), 372

character_iter() (translate.lang.km.km class
method), 372

character_iter() (translate.lang.kn.kn class

method), 373
character_iter() (translate.lang.ko.ko class

method), 374
character_iter() (translate.lang.ml.ml class

method), 375
character_iter() (translate.lang.mr.mr class

method), 376
character_iter() (translate.lang.ne.ne class

method), 376
character_iter() (translate.lang.pa.pa class

method), 377
character_iter() (translate.lang.si.si class

method), 379
character_iter() (translate.lang.st.st class

method), 379
character_iter() (translate.lang.sv.sv class

method), 380
character_iter() (translate.lang.ta.ta class

method), 381
character_iter() (translate.lang.te.te class

method), 382
character_iter() (translate.lang.th.th class

method), 383
character_iter() (translate.lang.ug.ug class

method), 383
character_iter() (translate.lang.ur.ur class

method), 384
character_iter() (translate.lang.vi.vi class

method), 385
character_iter() (translate.lang.zh.zh class

method), 386
characters() (translate.lang.af.af class method), 355
characters() (translate.lang.am.am class method),

356
characters() (translate.lang.ar.ar class method),

357
characters() (translate.lang.bn.bn class method),

357
characters() (translate.lang.code_or.code_or class

method), 358
characters() (translate.lang.common.Common class

method), 360
characters() (translate.lang.de.de class method),

364
characters() (translate.lang.el.el class method), 364
characters() (translate.lang.es.es class method),

365
characters() (translate.lang.fa.fa class method), 366
characters() (translate.lang.fi.fi class method), 367
characters() (translate.lang.fr.fr class method), 368
characters() (translate.lang.gu.gu class method),

368
characters() (translate.lang.he.he class method),

369

Index 731

Translate Toolkit Documentation, Release 3.0.0

characters() (translate.lang.hi.hi class method), 370
characters() (translate.lang.hy.hy class method),

371
characters() (translate.lang.ja.ja class method), 372
characters() (translate.lang.km.km class method),

372
characters() (translate.lang.kn.kn class method),

373
characters() (translate.lang.ko.ko class method),

374
characters() (translate.lang.ml.ml class method),

375
characters() (translate.lang.mr.mr class method),

376
characters() (translate.lang.ne.ne class method),

376
characters() (translate.lang.pa.pa class method),

377
characters() (translate.lang.si.si class method), 379
characters() (translate.lang.st.st class method), 379
characters() (translate.lang.sv.sv class method),

380
characters() (translate.lang.ta.ta class method), 381
characters() (translate.lang.te.te class method), 382
characters() (translate.lang.th.th class method), 383
characters() (translate.lang.ug.ug class method),

383
characters() (translate.lang.ur.ur class method),

384
characters() (translate.lang.vi.vi class method), 385
characters() (translate.lang.zh.zh class method),

386
check_values() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 235

check_values() (trans-
late.convert.convert.ConvertOptionParser
method), 239

check_values() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

check_values() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

check_values() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

check_values() (trans-
late.filters.pofilter.FilterOptionParser method),
351

check_values() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

check_values() (trans-

late.tools.poconflicts.ConflictOptionParser
method), 698

check_values() (trans-
late.tools.pogrep.GrepOptionParser method),
702

check_values() (trans-
late.tools.porestructure.SplitOptionParser
method), 705

check_values() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

checker (translate.lang.common.Common attribute),
360

checker_name (trans-
late.filters.checks.CCLicenseChecker at-
tribute), 271

checker_name (trans-
late.filters.checks.DrupalChecker attribute),
277

checker_name (trans-
late.filters.checks.GnomeChecker attribute),
283

checker_name (translate.filters.checks.IOSChecker
attribute), 289

checker_name (translate.filters.checks.KdeChecker
attribute), 295

checker_name (translate.filters.checks.L20nChecker
attribute), 300

checker_name (trans-
late.filters.checks.LibreOfficeChecker at-
tribute), 306

checker_name (trans-
late.filters.checks.MinimalChecker attribute),
312

checker_name (trans-
late.filters.checks.MozillaChecker attribute),
318

checker_name (trans-
late.filters.checks.OpenOfficeChecker at-
tribute), 324

checker_name (trans-
late.filters.checks.ReducedChecker attribute),
329

checker_name (trans-
late.filters.checks.StandardChecker attribute),
335

checker_name (trans-
late.filters.checks.StandardUnitChecker at-
tribute), 340

checker_name (translate.filters.checks.TermChecker
attribute), 342

checker_name (trans-
late.filters.checks.TranslationChecker at-
tribute), 347

732 Index

Translate Toolkit Documentation, Release 3.0.0

checker_name (translate.filters.checks.UnitChecker
attribute), 348

CheckerConfig (class in translate.filters.checks), 277
checkoutputsubdir() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

checkoutputsubdir() (trans-
late.convert.convert.ConvertOptionParser
method), 239

checkoutputsubdir() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

checkoutputsubdir() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

checkoutputsubdir() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

checkoutputsubdir() (trans-
late.filters.pofilter.FilterOptionParser method),
351

checkoutputsubdir() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

checkoutputsubdir() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

checkoutputsubdir() (trans-
late.tools.pogrep.GrepOptionParser method),
702

checkoutputsubdir() (trans-
late.tools.porestructure.SplitOptionParser
method), 705

checkoutputsubdir() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

cidict (class in translate.misc.dictutils), 386
CJKpunc (translate.lang.common.Common attribute),

359
classifyunit() (trans-

late.storage.statistics.Statistics method),
625

classifyunits() (trans-
late.storage.statistics.Statistics method),
625

cldr_plural_categories (in module trans-
late.lang.data), 362

clean() (translate.tools.poconflicts.ConflictOptionParser
method), 698

cleanfile() (in module translate.tools.poclean), 697
cleanunit() (in module translate.tools.poclean), 697
cleanup() (translate.storage.bundleprojstore.BundleProjectStore

method), 407
clear() (translate.misc.dictutils.cidict method), 387

clear() (translate.storage.oo.unormalizechar
method), 498

clear_test_dir() (trans-
late.storage.benchmark.TranslateBenchmarker
method), 407

close() (translate.storage.html.htmlfile method), 429
close() (translate.storage.html.POHTMLParser

method), 426
close() (translate.storage.project.Project method),

574
code (translate.lang.common.Common attribute), 360
code_or (class in translate.lang.code_or), 358
combine() (in module translate.convert.accesskey),

234
commit() (translate.storage.versioncontrol.bzr.bzr

method), 677
commit() (translate.storage.versioncontrol.cvs.cvs

method), 678
commit() (translate.storage.versioncontrol.darcs.darcs

method), 678
commit() (translate.storage.versioncontrol.GenericRevisionControlSystem

method), 677
commit() (translate.storage.versioncontrol.git.git

method), 679
commit() (translate.storage.versioncontrol.hg.hg

method), 679
commit() (translate.storage.versioncontrol.svn.svn

method), 679
commitdirectory() (in module trans-

late.storage.versioncontrol), 677
Common (class in translate.lang.common), 359
commonpunc (translate.lang.common.Common at-

tribute), 360
compendiumconflicts() (trans-

late.filters.checks.CCLicenseChecker method),
271

compendiumconflicts() (trans-
late.filters.checks.DrupalChecker method),
277

compendiumconflicts() (trans-
late.filters.checks.GnomeChecker method),
283

compendiumconflicts() (trans-
late.filters.checks.IOSChecker method), 289

compendiumconflicts() (trans-
late.filters.checks.KdeChecker method),
295

compendiumconflicts() (trans-
late.filters.checks.L20nChecker method),
300

compendiumconflicts() (trans-
late.filters.checks.LibreOfficeChecker method),
306

compendiumconflicts() (trans-

Index 733

Translate Toolkit Documentation, Release 3.0.0

late.filters.checks.MinimalChecker method),
312

compendiumconflicts() (trans-
late.filters.checks.MozillaChecker method),
318

compendiumconflicts() (trans-
late.filters.checks.OpenOfficeChecker method),
324

compendiumconflicts() (trans-
late.filters.checks.ReducedChecker method),
329

compendiumconflicts() (trans-
late.filters.checks.StandardChecker method),
335

compendiumconflicts() (trans-
late.filters.checks.TermChecker method),
342

compose_mappings() (in module trans-
late.storage.xml_extract.misc), 695

con (translate.storage.statsdb.StatsCache attribute), 626
ConflictOptionParser (class in trans-

late.tools.poconflicts), 698
ConsoleColor (class in translate.tools.pocount), 701
convert_forward() (trans-

late.storage.project.Project method), 574
convert_store() (in module trans-

late.convert.sub2po), 267
convert_store() (translate.convert.ical2po.ical2po

method), 244
convert_store() (translate.convert.ini2po.ini2po

method), 245
convert_store() (trans-

late.convert.json2po.json2po method), 246
convert_store() (trans-

late.convert.mozlang2po.lang2po method),
246

convert_store() (translate.convert.php2po.php2po
method), 248

convert_store() (trans-
late.convert.po2mozlang.po2lang method),
250

convert_store() (translate.convert.po2tiki.po2tiki
method), 256

convert_store() (translate.convert.po2txt.po2txt
method), 260

convert_store() (translate.convert.rc2po.rc2po
method), 267

convert_store() (trans-
late.convert.resx2po.resx2po method), 267

convert_store() (translate.convert.tiki2po.tiki2po
method), 268

convert_store() (translate.convert.txt2po.txt2po
method), 269

convert_store() (trans-

late.convert.yaml2po.yaml2po method),
270

convert_stores() (in module trans-
late.convert.pot2po), 265

convert_unit() (in module trans-
late.convert.sub2po), 267

convert_unit() (translate.convert.ical2po.ical2po
method), 244

convert_unit() (translate.convert.ini2po.ini2po
method), 245

convert_unit() (translate.convert.json2po.json2po
method), 246

convert_unit() (trans-
late.convert.mozlang2po.lang2po method),
247

convert_unit() (translate.convert.php2po.php2po
method), 248

convert_unit() (trans-
late.convert.po2mozlang.po2lang method),
250

convert_unit() (translate.convert.po2tiki.po2tiki
method), 256

convert_unit() (trans-
late.convert.po2yaml.po2yaml method),
265

convert_unit() (translate.convert.rc2po.rc2po
method), 267

convert_unit() (translate.convert.resx2po.resx2po
method), 267

convert_unit() (translate.convert.tiki2po.tiki2po
method), 268

convert_unit() (trans-
late.convert.yaml2po.yaml2po method),
270

convertcsv() (in module translate.convert.csv2po),
242

convertcsv() (in module translate.convert.csv2tbx),
243

convertcsv() (in module translate.convert.po2csv),
248

convertdtd() (in module translate.convert.dtd2po),
243

convertfile() (translate.convert.csv2tbx.csv2tbx
method), 243

converthtml() (in module trans-
late.convert.html2po), 244

converthtml() (in module trans-
late.convert.po2html), 249

convertjson() (in module trans-
late.convert.json2po), 245

convertmo() (in module translate.tools.pocompile),
697

convertmozillaprop() (in module trans-
late.convert.po2prop), 254

734 Index

Translate Toolkit Documentation, Release 3.0.0

convertmozillaprop() (in module trans-
late.convert.prop2po), 266

convertodf() (in module translate.convert.odf2xliff),
247

convertoo() (in module translate.convert.oo2po),
247

convertoo() (in module translate.convert.oo2xliff),
247

ConvertOptionParser (class in trans-
late.convert.convert), 239

convertphp2py() (in module trans-
late.tools.phppo2pypo), 697

convertpo() (in module translate.convert.po2tmx),
259

convertpo() (in module translate.convert.po2ts), 260
convertpo() (in module trans-

late.convert.po2wordfast), 264
convertpo() (in module translate.convert.po2xliff),

264
convertpo() (in module translate.tools.podebug), 701
convertpo() (in module translate.tools.poswap), 708
convertpot() (in module translate.convert.pot2po),

265
convertprop() (in module trans-

late.convert.prop2po), 266
convertpropunit() (trans-

late.convert.prop2po.prop2po method), 266
convertpy2php() (in module trans-

late.tools.pypo2phppo), 713
convertrc() (in module translate.convert.rc2po), 267
convertstore() (translate.convert.csv2po.csv2po

method), 243
convertstore() (translate.convert.prop2po.prop2po

method), 266
convertstrings() (in module trans-

late.convert.po2prop), 255
convertstrings() (in module trans-

late.convert.prop2po), 266
convertsub() (in module translate.convert.sub2po),

267
convertts() (in module translate.convert.ts2po), 268
convertunit() (translate.convert.csv2po.csv2po

method), 243
convertunit() (translate.convert.prop2po.prop2po

method), 266
convertxliff() (in module trans-

late.convert.xliff2odf), 269
convertxliff() (in module trans-

late.convert.xliff2po), 270
copy() (translate.misc.dictutils.cidict method), 387
copy() (translate.storage.oo.unormalizechar method),

498
copy() (translate.storage.placeables.base.Bpt method),

499

copy() (translate.storage.placeables.base.Bx method),
507

copy() (translate.storage.placeables.base.Ept method),
501

copy() (translate.storage.placeables.base.Ex method),
509

copy() (translate.storage.placeables.base.G method),
506

copy() (translate.storage.placeables.base.It method),
504

copy() (translate.storage.placeables.base.Ph method),
503

copy() (translate.storage.placeables.base.Sub method),
512

copy() (translate.storage.placeables.base.X method),
511

copy() (translate.storage.placeables.general.AltAttrPlaceable
method), 514

copy() (translate.storage.placeables.general.XMLEntityPlaceable
method), 516

copy() (translate.storage.placeables.general.XMLTagPlaceable
method), 518

copy() (translate.storage.placeables.interfaces.BasePlaceable
method), 519

copy() (translate.storage.placeables.interfaces.InvisiblePlaceable
method), 521

copy() (translate.storage.placeables.interfaces.MaskingPlaceable
method), 523

copy() (translate.storage.placeables.interfaces.ReplacementPlaceable
method), 524

copy() (translate.storage.placeables.interfaces.SubflowPlaceable
method), 526

copy() (translate.storage.placeables.strelem.StringElem
method), 528

copy() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 530

copy() (translate.storage.placeables.xliff.Bpt method),
532

copy() (translate.storage.placeables.xliff.Bx method),
537

copy() (translate.storage.placeables.xliff.Ept method),
534

copy() (translate.storage.placeables.xliff.Ex method),
539

copy() (translate.storage.placeables.xliff.G method),
540

copy() (translate.storage.placeables.xliff.It method),
542

copy() (translate.storage.placeables.xliff.Ph method),
545

copy() (translate.storage.placeables.xliff.Sub method),
544

copy() (translate.storage.placeables.xliff.UnknownXML
method), 547

Index 735

Translate Toolkit Documentation, Release 3.0.0

copy() (translate.storage.placeables.xliff.X method),
536

copy() (translate.storage.tmx.tmxunit method), 651
copyinput() (in module translate.convert.convert),

242
copytemplate() (in module trans-

late.convert.convert), 242
correct() (in module translate.filters.autocorrect),

271
correctorigin() (trans-

late.storage.poxliff.PoXliffUnit method),
570

correctorigin() (translate.storage.xliff.xliffunit
method), 690

count() (translate.misc.multistring.multistring
method), 387

countaccelerators() (in module trans-
late.filters.decoration), 349

countmatch() (in module translate.filters.helpers),
350

countsmatch() (in module translate.filters.helpers),
350

countwords() (translate.storage.statistics.Statistics
method), 625

create_sample_files() (trans-
late.storage.benchmark.TranslateBenchmarker
method), 407

createcontextgroup() (trans-
late.storage.poxliff.PoXliffUnit method),
570

createcontextgroup() (trans-
late.storage.xliff.xliffunit method), 690

createfilenode() (trans-
late.storage.poxliff.PoXliffFile method), 567

createfilenode() (translate.storage.xliff.xlifffile
method), 687

creategroup() (translate.storage.poxliff.PoXliffFile
method), 567

creategroup() (translate.storage.xliff.xlifffile
method), 687

createlanguageNode() (trans-
late.storage.lisa.LISAunit method), 476

createlanguageNode() (trans-
late.storage.poxliff.PoXliffUnit method),
571

createlanguageNode() (trans-
late.storage.qph.QphUnit method), 617

createlanguageNode() (trans-
late.storage.tbx.tbxunit method), 641

createlanguageNode() (trans-
late.storage.tmx.tmxunit method), 651

createlanguageNode() (trans-
late.storage.ts2.tsunit method), 662

createlanguageNode() (trans-

late.storage.xliff.xliffunit method), 690
createParser() (trans-

late.misc.ourdom.ExpatBuilderNS method),
395

createsubfileindex() (trans-
late.storage.oo.oomultifile method), 498

credits() (translate.filters.checks.CCLicenseChecker
method), 272

credits() (translate.filters.checks.DrupalChecker
method), 278

credits() (translate.filters.checks.GnomeChecker
method), 283

credits() (translate.filters.checks.IOSChecker
method), 289

credits() (translate.filters.checks.KdeChecker
method), 295

credits() (translate.filters.checks.L20nChecker
method), 301

credits() (translate.filters.checks.LibreOfficeChecker
method), 306

credits() (translate.filters.checks.MinimalChecker
method), 312

credits() (translate.filters.checks.MozillaChecker
method), 318

credits() (translate.filters.checks.OpenOfficeChecker
method), 324

credits() (translate.filters.checks.ReducedChecker
method), 329

credits() (translate.filters.checks.StandardChecker
method), 335

credits() (translate.filters.checks.TermChecker
method), 342

csv2po (class in translate.convert.csv2po), 243
csv2tbx (class in translate.convert.csv2tbx), 243
csvfile (class in translate.storage.csvl10n), 413
csvunit (class in translate.storage.csvl10n), 415
cur (translate.storage.statsdb.StatsCache attribute), 626
cvs (class in translate.storage.versioncontrol.cvs), 678
cyr2lat (in module translate.lang.af), 355

D
darcs (class in translate.storage.versioncontrol.darcs),

678
de (class in translate.lang.de), 363
decode() (translate.storage.pypo.pofile method), 602
decode_header() (in module trans-

late.storage.poparser), 566
DEFAULT_RCS (in module trans-

late.storage.versioncontrol), 676
DefaultDialect (class in translate.storage.csvl10n),

413
define_option() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

736 Index

Translate Toolkit Documentation, Release 3.0.0

define_option() (trans-
late.convert.convert.ConvertOptionParser
method), 239

define_option() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

define_option() (trans-
late.convert.po2tmx.TmxOptionParser
method), 256

define_option() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

define_option() (trans-
late.filters.pofilter.FilterOptionParser method),
351

define_option() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

define_option() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

define_option() (trans-
late.tools.pogrep.GrepOptionParser method),
702

define_option() (trans-
late.tools.porestructure.SplitOptionParser
method), 705

define_option() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

delalttrans() (translate.storage.poxliff.PoXliffUnit
method), 571

delalttrans() (translate.storage.xliff.xliffunit
method), 690

delete_range() (trans-
late.storage.placeables.base.Bpt method),
499

delete_range() (trans-
late.storage.placeables.base.Bx method),
508

delete_range() (trans-
late.storage.placeables.base.Ept method),
501

delete_range() (trans-
late.storage.placeables.base.Ex method),
509

delete_range() (trans-
late.storage.placeables.base.G method),
506

delete_range() (trans-
late.storage.placeables.base.It method),
504

delete_range() (trans-
late.storage.placeables.base.Ph method),

503
delete_range() (trans-

late.storage.placeables.base.Sub method),
512

delete_range() (trans-
late.storage.placeables.base.X method),
511

delete_range() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 514

delete_range() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 516

delete_range() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 518

delete_range() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 519

delete_range() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 521

delete_range() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

delete_range() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

delete_range() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 526

delete_range() (trans-
late.storage.placeables.strelem.StringElem
method), 528

delete_range() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

delete_range() (trans-
late.storage.placeables.xliff.Bpt method),
532

delete_range() (trans-
late.storage.placeables.xliff.Bx method),
537

delete_range() (trans-
late.storage.placeables.xliff.Ept method),
534

delete_range() (trans-
late.storage.placeables.xliff.Ex method),
539

delete_range() (translate.storage.placeables.xliff.G
method), 541

delete_range() (translate.storage.placeables.xliff.It
method), 542

delete_range() (trans-

Index 737

Translate Toolkit Documentation, Release 3.0.0

late.storage.placeables.xliff.Ph method),
545

delete_range() (trans-
late.storage.placeables.xliff.Sub method),
544

delete_range() (trans-
late.storage.placeables.xliff.UnknownXML
method), 547

delete_range() (translate.storage.placeables.xliff.X
method), 536

depth_first() (trans-
late.storage.placeables.base.Bpt method),
500

depth_first() (translate.storage.placeables.base.Bx
method), 508

depth_first() (trans-
late.storage.placeables.base.Ept method),
501

depth_first() (translate.storage.placeables.base.Ex
method), 509

depth_first() (translate.storage.placeables.base.G
method), 506

depth_first() (translate.storage.placeables.base.It
method), 504

depth_first() (trans-
late.storage.placeables.base.Ph method),
503

depth_first() (trans-
late.storage.placeables.base.Sub method),
513

depth_first() (translate.storage.placeables.base.X
method), 511

depth_first() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 514

depth_first() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 516

depth_first() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 518

depth_first() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 520

depth_first() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 521

depth_first() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

depth_first() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

depth_first() (trans-

late.storage.placeables.interfaces.SubflowPlaceable
method), 526

depth_first() (trans-
late.storage.placeables.strelem.StringElem
method), 529

depth_first() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

depth_first() (trans-
late.storage.placeables.xliff.Bpt method),
533

depth_first() (translate.storage.placeables.xliff.Bx
method), 537

depth_first() (trans-
late.storage.placeables.xliff.Ept method),
534

depth_first() (translate.storage.placeables.xliff.Ex
method), 539

depth_first() (translate.storage.placeables.xliff.G
method), 541

depth_first() (translate.storage.placeables.xliff.It
method), 542

depth_first() (translate.storage.placeables.xliff.Ph
method), 546

depth_first() (trans-
late.storage.placeables.xliff.Sub method),
544

depth_first() (trans-
late.storage.placeables.xliff.UnknownXML
method), 547

depth_first() (translate.storage.placeables.xliff.X
method), 536

destroy() (translate.convert.convert.ArchiveConvertOptionParser
method), 236

destroy() (translate.convert.convert.ConvertOptionParser
method), 239

destroy() (translate.convert.po2moz.MozConvertOptionParser
method), 251

destroy() (translate.convert.po2tmx.TmxOptionParser
method), 256

destroy() (translate.convert.po2wordfast.WfOptionParser
method), 261

destroy() (translate.filters.pofilter.FilterOptionParser
method), 351

destroy() (translate.misc.optrecurse.RecursiveOptionParser
method), 392

destroy() (translate.tools.poconflicts.ConflictOptionParser
method), 698

destroy() (translate.tools.pogrep.GrepOptionParser
method), 702

destroy() (translate.tools.porestructure.SplitOptionParser
method), 705

destroy() (translate.tools.poterminology.TerminologyOptionParser
method), 709

738 Index

Translate Toolkit Documentation, Release 3.0.0

detect_encoding() (trans-
late.storage.base.TranslationStore method),
402

detect_encoding() (trans-
late.storage.catkeys.CatkeysFile method),
408

detect_encoding() (trans-
late.storage.csvl10n.csvfile method), 414

detect_encoding() (translate.storage.dtd.dtdfile
method), 420

detect_encoding() (translate.storage.html.htmlfile
method), 429

detect_encoding() (trans-
late.storage.html.POHTMLParser method),
426

detect_encoding() (translate.storage.ical.icalfile
method), 434

detect_encoding() (translate.storage.ini.inifile
method), 439

detect_encoding() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

detect_encoding() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

detect_encoding() (trans-
late.storage.jsonl10n.I18NextFile method),
454

detect_encoding() (trans-
late.storage.jsonl10n.JsonFile method), 459

detect_encoding() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

detect_encoding() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

detect_encoding() (translate.storage.lisa.LISAfile
method), 474

detect_encoding() (translate.storage.mo.mofile
method), 479

detect_encoding() (trans-
late.storage.mozilla_lang.LangStore method),
485

detect_encoding() (trans-
late.storage.omegat.OmegaTFile method),
490

detect_encoding() (trans-
late.storage.omegat.OmegaTFileTab method),
492

detect_encoding() (trans-
late.storage.php.LaravelPHPFile method),
549

detect_encoding() (translate.storage.php.phpfile
method), 554

detect_encoding() (trans-
late.storage.pocommon.pofile method), 559

detect_encoding() (trans-
late.storage.poxliff.PoXliffFile method), 567

detect_encoding() (trans-
late.storage.properties.gwtfile method), 582

detect_encoding() (trans-
late.storage.properties.javafile method),
584

detect_encoding() (trans-
late.storage.properties.javautf16file method),
586

detect_encoding() (trans-
late.storage.properties.javautf8file method),
588

detect_encoding() (trans-
late.storage.properties.joomlafile method),
589

detect_encoding() (trans-
late.storage.properties.propfile method),
591

detect_encoding() (trans-
late.storage.properties.stringsfile method),
599

detect_encoding() (trans-
late.storage.properties.stringsutf8file method),
600

detect_encoding() (translate.storage.pypo.pofile
method), 603

detect_encoding() (translate.storage.qm.qmfile
method), 609

detect_encoding() (translate.storage.qph.QphFile
method), 614

detect_encoding() (translate.storage.rc.rcfile
method), 620

detect_encoding() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 627

detect_encoding() (trans-
late.storage.subtitles.MicroDVDFile method),
629

detect_encoding() (trans-
late.storage.subtitles.SubRipFile method),
630

detect_encoding() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

detect_encoding() (trans-
late.storage.subtitles.SubtitleFile method),
634

detect_encoding() (translate.storage.tbx.tbxfile
method), 639

detect_encoding() (translate.storage.tiki.TikiStore
method), 644

Index 739

Translate Toolkit Documentation, Release 3.0.0

detect_encoding() (translate.storage.tmx.tmxfile
method), 649

detect_encoding() (trans-
late.storage.trados.TradosTxtTmFile method),
658

detect_encoding() (translate.storage.ts2.tsfile
method), 660

detect_encoding() (translate.storage.txt.TxtFile
method), 666

detect_encoding() (translate.storage.utx.UtxFile
method), 671

detect_encoding() (trans-
late.storage.wordfast.WordfastTMFile method),
681

detect_encoding() (translate.storage.xliff.xlifffile
method), 687

detect_header() (in module trans-
late.storage.csvl10n), 418

Dialect (class in translate.storage.ini), 439
Dialect (class in translate.storage.properties), 577
DialectDefault (class in translate.storage.ini), 439
DialectFlex (class in translate.storage.properties),

577
DialectGaia (class in translate.storage.properties),

578
DialectGwt (class in translate.storage.properties),

578
DialectInno (class in translate.storage.ini), 439
DialectJava (class in translate.storage.properties),

578
DialectJavaUtf16 (class in trans-

late.storage.properties), 579
DialectJavaUtf8 (class in trans-

late.storage.properties), 579
DialectJoomla (class in trans-

late.storage.properties), 580
DialectMozilla (class in trans-

late.storage.properties), 580
dialects (in module translate.lang.poedit), 378
DialectSkype (class in translate.storage.properties),

580
DialectStrings (class in trans-

late.storage.properties), 581
DialectStringsUtf8 (class in trans-

late.storage.properties), 581
dialogsizes() (translate.filters.checks.L20nChecker

method), 301
dialogsizes() (trans-

late.filters.checks.MozillaChecker method),
318

dict (translate.storage.catkeys.CatkeysUnit attribute),
411

dict (translate.storage.omegat.OmegaTUnit attribute),
494

dict (translate.storage.utx.UtxUnit attribute), 673
dict (translate.storage.wordfast.WordfastUnit at-

tribute), 684
DirDiffer (class in translate.tools.pydiff), 712
Directory (class in translate.storage.directory), 419
disable_interspersed_args() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

disable_interspersed_args() (trans-
late.convert.convert.ConvertOptionParser
method), 239

disable_interspersed_args() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

disable_interspersed_args() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

disable_interspersed_args() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

disable_interspersed_args() (trans-
late.filters.pofilter.FilterOptionParser method),
351

disable_interspersed_args() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

disable_interspersed_args() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

disable_interspersed_args() (trans-
late.tools.pogrep.GrepOptionParser method),
702

disable_interspersed_args() (trans-
late.tools.porestructure.SplitOptionParser
method), 705

disable_interspersed_args() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

DiscardUnit, 266
distance() (in module translate.search.lshtein), 399
do_encoding() (translate.storage.html.htmlfile

method), 429
do_encoding() (trans-

late.storage.html.POHTMLParser method),
426

Document (class in translate.misc.ourdom), 395
documentElement (translate.misc.ourdom.Document

attribute), 395
doreplace() (translate.convert.convert.Replacer

method), 242
DotsProgressBar (class in trans-

late.misc.progressbar), 396
doublequoting() (trans-

late.filters.checks.CCLicenseChecker method),

740 Index

Translate Toolkit Documentation, Release 3.0.0

272
doublequoting() (trans-

late.filters.checks.DrupalChecker method),
278

doublequoting() (trans-
late.filters.checks.GnomeChecker method),
283

doublequoting() (trans-
late.filters.checks.IOSChecker method), 289

doublequoting() (trans-
late.filters.checks.KdeChecker method),
295

doublequoting() (trans-
late.filters.checks.L20nChecker method),
301

doublequoting() (trans-
late.filters.checks.LibreOfficeChecker method),
307

doublequoting() (trans-
late.filters.checks.MinimalChecker method),
312

doublequoting() (trans-
late.filters.checks.MozillaChecker method),
318

doublequoting() (trans-
late.filters.checks.OpenOfficeChecker method),
324

doublequoting() (trans-
late.filters.checks.ReducedChecker method),
329

doublequoting() (trans-
late.filters.checks.StandardChecker method),
335

doublequoting() (trans-
late.filters.checks.TermChecker method),
342

doublespacing() (trans-
late.filters.checks.CCLicenseChecker method),
272

doublespacing() (trans-
late.filters.checks.DrupalChecker method),
278

doublespacing() (trans-
late.filters.checks.GnomeChecker method),
284

doublespacing() (trans-
late.filters.checks.IOSChecker method), 289

doublespacing() (trans-
late.filters.checks.KdeChecker method),
295

doublespacing() (trans-
late.filters.checks.L20nChecker method),
301

doublespacing() (trans-

late.filters.checks.LibreOfficeChecker method),
307

doublespacing() (trans-
late.filters.checks.MinimalChecker method),
312

doublespacing() (trans-
late.filters.checks.MozillaChecker method),
318

doublespacing() (trans-
late.filters.checks.OpenOfficeChecker method),
324

doublespacing() (trans-
late.filters.checks.ReducedChecker method),
330

doublespacing() (trans-
late.filters.checks.StandardChecker method),
335

doublespacing() (trans-
late.filters.checks.TermChecker method),
342

doublewords() (trans-
late.filters.checks.CCLicenseChecker method),
272

doublewords() (trans-
late.filters.checks.DrupalChecker method),
278

doublewords() (trans-
late.filters.checks.GnomeChecker method),
284

doublewords() (translate.filters.checks.IOSChecker
method), 290

doublewords() (translate.filters.checks.KdeChecker
method), 295

doublewords() (translate.filters.checks.L20nChecker
method), 301

doublewords() (trans-
late.filters.checks.LibreOfficeChecker method),
307

doublewords() (trans-
late.filters.checks.MinimalChecker method),
313

doublewords() (trans-
late.filters.checks.MozillaChecker method),
318

doublewords() (trans-
late.filters.checks.OpenOfficeChecker method),
324

doublewords() (trans-
late.filters.checks.ReducedChecker method),
330

doublewords() (trans-
late.filters.checks.StandardChecker method),
336

doublewords() (translate.filters.checks.TermChecker

Index 741

Translate Toolkit Documentation, Release 3.0.0

method), 343
DrupalChecker (class in translate.filters.checks), 277
dtdfile (class in translate.storage.dtd), 420
dtdunit (class in translate.storage.dtd), 421

E
el (class in translate.lang.el), 364
elem_at_offset() (trans-

late.storage.placeables.base.Bpt method),
500

elem_at_offset() (trans-
late.storage.placeables.base.Bx method),
508

elem_at_offset() (trans-
late.storage.placeables.base.Ept method),
501

elem_at_offset() (trans-
late.storage.placeables.base.Ex method),
509

elem_at_offset() (trans-
late.storage.placeables.base.G method),
506

elem_at_offset() (trans-
late.storage.placeables.base.It method),
505

elem_at_offset() (trans-
late.storage.placeables.base.Ph method),
503

elem_at_offset() (trans-
late.storage.placeables.base.Sub method),
513

elem_at_offset() (trans-
late.storage.placeables.base.X method),
511

elem_at_offset() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 514

elem_at_offset() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 516

elem_at_offset() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 518

elem_at_offset() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 520

elem_at_offset() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 521

elem_at_offset() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

elem_at_offset() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable

method), 525
elem_at_offset() (trans-

late.storage.placeables.interfaces.SubflowPlaceable
method), 526

elem_at_offset() (trans-
late.storage.placeables.strelem.StringElem
method), 529

elem_at_offset() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

elem_at_offset() (trans-
late.storage.placeables.xliff.Bpt method),
533

elem_at_offset() (trans-
late.storage.placeables.xliff.Bx method),
538

elem_at_offset() (trans-
late.storage.placeables.xliff.Ept method),
534

elem_at_offset() (trans-
late.storage.placeables.xliff.Ex method),
539

elem_at_offset() (trans-
late.storage.placeables.xliff.G method), 541

elem_at_offset() (trans-
late.storage.placeables.xliff.It method), 542

elem_at_offset() (trans-
late.storage.placeables.xliff.Ph method),
546

elem_at_offset() (trans-
late.storage.placeables.xliff.Sub method),
544

elem_at_offset() (trans-
late.storage.placeables.xliff.UnknownXML
method), 547

elem_at_offset() (trans-
late.storage.placeables.xliff.X method), 536

elem_offset() (trans-
late.storage.placeables.base.Bpt method),
500

elem_offset() (translate.storage.placeables.base.Bx
method), 508

elem_offset() (trans-
late.storage.placeables.base.Ept method),
501

elem_offset() (translate.storage.placeables.base.Ex
method), 509

elem_offset() (translate.storage.placeables.base.G
method), 506

elem_offset() (translate.storage.placeables.base.It
method), 505

elem_offset() (trans-
late.storage.placeables.base.Ph method),
503

742 Index

Translate Toolkit Documentation, Release 3.0.0

elem_offset() (trans-
late.storage.placeables.base.Sub method),
513

elem_offset() (translate.storage.placeables.base.X
method), 511

elem_offset() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 514

elem_offset() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 516

elem_offset() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 518

elem_offset() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 520

elem_offset() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 521

elem_offset() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

elem_offset() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

elem_offset() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 526

elem_offset() (trans-
late.storage.placeables.strelem.StringElem
method), 529

elem_offset() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

elem_offset() (trans-
late.storage.placeables.xliff.Bpt method),
533

elem_offset() (translate.storage.placeables.xliff.Bx
method), 538

elem_offset() (trans-
late.storage.placeables.xliff.Ept method),
534

elem_offset() (translate.storage.placeables.xliff.Ex
method), 539

elem_offset() (translate.storage.placeables.xliff.G
method), 541

elem_offset() (translate.storage.placeables.xliff.It
method), 542

elem_offset() (translate.storage.placeables.xliff.Ph
method), 546

elem_offset() (trans-
late.storage.placeables.xliff.Sub method),
544

elem_offset() (trans-
late.storage.placeables.xliff.UnknownXML
method), 547

elem_offset() (translate.storage.placeables.xliff.X
method), 536

Element (class in translate.misc.ourdom), 395
ElementNotFoundError, 528
emails() (translate.filters.checks.CCLicenseChecker

method), 272
emails() (translate.filters.checks.DrupalChecker

method), 278
emails() (translate.filters.checks.GnomeChecker

method), 284
emails() (translate.filters.checks.IOSChecker

method), 290
emails() (translate.filters.checks.KdeChecker

method), 295
emails() (translate.filters.checks.L20nChecker

method), 301
emails() (translate.filters.checks.LibreOfficeChecker

method), 307
emails() (translate.filters.checks.MinimalChecker

method), 313
emails() (translate.filters.checks.MozillaChecker

method), 318
emails() (translate.filters.checks.OpenOfficeChecker

method), 324
emails() (translate.filters.checks.ReducedChecker

method), 330
emails() (translate.filters.checks.StandardChecker

method), 336
emails() (translate.filters.checks.TermChecker

method), 343
EMPTY_HTML_ELEMENTS (trans-

late.storage.html.htmlfile attribute), 428
emptyfiletotals() (in module trans-

late.storage.statsdb), 626
enable_interspersed_args() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

enable_interspersed_args() (trans-
late.convert.convert.ConvertOptionParser
method), 239

enable_interspersed_args() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

enable_interspersed_args() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

enable_interspersed_args() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

enable_interspersed_args() (trans-
late.filters.pofilter.FilterOptionParser method),

Index 743

Translate Toolkit Documentation, Release 3.0.0

351
enable_interspersed_args() (trans-

late.misc.optrecurse.RecursiveOptionParser
method), 392

enable_interspersed_args() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

enable_interspersed_args() (trans-
late.tools.pogrep.GrepOptionParser method),
702

enable_interspersed_args() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

enable_interspersed_args() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

encode() (translate.misc.multistring.multistring
method), 388

encode() (translate.storage.placeables.base.Bpt
method), 500

encode() (translate.storage.placeables.base.Bx
method), 508

encode() (translate.storage.placeables.base.Ept
method), 501

encode() (translate.storage.placeables.base.Ex
method), 510

encode() (translate.storage.placeables.base.G
method), 506

encode() (translate.storage.placeables.base.It
method), 505

encode() (translate.storage.placeables.base.Ph
method), 503

encode() (translate.storage.placeables.base.Sub
method), 513

encode() (translate.storage.placeables.base.X
method), 511

encode() (translate.storage.placeables.general.AltAttrPlaceable
method), 515

encode() (translate.storage.placeables.general.XMLEntityPlaceable
method), 516

encode() (translate.storage.placeables.general.XMLTagPlaceable
method), 518

encode() (translate.storage.placeables.interfaces.BasePlaceable
method), 520

encode() (translate.storage.placeables.interfaces.InvisiblePlaceable
method), 522

encode() (translate.storage.placeables.interfaces.MaskingPlaceable
method), 523

encode() (translate.storage.placeables.interfaces.ReplacementPlaceable
method), 525

encode() (translate.storage.placeables.interfaces.SubflowPlaceable
method), 527

encode() (translate.storage.placeables.strelem.StringElem
method), 529

encode() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 531

encode() (translate.storage.placeables.xliff.Bpt
method), 533

encode() (translate.storage.placeables.xliff.Bx
method), 538

encode() (translate.storage.placeables.xliff.Ept
method), 534

encode() (translate.storage.placeables.xliff.Ex
method), 539

encode() (translate.storage.placeables.xliff.G
method), 541

encode() (translate.storage.placeables.xliff.It method),
543

encode() (translate.storage.placeables.xliff.Ph
method), 546

encode() (translate.storage.placeables.xliff.Sub
method), 544

encode() (translate.storage.placeables.xliff.UnknownXML
method), 547

encode() (translate.storage.placeables.xliff.X method),
536

encode() (translate.storage.properties.Dialect class
method), 577

encode() (translate.storage.properties.DialectFlex
class method), 577

encode() (translate.storage.properties.DialectGaia
class method), 578

encode() (translate.storage.properties.DialectGwt
class method), 578

encode() (translate.storage.properties.DialectJava
class method), 578

encode() (translate.storage.properties.DialectJavaUtf16
class method), 579

encode() (translate.storage.properties.DialectJavaUtf8
class method), 579

encode() (translate.storage.properties.DialectJoomla
class method), 580

encode() (translate.storage.properties.DialectMozilla
class method), 580

encode() (translate.storage.properties.DialectSkype
class method), 581

encode() (translate.storage.properties.DialectStrings
class method), 581

encode() (translate.storage.properties.DialectStringsUtf8
class method), 581

encode() (translate.storage.pypo.pofile method), 603
endpunc() (translate.filters.checks.CCLicenseChecker

method), 272
endpunc() (translate.filters.checks.DrupalChecker

method), 278
endpunc() (translate.filters.checks.GnomeChecker

method), 284
endpunc() (translate.filters.checks.IOSChecker

744 Index

Translate Toolkit Documentation, Release 3.0.0

method), 290
endpunc() (translate.filters.checks.KdeChecker

method), 295
endpunc() (translate.filters.checks.L20nChecker

method), 301
endpunc() (translate.filters.checks.LibreOfficeChecker

method), 307
endpunc() (translate.filters.checks.MinimalChecker

method), 313
endpunc() (translate.filters.checks.MozillaChecker

method), 319
endpunc() (translate.filters.checks.OpenOfficeChecker

method), 324
endpunc() (translate.filters.checks.ReducedChecker

method), 330
endpunc() (translate.filters.checks.StandardChecker

method), 336
endpunc() (translate.filters.checks.TermChecker

method), 343
endswith() (translate.misc.multistring.multistring

method), 388
endwhitespace() (trans-

late.filters.checks.CCLicenseChecker method),
272

endwhitespace() (trans-
late.filters.checks.DrupalChecker method),
278

endwhitespace() (trans-
late.filters.checks.GnomeChecker method),
284

endwhitespace() (trans-
late.filters.checks.IOSChecker method), 290

endwhitespace() (trans-
late.filters.checks.KdeChecker method),
296

endwhitespace() (trans-
late.filters.checks.L20nChecker method),
302

endwhitespace() (trans-
late.filters.checks.LibreOfficeChecker method),
307

endwhitespace() (trans-
late.filters.checks.MinimalChecker method),
313

endwhitespace() (trans-
late.filters.checks.MozillaChecker method),
319

endwhitespace() (trans-
late.filters.checks.OpenOfficeChecker method),
325

endwhitespace() (trans-
late.filters.checks.ReducedChecker method),
330

endwhitespace() (trans-

late.filters.checks.StandardChecker method),
336

endwhitespace() (trans-
late.filters.checks.TermChecker method),
343

entitydecode() (in module translate.misc.quote),
397

entityencode() (in module translate.misc.quote),
397

Ept (class in translate.storage.placeables.base), 501
Ept (class in translate.storage.placeables.xliff), 534
error() (translate.convert.convert.ArchiveConvertOptionParser

method), 236
error() (translate.convert.convert.ConvertOptionParser

method), 239
error() (translate.convert.po2moz.MozConvertOptionParser

method), 251
error() (translate.convert.po2tmx.TmxOptionParser

method), 257
error() (translate.convert.po2wordfast.WfOptionParser

method), 261
error() (translate.filters.pofilter.FilterOptionParser

method), 351
error() (translate.misc.optrecurse.RecursiveOptionParser

method), 392
error() (translate.tools.poconflicts.ConflictOptionParser

method), 698
error() (translate.tools.pogrep.GrepOptionParser

method), 702
error() (translate.tools.porestructure.SplitOptionParser

method), 706
error() (translate.tools.poterminology.TerminologyOptionParser

method), 709
es (class in translate.lang.es), 365
escape() (in module translate.storage.trados), 654
escape_help_text() (in module trans-

late.storage.oo), 496
escape_text() (in module translate.storage.oo), 497
escape_to_python() (in module trans-

late.storage.rc), 619
escape_to_rc() (in module translate.storage.rc),

619
escapecontrols() (in module translate.misc.quote),

397
escapeforpo() (in module translate.storage.pypo),

602
escapes() (translate.filters.checks.CCLicenseChecker

method), 273
escapes() (translate.filters.checks.DrupalChecker

method), 279
escapes() (translate.filters.checks.GnomeChecker

method), 284
escapes() (translate.filters.checks.IOSChecker

method), 290

Index 745

Translate Toolkit Documentation, Release 3.0.0

escapes() (translate.filters.checks.KdeChecker
method), 296

escapes() (translate.filters.checks.L20nChecker
method), 302

escapes() (translate.filters.checks.LibreOfficeChecker
method), 308

escapes() (translate.filters.checks.MinimalChecker
method), 313

escapes() (translate.filters.checks.MozillaChecker
method), 319

escapes() (translate.filters.checks.OpenOfficeChecker
method), 325

escapes() (translate.filters.checks.ReducedChecker
method), 330

escapes() (translate.filters.checks.StandardChecker
method), 336

escapes() (translate.filters.checks.TermChecker
method), 343

ethiopicpunc (translate.lang.common.Common at-
tribute), 360

Ex (class in translate.storage.placeables.base), 509
Ex (class in translate.storage.placeables.xliff), 539
expandtabs() (translate.misc.multistring.multistring

method), 388
expansion_factors (in module translate.lang.data),

362
ExpatBuilderNS (class in translate.misc.ourdom),

395
export_file() (translate.storage.project.Project

method), 574
extendtm() (translate.search.match.matcher method),

399
extendtm() (translate.search.match.terminologymatcher

method), 400
Extensions (translate.storage.base.TranslationStore

attribute), 401
extract() (in module translate.convert.accesskey),

235
extract() (in module translate.misc.quote), 397
extract_msgid_comment() (in module trans-

late.storage.pocommon), 559
extractwithoutquotes() (in module trans-

late.misc.quote), 397

F
fa (class in translate.lang.fa), 366
fallback_detection() (trans-

late.storage.base.TranslationStore method),
402

fallback_detection() (trans-
late.storage.catkeys.CatkeysFile method),
409

fallback_detection() (trans-
late.storage.csvl10n.csvfile method), 414

fallback_detection() (trans-
late.storage.dtd.dtdfile method), 420

fallback_detection() (trans-
late.storage.html.htmlfile method), 429

fallback_detection() (trans-
late.storage.html.POHTMLParser method),
426

fallback_detection() (trans-
late.storage.ical.icalfile method), 434

fallback_detection() (trans-
late.storage.ini.inifile method), 439

fallback_detection() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

fallback_detection() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

fallback_detection() (trans-
late.storage.jsonl10n.I18NextFile method),
454

fallback_detection() (trans-
late.storage.jsonl10n.JsonFile method), 459

fallback_detection() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

fallback_detection() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

fallback_detection() (trans-
late.storage.lisa.LISAfile method), 474

fallback_detection() (trans-
late.storage.mo.mofile method), 479

fallback_detection() (trans-
late.storage.mozilla_lang.LangStore method),
485

fallback_detection() (trans-
late.storage.omegat.OmegaTFile method),
490

fallback_detection() (trans-
late.storage.omegat.OmegaTFileTab method),
492

fallback_detection() (trans-
late.storage.php.LaravelPHPFile method),
549

fallback_detection() (trans-
late.storage.php.phpfile method), 554

fallback_detection() (trans-
late.storage.pocommon.pofile method), 559

fallback_detection() (trans-
late.storage.poxliff.PoXliffFile method), 567

fallback_detection() (trans-
late.storage.properties.gwtfile method), 582

fallback_detection() (trans-
late.storage.properties.javafile method),

746 Index

Translate Toolkit Documentation, Release 3.0.0

584
fallback_detection() (trans-

late.storage.properties.javautf16file method),
586

fallback_detection() (trans-
late.storage.properties.javautf8file method),
588

fallback_detection() (trans-
late.storage.properties.joomlafile method),
589

fallback_detection() (trans-
late.storage.properties.propfile method),
591

fallback_detection() (trans-
late.storage.properties.stringsfile method),
599

fallback_detection() (trans-
late.storage.properties.stringsutf8file method),
600

fallback_detection() (trans-
late.storage.pypo.pofile method), 603

fallback_detection() (trans-
late.storage.qm.qmfile method), 609

fallback_detection() (trans-
late.storage.qph.QphFile method), 614

fallback_detection() (translate.storage.rc.rcfile
method), 620

fallback_detection() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 627

fallback_detection() (trans-
late.storage.subtitles.MicroDVDFile method),
629

fallback_detection() (trans-
late.storage.subtitles.SubRipFile method),
630

fallback_detection() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

fallback_detection() (trans-
late.storage.subtitles.SubtitleFile method),
634

fallback_detection() (trans-
late.storage.tbx.tbxfile method), 639

fallback_detection() (trans-
late.storage.tiki.TikiStore method), 644

fallback_detection() (trans-
late.storage.tmx.tmxfile method), 649

fallback_detection() (trans-
late.storage.trados.TradosTxtTmFile method),
658

fallback_detection() (translate.storage.ts2.tsfile
method), 660

fallback_detection() (trans-

late.storage.txt.TxtFile method), 666
fallback_detection() (trans-

late.storage.utx.UtxFile method), 671
fallback_detection() (trans-

late.storage.wordfast.WordfastTMFile method),
681

fallback_detection() (trans-
late.storage.xliff.xlifffile method), 687

feed() (translate.storage.html.htmlfile method), 429
feed() (translate.storage.html.POHTMLParser

method), 426
fi (class in translate.lang.fi), 367
FIELDNAMES (in module translate.storage.catkeys), 413
FIELDNAMES_HEADER (in module trans-

late.storage.catkeys), 413
FIELDNAMES_HEADER_DEFAULTS (in module trans-

late.storage.catkeys), 413
file_iter() (translate.storage.directory.Directory

method), 419
file_iter() (translate.storage.zip.ZIPFile method),

696
filechecks() (translate.storage.statsdb.StatsCache

method), 626
FileDiffer (class in translate.tools.pydiff), 713
FileExistsInProjectError, 574
FileNotInProjectError, 574
filepaths() (trans-

late.filters.checks.CCLicenseChecker method),
273

filepaths() (translate.filters.checks.DrupalChecker
method), 279

filepaths() (translate.filters.checks.GnomeChecker
method), 285

filepaths() (translate.filters.checks.IOSChecker
method), 290

filepaths() (translate.filters.checks.KdeChecker
method), 296

filepaths() (translate.filters.checks.L20nChecker
method), 302

filepaths() (trans-
late.filters.checks.LibreOfficeChecker method),
308

filepaths() (trans-
late.filters.checks.MinimalChecker method),
313

filepaths() (translate.filters.checks.MozillaChecker
method), 319

filepaths() (trans-
late.filters.checks.OpenOfficeChecker method),
325

filepaths() (trans-
late.filters.checks.ReducedChecker method),
331

filepaths() (trans-

Index 747

Translate Toolkit Documentation, Release 3.0.0

late.filters.checks.StandardChecker method),
336

filepaths() (translate.filters.checks.TermChecker
method), 343

filestatestats() (trans-
late.storage.statsdb.StatsCache method),
626

filestats() (translate.storage.statsdb.StatsCache
method), 626

filetotals() (translate.storage.statsdb.StatsCache
method), 626

fill() (translate.storage.pypo.PoWrapper method),
602

filteraccelerators() (in module trans-
late.filters.prefilters), 353

filteraccelerators_by_list() (trans-
late.filters.checks.CCLicenseChecker method),
273

filteraccelerators_by_list() (trans-
late.filters.checks.DrupalChecker method),
279

filteraccelerators_by_list() (trans-
late.filters.checks.GnomeChecker method),
285

filteraccelerators_by_list() (trans-
late.filters.checks.IOSChecker method), 290

filteraccelerators_by_list() (trans-
late.filters.checks.KdeChecker method),
296

filteraccelerators_by_list() (trans-
late.filters.checks.L20nChecker method),
302

filteraccelerators_by_list() (trans-
late.filters.checks.LibreOfficeChecker method),
308

filteraccelerators_by_list() (trans-
late.filters.checks.MinimalChecker method),
313

filteraccelerators_by_list() (trans-
late.filters.checks.MozillaChecker method),
319

filteraccelerators_by_list() (trans-
late.filters.checks.OpenOfficeChecker method),
325

filteraccelerators_by_list() (trans-
late.filters.checks.ReducedChecker method),
331

filteraccelerators_by_list() (trans-
late.filters.checks.StandardChecker method),
336

filteraccelerators_by_list() (trans-
late.filters.checks.StandardUnitChecker
method), 340

filteraccelerators_by_list() (trans-

late.filters.checks.TermChecker method),
343

filteraccelerators_by_list() (trans-
late.filters.checks.TranslationChecker method),
347

filteraccelerators_by_list() (trans-
late.filters.checks.UnitChecker method),
348

filtercount() (in module translate.filters.helpers),
350

FilterFailure, 283
filterinputformats() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

filterinputformats() (trans-
late.convert.convert.ConvertOptionParser
method), 240

filterinputformats() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

filterinputformats() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

filterinputformats() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

FilterOptionParser (class in trans-
late.filters.pofilter), 350

filteroutputoptions() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

filteroutputoptions() (trans-
late.convert.convert.ConvertOptionParser
method), 240

filteroutputoptions() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 251

filteroutputoptions() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

filteroutputoptions() (trans-
late.convert.po2wordfast.WfOptionParser
method), 261

filtertestmethod() (in module trans-
late.filters.helpers), 350

filtervariables() (in module trans-
late.filters.prefilters), 354

filterwordswithpunctuation() (in module
translate.filters.prefilters), 354

finalizetempoutputfile() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

finalizetempoutputfile() (trans-
late.convert.convert.ConvertOptionParser

748 Index

Translate Toolkit Documentation, Release 3.0.0

method), 240
finalizetempoutputfile() (trans-

late.convert.po2moz.MozConvertOptionParser
method), 252

finalizetempoutputfile() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

finalizetempoutputfile() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

finalizetempoutputfile() (trans-
late.filters.pofilter.FilterOptionParser method),
351

finalizetempoutputfile() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

finalizetempoutputfile() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

finalizetempoutputfile() (trans-
late.tools.pogrep.GrepOptionParser method),
702

finalizetempoutputfile() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

finalizetempoutputfile() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

find() (translate.misc.multistring.multistring method),
388

find() (translate.storage.placeables.base.Bpt method),
500

find() (translate.storage.placeables.base.Bx method),
508

find() (translate.storage.placeables.base.Ept method),
502

find() (translate.storage.placeables.base.Ex method),
510

find() (translate.storage.placeables.base.G method),
506

find() (translate.storage.placeables.base.It method),
505

find() (translate.storage.placeables.base.Ph method),
503

find() (translate.storage.placeables.base.Sub method),
513

find() (translate.storage.placeables.base.X method),
511

find() (translate.storage.placeables.general.AltAttrPlaceable
method), 515

find() (translate.storage.placeables.general.XMLEntityPlaceable
method), 516

find() (translate.storage.placeables.general.XMLTagPlaceable
method), 518

find() (translate.storage.placeables.interfaces.BasePlaceable
method), 520

find() (translate.storage.placeables.interfaces.InvisiblePlaceable
method), 522

find() (translate.storage.placeables.interfaces.MaskingPlaceable
method), 523

find() (translate.storage.placeables.interfaces.ReplacementPlaceable
method), 525

find() (translate.storage.placeables.interfaces.SubflowPlaceable
method), 527

find() (translate.storage.placeables.strelem.StringElem
method), 529

find() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 531

find() (translate.storage.placeables.xliff.Bpt method),
533

find() (translate.storage.placeables.xliff.Bx method),
538

find() (translate.storage.placeables.xliff.Ept method),
535

find() (translate.storage.placeables.xliff.Ex method),
539

find() (translate.storage.placeables.xliff.G method),
541

find() (translate.storage.placeables.xliff.It method),
543

find() (translate.storage.placeables.xliff.Ph method),
546

find() (translate.storage.placeables.xliff.Sub method),
544

find() (translate.storage.placeables.xliff.UnknownXML
method), 547

find() (translate.storage.placeables.xliff.X method),
536

find_all() (in module translate.misc.quote), 397
find_delimiter() (trans-

late.storage.properties.Dialect class method),
577

find_delimiter() (trans-
late.storage.properties.DialectFlex class
method), 577

find_delimiter() (trans-
late.storage.properties.DialectGaia class
method), 578

find_delimiter() (trans-
late.storage.properties.DialectGwt class
method), 578

find_delimiter() (trans-
late.storage.properties.DialectJava class
method), 578

find_delimiter() (trans-
late.storage.properties.DialectJavaUtf16
class method), 579

find_delimiter() (trans-

Index 749

Translate Toolkit Documentation, Release 3.0.0

late.storage.properties.DialectJavaUtf8 class
method), 579

find_delimiter() (trans-
late.storage.properties.DialectJoomla class
method), 580

find_delimiter() (trans-
late.storage.properties.DialectMozilla class
method), 580

find_delimiter() (trans-
late.storage.properties.DialectSkype class
method), 581

find_delimiter() (trans-
late.storage.properties.DialectStrings class
method), 581

find_delimiter() (trans-
late.storage.properties.DialectStringsUtf8
class method), 581

find_dom_root() (in module trans-
late.storage.xml_extract.generate), 694

find_elems_with() (trans-
late.storage.placeables.base.Bpt method),
500

find_elems_with() (trans-
late.storage.placeables.base.Bx method),
508

find_elems_with() (trans-
late.storage.placeables.base.Ept method),
502

find_elems_with() (trans-
late.storage.placeables.base.Ex method),
510

find_elems_with() (trans-
late.storage.placeables.base.G method),
506

find_elems_with() (trans-
late.storage.placeables.base.It method),
505

find_elems_with() (trans-
late.storage.placeables.base.Ph method),
503

find_elems_with() (trans-
late.storage.placeables.base.Sub method),
513

find_elems_with() (trans-
late.storage.placeables.base.X method),
511

find_elems_with() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

find_elems_with() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 516

find_elems_with() (trans-
late.storage.placeables.general.XMLTagPlaceable

method), 518
find_elems_with() (trans-

late.storage.placeables.interfaces.BasePlaceable
method), 520

find_elems_with() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

find_elems_with() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

find_elems_with() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

find_elems_with() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

find_elems_with() (trans-
late.storage.placeables.strelem.StringElem
method), 529

find_elems_with() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

find_elems_with() (trans-
late.storage.placeables.xliff.Bpt method),
533

find_elems_with() (trans-
late.storage.placeables.xliff.Bx method),
538

find_elems_with() (trans-
late.storage.placeables.xliff.Ept method),
535

find_elems_with() (trans-
late.storage.placeables.xliff.Ex method),
539

find_elems_with() (trans-
late.storage.placeables.xliff.G method), 541

find_elems_with() (trans-
late.storage.placeables.xliff.It method), 543

find_elems_with() (trans-
late.storage.placeables.xliff.Ph method),
546

find_elems_with() (trans-
late.storage.placeables.xliff.Sub method),
544

find_elems_with() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

find_elems_with() (trans-
late.storage.placeables.xliff.X method), 536

find_matches() (in module translate.tools.pogrep),
704

find_placeable_dom_tree_roots() (in mod-
ule translate.storage.xml_extract.generate),
694

750 Index

Translate Toolkit Documentation, Release 3.0.0

findaccelerators() (in module trans-
late.filters.decoration), 349

findid() (translate.storage.base.TranslationStore
method), 402

findid() (translate.storage.catkeys.CatkeysFile
method), 409

findid() (translate.storage.csvl10n.csvfile method),
414

findid() (translate.storage.dtd.dtdfile method), 420
findid() (translate.storage.html.htmlfile method), 429
findid() (translate.storage.html.POHTMLParser

method), 426
findid() (translate.storage.ical.icalfile method), 434
findid() (translate.storage.ini.inifile method), 439
findid() (translate.storage.jsonl10n.ARBJsonFile

method), 445
findid() (translate.storage.jsonl10n.GoI18NJsonFile

method), 450
findid() (translate.storage.jsonl10n.I18NextFile

method), 454
findid() (translate.storage.jsonl10n.JsonFile

method), 459
findid() (translate.storage.jsonl10n.JsonNestedFile

method), 461
findid() (translate.storage.jsonl10n.WebExtensionJsonFile

method), 469
findid() (translate.storage.lisa.LISAfile method), 474
findid() (translate.storage.mo.mofile method), 479
findid() (translate.storage.mozilla_lang.LangStore

method), 485
findid() (translate.storage.omegat.OmegaTFile

method), 490
findid() (translate.storage.omegat.OmegaTFileTab

method), 492
findid() (translate.storage.php.LaravelPHPFile

method), 550
findid() (translate.storage.php.phpfile method), 554
findid() (translate.storage.pocommon.pofile method),

559
findid() (translate.storage.poxliff.PoXliffFile

method), 567
findid() (translate.storage.properties.gwtfile

method), 582
findid() (translate.storage.properties.javafile

method), 584
findid() (translate.storage.properties.javautf16file

method), 586
findid() (translate.storage.properties.javautf8file

method), 588
findid() (translate.storage.properties.joomlafile

method), 589
findid() (translate.storage.properties.propfile

method), 591
findid() (translate.storage.properties.stringsfile

method), 599
findid() (translate.storage.properties.stringsutf8file

method), 600
findid() (translate.storage.pypo.pofile method), 603
findid() (translate.storage.qm.qmfile method), 609
findid() (translate.storage.qph.QphFile method), 614
findid() (translate.storage.rc.rcfile method), 621
findid() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 627
findid() (translate.storage.subtitles.MicroDVDFile

method), 629
findid() (translate.storage.subtitles.SubRipFile

method), 630
findid() (translate.storage.subtitles.SubStationAlphaFile

method), 632
findid() (translate.storage.subtitles.SubtitleFile

method), 634
findid() (translate.storage.tbx.tbxfile method), 639
findid() (translate.storage.tiki.TikiStore method), 644
findid() (translate.storage.tmx.tmxfile method), 649
findid() (translate.storage.trados.TradosTxtTmFile

method), 658
findid() (translate.storage.ts2.tsfile method), 660
findid() (translate.storage.txt.TxtFile method), 666
findid() (translate.storage.utx.UtxFile method), 671
findid() (translate.storage.wordfast.WordfastTMFile

method), 681
findid() (translate.storage.xliff.xlifffile method), 688
findmarkedvariables() (in module trans-

late.filters.decoration), 349
findunit() (translate.storage.base.TranslationStore

method), 402
findunit() (translate.storage.catkeys.CatkeysFile

method), 409
findunit() (translate.storage.csvl10n.csvfile

method), 414
findunit() (translate.storage.dtd.dtdfile method), 420
findunit() (translate.storage.html.htmlfile method),

429
findunit() (translate.storage.html.POHTMLParser

method), 426
findunit() (translate.storage.ical.icalfile method),

434
findunit() (translate.storage.ini.inifile method), 439
findunit() (translate.storage.jsonl10n.ARBJsonFile

method), 445
findunit() (translate.storage.jsonl10n.GoI18NJsonFile

method), 450
findunit() (translate.storage.jsonl10n.I18NextFile

method), 455
findunit() (translate.storage.jsonl10n.JsonFile

method), 459
findunit() (translate.storage.jsonl10n.JsonNestedFile

method), 461

Index 751

Translate Toolkit Documentation, Release 3.0.0

findunit() (translate.storage.jsonl10n.WebExtensionJsonFile
method), 469

findunit() (translate.storage.lisa.LISAfile method),
474

findunit() (translate.storage.mo.mofile method), 479
findunit() (translate.storage.mozilla_lang.LangStore

method), 485
findunit() (translate.storage.omegat.OmegaTFile

method), 490
findunit() (translate.storage.omegat.OmegaTFileTab

method), 492
findunit() (translate.storage.php.LaravelPHPFile

method), 550
findunit() (translate.storage.php.phpfile method),

554
findunit() (translate.storage.pocommon.pofile

method), 559
findunit() (translate.storage.poxliff.PoXliffFile

method), 567
findunit() (translate.storage.properties.gwtfile

method), 582
findunit() (translate.storage.properties.javafile

method), 585
findunit() (translate.storage.properties.javautf16file

method), 586
findunit() (translate.storage.properties.javautf8file

method), 588
findunit() (translate.storage.properties.joomlafile

method), 590
findunit() (translate.storage.properties.propfile

method), 591
findunit() (translate.storage.properties.stringsfile

method), 599
findunit() (translate.storage.properties.stringsutf8file

method), 601
findunit() (translate.storage.pypo.pofile method),

603
findunit() (translate.storage.qm.qmfile method), 609
findunit() (translate.storage.qph.QphFile method),

614
findunit() (translate.storage.rc.rcfile method), 621
findunit() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 627
findunit() (translate.storage.subtitles.MicroDVDFile

method), 629
findunit() (translate.storage.subtitles.SubRipFile

method), 630
findunit() (translate.storage.subtitles.SubStationAlphaFile

method), 632
findunit() (translate.storage.subtitles.SubtitleFile

method), 634
findunit() (translate.storage.tbx.tbxfile method), 639
findunit() (translate.storage.tiki.TikiStore method),

644

findunit() (translate.storage.tmx.tmxfile method),
649

findunit() (translate.storage.trados.TradosTxtTmFile
method), 658

findunit() (translate.storage.ts2.tsfile method), 660
findunit() (translate.storage.txt.TxtFile method),

666
findunit() (translate.storage.utx.UtxFile method),

671
findunit() (translate.storage.wordfast.WordfastTMFile

method), 681
findunit() (translate.storage.xliff.xlifffile method),

688
findunits() (translate.storage.base.TranslationStore

method), 402
findunits() (translate.storage.catkeys.CatkeysFile

method), 409
findunits() (translate.storage.csvl10n.csvfile

method), 414
findunits() (translate.storage.dtd.dtdfile method),

420
findunits() (translate.storage.html.htmlfile method),

429
findunits() (translate.storage.html.POHTMLParser

method), 426
findunits() (translate.storage.ical.icalfile method),

434
findunits() (translate.storage.ini.inifile method),

439
findunits() (trans-

late.storage.jsonl10n.ARBJsonFile method),
445

findunits() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

findunits() (translate.storage.jsonl10n.I18NextFile
method), 455

findunits() (translate.storage.jsonl10n.JsonFile
method), 459

findunits() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

findunits() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

findunits() (translate.storage.lisa.LISAfile method),
474

findunits() (translate.storage.mo.mofile method),
479

findunits() (trans-
late.storage.mozilla_lang.LangStore method),
485

findunits() (translate.storage.omegat.OmegaTFile
method), 490

752 Index

Translate Toolkit Documentation, Release 3.0.0

findunits() (trans-
late.storage.omegat.OmegaTFileTab method),
492

findunits() (translate.storage.php.LaravelPHPFile
method), 550

findunits() (translate.storage.php.phpfile method),
554

findunits() (translate.storage.pocommon.pofile
method), 559

findunits() (translate.storage.poxliff.PoXliffFile
method), 567

findunits() (translate.storage.properties.gwtfile
method), 582

findunits() (translate.storage.properties.javafile
method), 585

findunits() (trans-
late.storage.properties.javautf16file method),
586

findunits() (translate.storage.properties.javautf8file
method), 588

findunits() (translate.storage.properties.joomlafile
method), 590

findunits() (translate.storage.properties.propfile
method), 591

findunits() (translate.storage.properties.stringsfile
method), 599

findunits() (trans-
late.storage.properties.stringsutf8file method),
601

findunits() (translate.storage.pypo.pofile method),
603

findunits() (translate.storage.qm.qmfile method),
610

findunits() (translate.storage.qph.QphFile method),
614

findunits() (translate.storage.rc.rcfile method), 621
findunits() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 627

findunits() (trans-
late.storage.subtitles.MicroDVDFile method),
629

findunits() (translate.storage.subtitles.SubRipFile
method), 631

findunits() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

findunits() (translate.storage.subtitles.SubtitleFile
method), 634

findunits() (translate.storage.tbx.tbxfile method),
639

findunits() (translate.storage.tiki.TikiStore method),
645

findunits() (translate.storage.tmx.tmxfile method),

649
findunits() (trans-

late.storage.trados.TradosTxtTmFile method),
658

findunits() (translate.storage.ts2.tsfile method), 660
findunits() (translate.storage.txt.TxtFile method),

666
findunits() (translate.storage.utx.UtxFile method),

671
findunits() (trans-

late.storage.wordfast.WordfastTMFile method),
681

findunits() (translate.storage.xliff.xlifffile method),
688

firstChild (translate.misc.ourdom.Document at-
tribute), 395

firstChild (translate.misc.ourdom.Element at-
tribute), 395

flatten() (translate.storage.placeables.base.Bpt
method), 500

flatten() (translate.storage.placeables.base.Bx
method), 508

flatten() (translate.storage.placeables.base.Ept
method), 502

flatten() (translate.storage.placeables.base.Ex
method), 510

flatten() (translate.storage.placeables.base.G
method), 506

flatten() (translate.storage.placeables.base.It
method), 505

flatten() (translate.storage.placeables.base.Ph
method), 503

flatten() (translate.storage.placeables.base.Sub
method), 513

flatten() (translate.storage.placeables.base.X
method), 511

flatten() (translate.storage.placeables.general.AltAttrPlaceable
method), 515

flatten() (translate.storage.placeables.general.XMLEntityPlaceable
method), 516

flatten() (translate.storage.placeables.general.XMLTagPlaceable
method), 518

flatten() (translate.storage.placeables.interfaces.BasePlaceable
method), 520

flatten() (translate.storage.placeables.interfaces.InvisiblePlaceable
method), 522

flatten() (translate.storage.placeables.interfaces.MaskingPlaceable
method), 523

flatten() (translate.storage.placeables.interfaces.ReplacementPlaceable
method), 525

flatten() (translate.storage.placeables.interfaces.SubflowPlaceable
method), 527

flatten() (translate.storage.placeables.strelem.StringElem
method), 529

Index 753

Translate Toolkit Documentation, Release 3.0.0

flatten() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 531

flatten() (translate.storage.placeables.xliff.Bpt
method), 533

flatten() (translate.storage.placeables.xliff.Bx
method), 538

flatten() (translate.storage.placeables.xliff.Ept
method), 535

flatten() (translate.storage.placeables.xliff.Ex
method), 539

flatten() (translate.storage.placeables.xliff.G
method), 541

flatten() (translate.storage.placeables.xliff.It
method), 543

flatten() (translate.storage.placeables.xliff.Ph
method), 546

flatten() (translate.storage.placeables.xliff.Sub
method), 544

flatten() (translate.storage.placeables.xliff.UnknownXML
method), 548

flatten() (translate.storage.placeables.xliff.X
method), 536

flatten() (translate.tools.poconflicts.ConflictOptionParser
method), 698

fold_gaia_plurals() (trans-
late.convert.prop2po.prop2po method), 266

fold_gwt_plurals() (trans-
late.convert.prop2po.prop2po method), 266

forceunicode() (in module translate.lang.data), 362
format() (translate.misc.multistring.multistring

method), 388
format_manpage() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

format_manpage() (trans-
late.convert.convert.ConvertOptionParser
method), 240

format_manpage() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

format_manpage() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

format_manpage() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

format_manpage() (trans-
late.filters.pofilter.FilterOptionParser method),
351

format_manpage() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

format_manpage() (trans-
late.tools.poconflicts.ConflictOptionParser

method), 698
format_manpage() (trans-

late.tools.pogrep.GrepOptionParser method),
702

format_manpage() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

format_manpage() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

format_map() (translate.misc.multistring.multistring
method), 388

format_option_strings() (trans-
late.misc.optrecurse.ManHelpFormatter
method), 391

fr (class in translate.lang.fr), 367
fromkeys() (translate.misc.dictutils.cidict method),

387
fromkeys() (translate.storage.oo.unormalizechar

method), 498
fullname (translate.lang.common.Common attribute),

360
funcmatch() (in module translate.filters.helpers), 350
funcsmatch() (in module translate.filters.helpers),

350
functions() (trans-

late.filters.checks.CCLicenseChecker method),
273

functions() (translate.filters.checks.DrupalChecker
method), 279

functions() (translate.filters.checks.GnomeChecker
method), 285

functions() (translate.filters.checks.IOSChecker
method), 290

functions() (translate.filters.checks.KdeChecker
method), 296

functions() (translate.filters.checks.L20nChecker
method), 302

functions() (trans-
late.filters.checks.LibreOfficeChecker method),
308

functions() (trans-
late.filters.checks.MinimalChecker method),
313

functions() (translate.filters.checks.MozillaChecker
method), 319

functions() (trans-
late.filters.checks.OpenOfficeChecker method),
325

functions() (trans-
late.filters.checks.ReducedChecker method),
331

functions() (trans-
late.filters.checks.StandardChecker method),

754 Index

Translate Toolkit Documentation, Release 3.0.0

336
functions() (translate.filters.checks.TermChecker

method), 344
fuzzy_unitcount() (trans-

late.storage.statistics.Statistics method),
625

fuzzy_units() (translate.storage.statistics.Statistics
method), 625

G
G (class in translate.storage.placeables.base), 506
G (class in translate.storage.placeables.xliff), 540
gconf() (translate.filters.checks.GnomeChecker

method), 285
generate_dialog_caption_name() (in module

translate.storage.rc), 620
generate_dialog_control_name() (in module

translate.storage.rc), 620
generate_menu_pre_name() (in module trans-

late.storage.rc), 620
generate_menuitem_name() (in module trans-

late.storage.rc), 620
generate_popup_caption_name() (in module

translate.storage.rc), 620
generate_popup_pre_name() (in module trans-

late.storage.rc), 620
generate_stringtable_name() (in module

translate.storage.rc), 620
GenericRevisionControlSystem (class in trans-

late.storage.versioncontrol), 676
get() (translate.misc.dictutils.cidict method), 387
get() (translate.storage.oo.unormalizechar method),

498
get_abs_data_filename() (in module trans-

late.misc.file_discovery), 387
get_all_languages() (in module trans-

late.lang.factory), 366
get_available_version_control_systems()

(in module translate.storage.versioncontrol),
677

get_country_iso_name() (in module trans-
late.lang.data), 362

get_file() (translate.storage.bundleprojstore.BundleProjectStore
method), 407

get_file() (translate.storage.project.Project
method), 574

get_file() (translate.storage.projstore.ProjectStore
method), 575

get_filename_type() (trans-
late.storage.bundleprojstore.BundleProjectStore
method), 407

get_filename_type() (trans-
late.storage.projstore.ProjectStore method),
575

get_from_lines() (translate.tools.pydiff.FileDiffer
method), 713

get_ignored_filters() (trans-
late.filters.checks.CCLicenseChecker method),
273

get_ignored_filters() (trans-
late.filters.checks.DrupalChecker method),
279

get_ignored_filters() (trans-
late.filters.checks.GnomeChecker method),
285

get_ignored_filters() (trans-
late.filters.checks.IOSChecker method), 291

get_ignored_filters() (trans-
late.filters.checks.KdeChecker method),
296

get_ignored_filters() (trans-
late.filters.checks.L20nChecker method),
302

get_ignored_filters() (trans-
late.filters.checks.LibreOfficeChecker method),
308

get_ignored_filters() (trans-
late.filters.checks.MinimalChecker method),
314

get_ignored_filters() (trans-
late.filters.checks.MozillaChecker method),
319

get_ignored_filters() (trans-
late.filters.checks.OpenOfficeChecker method),
325

get_ignored_filters() (trans-
late.filters.checks.ReducedChecker method),
331

get_ignored_filters() (trans-
late.filters.checks.StandardChecker method),
337

get_ignored_filters() (trans-
late.filters.checks.StandardUnitChecker
method), 340

get_ignored_filters() (trans-
late.filters.checks.TermChecker method),
344

get_ignored_filters() (trans-
late.filters.checks.TranslationChecker method),
347

get_ignored_filters() (trans-
late.filters.checks.UnitChecker method),
348

get_index_data() (trans-
late.storage.placeables.base.Bpt method),
500

get_index_data() (trans-
late.storage.placeables.base.Bx method),

Index 755

Translate Toolkit Documentation, Release 3.0.0

508
get_index_data() (trans-

late.storage.placeables.base.Ept method),
502

get_index_data() (trans-
late.storage.placeables.base.Ex method),
510

get_index_data() (trans-
late.storage.placeables.base.G method),
507

get_index_data() (trans-
late.storage.placeables.base.It method),
505

get_index_data() (trans-
late.storage.placeables.base.Ph method),
503

get_index_data() (trans-
late.storage.placeables.base.Sub method),
513

get_index_data() (trans-
late.storage.placeables.base.X method),
511

get_index_data() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

get_index_data() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

get_index_data() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 518

get_index_data() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 520

get_index_data() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

get_index_data() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 523

get_index_data() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

get_index_data() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

get_index_data() (trans-
late.storage.placeables.strelem.StringElem
method), 529

get_index_data() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

get_index_data() (trans-
late.storage.placeables.xliff.Bpt method),

533
get_index_data() (trans-

late.storage.placeables.xliff.Bx method),
538

get_index_data() (trans-
late.storage.placeables.xliff.Ept method),
535

get_index_data() (trans-
late.storage.placeables.xliff.Ex method),
539

get_index_data() (trans-
late.storage.placeables.xliff.G method), 541

get_index_data() (trans-
late.storage.placeables.xliff.It method), 543

get_index_data() (trans-
late.storage.placeables.xliff.Ph method),
546

get_index_data() (trans-
late.storage.placeables.xliff.Sub method),
544

get_index_data() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

get_index_data() (trans-
late.storage.placeables.xliff.X method), 536

get_language_iso_fullname() (in module
translate.lang.data), 362

get_language_iso_name() (in module trans-
late.lang.data), 362

get_parent_elem() (trans-
late.storage.placeables.base.Bpt method),
500

get_parent_elem() (trans-
late.storage.placeables.base.Bx method),
508

get_parent_elem() (trans-
late.storage.placeables.base.Ept method),
502

get_parent_elem() (trans-
late.storage.placeables.base.Ex method),
510

get_parent_elem() (trans-
late.storage.placeables.base.G method),
507

get_parent_elem() (trans-
late.storage.placeables.base.It method),
505

get_parent_elem() (trans-
late.storage.placeables.base.Ph method),
503

get_parent_elem() (trans-
late.storage.placeables.base.Sub method),
513

get_parent_elem() (trans-

756 Index

Translate Toolkit Documentation, Release 3.0.0

late.storage.placeables.base.X method),
512

get_parent_elem() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

get_parent_elem() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

get_parent_elem() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 518

get_parent_elem() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 520

get_parent_elem() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

get_parent_elem() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 524

get_parent_elem() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

get_parent_elem() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

get_parent_elem() (trans-
late.storage.placeables.strelem.StringElem
method), 529

get_parent_elem() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

get_parent_elem() (trans-
late.storage.placeables.xliff.Bpt method),
533

get_parent_elem() (trans-
late.storage.placeables.xliff.Bx method),
538

get_parent_elem() (trans-
late.storage.placeables.xliff.Ept method),
535

get_parent_elem() (trans-
late.storage.placeables.xliff.Ex method),
540

get_parent_elem() (trans-
late.storage.placeables.xliff.G method), 541

get_parent_elem() (trans-
late.storage.placeables.xliff.It method), 543

get_parent_elem() (trans-
late.storage.placeables.xliff.Ph method),
546

get_parent_elem() (trans-
late.storage.placeables.xliff.Sub method),
545

get_parent_elem() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

get_parent_elem() (trans-
late.storage.placeables.xliff.X method), 536

get_proj_filename() (trans-
late.storage.bundleprojstore.BundleProjectStore
method), 407

get_proj_filename() (trans-
late.storage.project.Project method), 574

get_proj_filename() (trans-
late.storage.projstore.ProjectStore method),
575

get_real_filename() (trans-
late.storage.project.Project method), 574

get_rich_target() (trans-
late.storage.poxliff.PoXliffUnit method),
571

get_rich_target() (translate.storage.xliff.xliffunit
method), 690

get_source_text() (trans-
late.storage.statistics.Statistics method),
625

get_starttag_text() (trans-
late.storage.html.htmlfile method), 429

get_starttag_text() (trans-
late.storage.html.POHTMLParser method),
427

get_time() (translate.storage.trados.TradosTxtDate
method), 655

get_time() (translate.storage.wordfast.WordfastTime
method), 683

get_timestring() (trans-
late.storage.trados.TradosTxtDate method),
655

get_timestring() (trans-
late.storage.wordfast.WordfastTime method),
683

get_to_lines() (translate.tools.pydiff.FileDiffer
method), 713

get_version() (in module trans-
late.storage.versioncontrol.bzr), 678

get_version() (in module trans-
late.storage.versioncontrol.hg), 679

get_version() (in module trans-
late.storage.versioncontrol.svn), 679

get_versioned_object() (in module trans-
late.storage.versioncontrol), 677

get_versioned_objects_recursive() (in
module translate.storage.versioncontrol), 677

get_xliff_source_target_doms() (in module
translate.storage.xml_extract.generate), 694

getaccelerators() (in module trans-
late.filters.decoration), 349

Index 757

Translate Toolkit Documentation, Release 3.0.0

getalttrans() (translate.storage.poxliff.PoXliffUnit
method), 571

getalttrans() (translate.storage.pypo.pounit
method), 606

getalttrans() (translate.storage.xliff.xliffunit
method), 690

getarchiveclass() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

getarchiveclass() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getarchiveclass() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getautomaticcomments() (trans-
late.storage.poxliff.PoXliffUnit method),
571

getbodynode() (translate.storage.poxliff.PoXliffFile
method), 567

getbodynode() (translate.storage.xliff.xlifffile
method), 688

getclass() (in module translate.storage.factory), 425
getcleanfile() (trans-

late.storage.versioncontrol.bzr.bzr method),
678

getcleanfile() (trans-
late.storage.versioncontrol.cvs.cvs method),
678

getcleanfile() (trans-
late.storage.versioncontrol.darcs.darcs
method), 678

getcleanfile() (trans-
late.storage.versioncontrol.GenericRevisionControlSystem
method), 677

getcleanfile() (trans-
late.storage.versioncontrol.git.git method),
679

getcleanfile() (trans-
late.storage.versioncontrol.hg.hg method),
679

getcleanfile() (trans-
late.storage.versioncontrol.svn.svn method),
680

getcontext() (trans-
late.storage.base.TranslationUnit method),
404

getcontext() (translate.storage.catkeys.CatkeysUnit
method), 411

getcontext() (translate.storage.csvl10n.csvunit
method), 416

getcontext() (translate.storage.dtd.dtdunit method),
422

getcontext() (translate.storage.html.htmlunit

method), 431
getcontext() (translate.storage.ical.icalunit

method), 436
getcontext() (translate.storage.ini.iniunit method),

441
getcontext() (trans-

late.storage.jsonl10n.ARBJsonUnit method),
447

getcontext() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 452

getcontext() (trans-
late.storage.jsonl10n.I18NextUnit method),
456

getcontext() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
463

getcontext() (translate.storage.jsonl10n.JsonUnit
method), 466

getcontext() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 471

getcontext() (translate.storage.lisa.LISAunit
method), 476

getcontext() (translate.storage.mo.mounit method),
482

getcontext() (trans-
late.storage.mozilla_lang.LangUnit method),
487

getcontext() (trans-
late.storage.omegat.OmegaTUnit method),
494

getcontext() (trans-
late.storage.php.LaravelPHPUnit method),
551

getcontext() (translate.storage.php.phpunit
method), 556

getcontext() (translate.storage.pocommon.pounit
method), 562

getcontext() (translate.storage.poxliff.PoXliffUnit
method), 571

getcontext() (trans-
late.storage.properties.proppluralunit method),
593

getcontext() (translate.storage.properties.propunit
method), 596

getcontext() (translate.storage.pypo.pounit
method), 606

getcontext() (translate.storage.qm.qmunit method),
611

getcontext() (translate.storage.qph.QphUnit
method), 617

getcontext() (translate.storage.rc.rcunit method),
622

758 Index

Translate Toolkit Documentation, Release 3.0.0

getcontext() (trans-
late.storage.subtitles.SubtitleUnit method),
636

getcontext() (translate.storage.tbx.tbxunit method),
641

getcontext() (translate.storage.tiki.TikiUnit
method), 646

getcontext() (translate.storage.tmx.tmxunit
method), 651

getcontext() (translate.storage.trados.TradosUnit
method), 656

getcontext() (translate.storage.ts2.tsunit method),
663

getcontext() (translate.storage.txt.TxtUnit method),
668

getcontext() (translate.storage.utx.UtxUnit
method), 673

getcontext() (trans-
late.storage.wordfast.WordfastUnit method),
684

getcontext() (translate.storage.xliff.xliffunit
method), 691

getcontextgroups() (trans-
late.storage.poxliff.PoXliffUnit method),
571

getcontextgroups() (trans-
late.storage.xliff.xliffunit method), 691

getdatatype() (translate.storage.poxliff.PoXliffFile
method), 567

getdatatype() (translate.storage.xliff.xlifffile
method), 688

getdate() (translate.storage.poxliff.PoXliffFile
method), 567

getdate() (translate.storage.xliff.xlifffile method), 688
getdict() (translate.storage.catkeys.CatkeysUnit

method), 411
getdict() (translate.storage.omegat.OmegaTUnit

method), 494
getdict() (translate.storage.utx.UtxUnit method),

673
getdict() (translate.storage.wordfast.WordfastUnit

method), 684
getElementsByTagName_helper() (in module

translate.misc.ourdom), 395
getemails() (in module translate.filters.decoration),

349
geterrors() (translate.storage.base.TranslationUnit

method), 404
geterrors() (translate.storage.catkeys.CatkeysUnit

method), 411
geterrors() (translate.storage.csvl10n.csvunit

method), 416
geterrors() (translate.storage.dtd.dtdunit method),

422

geterrors() (translate.storage.html.htmlunit
method), 431

geterrors() (translate.storage.ical.icalunit method),
436

geterrors() (translate.storage.ini.iniunit method),
441

geterrors() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
447

geterrors() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 452

geterrors() (translate.storage.jsonl10n.I18NextUnit
method), 457

geterrors() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
463

geterrors() (translate.storage.jsonl10n.JsonUnit
method), 466

geterrors() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 471

geterrors() (translate.storage.lisa.LISAunit
method), 476

geterrors() (translate.storage.mo.mounit method),
482

geterrors() (trans-
late.storage.mozilla_lang.LangUnit method),
487

geterrors() (translate.storage.omegat.OmegaTUnit
method), 494

geterrors() (translate.storage.php.LaravelPHPUnit
method), 552

geterrors() (translate.storage.php.phpunit method),
556

geterrors() (translate.storage.pocommon.pounit
method), 562

geterrors() (translate.storage.poxliff.PoXliffUnit
method), 571

geterrors() (trans-
late.storage.properties.proppluralunit method),
593

geterrors() (translate.storage.properties.propunit
method), 596

geterrors() (translate.storage.pypo.pounit method),
606

geterrors() (translate.storage.qm.qmunit method),
611

geterrors() (translate.storage.qph.QphUnit
method), 617

geterrors() (translate.storage.rc.rcunit method), 623
geterrors() (translate.storage.subtitles.SubtitleUnit

method), 636
geterrors() (translate.storage.tbx.tbxunit method),

Index 759

Translate Toolkit Documentation, Release 3.0.0

641
geterrors() (translate.storage.tiki.TikiUnit method),

646
geterrors() (translate.storage.tmx.tmxunit method),

651
geterrors() (translate.storage.trados.TradosUnit

method), 656
geterrors() (translate.storage.ts2.tsunit method),

663
geterrors() (translate.storage.txt.TxtUnit method),

668
geterrors() (translate.storage.utx.UtxUnit method),

673
geterrors() (trans-

late.storage.wordfast.WordfastUnit method),
684

geterrors() (translate.storage.xliff.xliffunit method),
691

getfilename() (translate.storage.poxliff.PoXliffFile
method), 568

getfilename() (translate.storage.xliff.xlifffile
method), 688

getfilenames() (translate.storage.poxliff.PoXliffFile
method), 568

getfilenames() (translate.storage.xliff.xlifffile
method), 688

getfilenode() (translate.storage.poxliff.PoXliffFile
method), 568

getfilenode() (translate.storage.xliff.xlifffile
method), 688

getfiles() (translate.storage.directory.Directory
method), 419

getfiles() (translate.storage.zip.ZIPFile method),
696

getfilters() (trans-
late.filters.checks.CCLicenseChecker method),
273

getfilters() (trans-
late.filters.checks.DrupalChecker method),
279

getfilters() (trans-
late.filters.checks.GnomeChecker method),
285

getfilters() (translate.filters.checks.IOSChecker
method), 291

getfilters() (translate.filters.checks.KdeChecker
method), 296

getfilters() (translate.filters.checks.L20nChecker
method), 302

getfilters() (trans-
late.filters.checks.LibreOfficeChecker method),
308

getfilters() (trans-
late.filters.checks.MinimalChecker method),

314
getfilters() (trans-

late.filters.checks.MozillaChecker method),
319

getfilters() (trans-
late.filters.checks.OpenOfficeChecker method),
325

getfilters() (trans-
late.filters.checks.ReducedChecker method),
331

getfilters() (trans-
late.filters.checks.StandardChecker method),
337

getfilters() (trans-
late.filters.checks.StandardUnitChecker
method), 340

getfilters() (translate.filters.checks.TeeChecker
method), 341

getfilters() (translate.filters.checks.TermChecker
method), 344

getfilters() (trans-
late.filters.checks.TranslationChecker method),
348

getfilters() (translate.filters.checks.UnitChecker
method), 348

getformathelp() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

getformathelp() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getformathelp() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getformathelp() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getformathelp() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getformathelp() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getformathelp() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

getformathelp() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 698

getformathelp() (trans-
late.tools.pogrep.GrepOptionParser method),
702

getformathelp() (trans-
late.tools.porestructure.SplitOptionParser

760 Index

Translate Toolkit Documentation, Release 3.0.0

method), 706
getformathelp() (trans-

late.tools.poterminology.TerminologyOptionParser
method), 709

getfullinputpath() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

getfullinputpath() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getfullinputpath() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getfullinputpath() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getfullinputpath() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getfullinputpath() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getfullinputpath() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

getfullinputpath() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getfullinputpath() (trans-
late.tools.pogrep.GrepOptionParser method),
702

getfullinputpath() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getfullinputpath() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 709

getfulloutputpath() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

getfulloutputpath() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getfulloutputpath() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getfulloutputpath() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getfulloutputpath() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getfulloutputpath() (trans-
late.filters.pofilter.FilterOptionParser method),

351
getfulloutputpath() (trans-

late.misc.optrecurse.RecursiveOptionParser
method), 392

getfulloutputpath() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getfulloutputpath() (trans-
late.tools.pogrep.GrepOptionParser method),
702

getfulloutputpath() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getfulloutputpath() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getfulltemplatepath() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

getfulltemplatepath() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getfulltemplatepath() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getfulltemplatepath() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getfulltemplatepath() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getfulltemplatepath() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getfulltemplatepath() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

getfulltemplatepath() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getfulltemplatepath() (trans-
late.tools.pogrep.GrepOptionParser method),
702

getfulltemplatepath() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getfulltemplatepath() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getfunctions() (in module trans-
late.filters.decoration), 349

getheader() (trans-
late.storage.wordfast.WordfastHeader method),
681

Index 761

Translate Toolkit Documentation, Release 3.0.0

getheadernode() (trans-
late.storage.poxliff.PoXliffFile method), 568

getheadernode() (translate.storage.xliff.xlifffile
method), 688

getheaderplural() (translate.storage.mo.mofile
method), 479

getheaderplural() (trans-
late.storage.pocommon.pofile method), 559

getheaderplural() (trans-
late.storage.poheader.poheader method),
565

getheaderplural() (trans-
late.storage.poxliff.PoXliffFile method), 568

getheaderplural() (translate.storage.pypo.pofile
method), 603

getid() (translate.storage.base.TranslationUnit
method), 404

getid() (translate.storage.catkeys.CatkeysUnit
method), 411

getid() (translate.storage.csvl10n.csvunit method),
416

getid() (translate.storage.dtd.dtdunit method), 422
getid() (translate.storage.html.htmlunit method), 431
getid() (translate.storage.ical.icalunit method), 436
getid() (translate.storage.ini.iniunit method), 441
getid() (translate.storage.jsonl10n.ARBJsonUnit

method), 447
getid() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 452
getid() (translate.storage.jsonl10n.I18NextUnit

method), 457
getid() (translate.storage.jsonl10n.JsonNestedUnit

method), 463
getid() (translate.storage.jsonl10n.JsonUnit method),

466
getid() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 471
getid() (translate.storage.lisa.LISAunit method), 476
getid() (translate.storage.mo.mounit method), 482
getid() (translate.storage.mozilla_lang.LangUnit

method), 487
getid() (translate.storage.omegat.OmegaTUnit

method), 494
getid() (translate.storage.php.LaravelPHPUnit

method), 552
getid() (translate.storage.php.phpunit method), 556
getid() (translate.storage.pocommon.pounit method),

562
getid() (translate.storage.poxliff.PoXliffUnit method),

571
getid() (translate.storage.properties.proppluralunit

method), 593
getid() (translate.storage.properties.propunit

method), 596

getid() (translate.storage.pypo.pounit method), 606
getid() (translate.storage.qm.qmunit method), 612
getid() (translate.storage.qph.QphUnit method), 617
getid() (translate.storage.rc.rcunit method), 623
getid() (translate.storage.subtitles.SubtitleUnit

method), 636
getid() (translate.storage.tbx.tbxunit method), 641
getid() (translate.storage.tiki.TikiUnit method), 646
getid() (translate.storage.tmx.tmxunit method), 652
getid() (translate.storage.trados.TradosUnit method),

656
getid() (translate.storage.ts2.tsunit method), 663
getid() (translate.storage.txt.TxtUnit method), 668
getid() (translate.storage.utx.UtxUnit method), 674
getid() (translate.storage.wordfast.WordfastUnit

method), 684
getid() (translate.storage.xliff.xliffunit method), 691
getids() (translate.storage.base.TranslationStore

method), 402
getids() (translate.storage.catkeys.CatkeysFile

method), 409
getids() (translate.storage.csvl10n.csvfile method),

414
getids() (translate.storage.dtd.dtdfile method), 420
getids() (translate.storage.html.htmlfile method), 429
getids() (translate.storage.html.POHTMLParser

method), 427
getids() (translate.storage.ical.icalfile method), 434
getids() (translate.storage.ini.inifile method), 439
getids() (translate.storage.jsonl10n.ARBJsonFile

method), 445
getids() (translate.storage.jsonl10n.GoI18NJsonFile

method), 450
getids() (translate.storage.jsonl10n.I18NextFile

method), 455
getids() (translate.storage.jsonl10n.JsonFile

method), 459
getids() (translate.storage.jsonl10n.JsonNestedFile

method), 461
getids() (translate.storage.jsonl10n.WebExtensionJsonFile

method), 469
getids() (translate.storage.lisa.LISAfile method), 474
getids() (translate.storage.mo.mofile method), 479
getids() (translate.storage.mozilla_lang.LangStore

method), 485
getids() (translate.storage.omegat.OmegaTFile

method), 490
getids() (translate.storage.omegat.OmegaTFileTab

method), 492
getids() (translate.storage.php.LaravelPHPFile

method), 550
getids() (translate.storage.php.phpfile method), 555
getids() (translate.storage.pocommon.pofile method),

559

762 Index

Translate Toolkit Documentation, Release 3.0.0

getids() (translate.storage.poxliff.PoXliffFile
method), 568

getids() (translate.storage.properties.gwtfile
method), 582

getids() (translate.storage.properties.javafile
method), 585

getids() (translate.storage.properties.javautf16file
method), 586

getids() (translate.storage.properties.javautf8file
method), 588

getids() (translate.storage.properties.joomlafile
method), 590

getids() (translate.storage.properties.propfile
method), 591

getids() (translate.storage.properties.stringsfile
method), 599

getids() (translate.storage.properties.stringsutf8file
method), 601

getids() (translate.storage.pypo.pofile method), 603
getids() (translate.storage.qm.qmfile method), 610
getids() (translate.storage.qph.QphFile method), 615
getids() (translate.storage.rc.rcfile method), 621
getids() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 627
getids() (translate.storage.subtitles.MicroDVDFile

method), 629
getids() (translate.storage.subtitles.SubRipFile

method), 631
getids() (translate.storage.subtitles.SubStationAlphaFile

method), 632
getids() (translate.storage.subtitles.SubtitleFile

method), 634
getids() (translate.storage.tbx.tbxfile method), 639
getids() (translate.storage.tiki.TikiStore method), 645
getids() (translate.storage.tmx.tmxfile method), 650
getids() (translate.storage.trados.TradosTxtTmFile

method), 659
getids() (translate.storage.ts2.tsfile method), 660
getids() (translate.storage.txt.TxtFile method), 666
getids() (translate.storage.utx.UtxFile method), 671
getids() (translate.storage.wordfast.WordfastTMFile

method), 681
getids() (translate.storage.xliff.xlifffile method), 688
getkey() (translate.storage.oo.ooline method), 497
getlanguage() (in module translate.lang.factory),

366
getlanguageNode() (translate.storage.lisa.LISAunit

method), 476
getlanguageNode() (trans-

late.storage.poxliff.PoXliffUnit method),
571

getlanguageNode() (translate.storage.qph.QphUnit
method), 617

getlanguageNode() (translate.storage.tbx.tbxunit

method), 641
getlanguageNode() (translate.storage.tmx.tmxunit

method), 652
getlanguageNode() (translate.storage.ts2.tsunit

method), 663
getlanguageNode() (translate.storage.xliff.xliffunit

method), 691
getlanguageNodes() (trans-

late.storage.lisa.LISAunit method), 476
getlanguageNodes() (trans-

late.storage.poxliff.PoXliffUnit method),
571

getlanguageNodes() (trans-
late.storage.qph.QphUnit method), 617

getlanguageNodes() (translate.storage.tbx.tbxunit
method), 641

getlanguageNodes() (trans-
late.storage.tmx.tmxunit method), 652

getlanguageNodes() (translate.storage.ts2.tsunit
method), 663

getlanguageNodes() (trans-
late.storage.xliff.xliffunit method), 691

getlocations() (trans-
late.storage.base.TranslationUnit method),
404

getlocations() (trans-
late.storage.catkeys.CatkeysUnit method),
411

getlocations() (translate.storage.csvl10n.csvunit
method), 416

getlocations() (translate.storage.dtd.dtdunit
method), 422

getlocations() (translate.storage.html.htmlunit
method), 431

getlocations() (translate.storage.ical.icalunit
method), 436

getlocations() (translate.storage.ini.iniunit
method), 441

getlocations() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
447

getlocations() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 452

getlocations() (trans-
late.storage.jsonl10n.I18NextUnit method),
457

getlocations() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
463

getlocations() (trans-
late.storage.jsonl10n.JsonUnit method),
466

getlocations() (trans-

Index 763

Translate Toolkit Documentation, Release 3.0.0

late.storage.jsonl10n.WebExtensionJsonUnit
method), 471

getlocations() (translate.storage.lisa.LISAunit
method), 476

getlocations() (translate.storage.mo.mounit
method), 482

getlocations() (trans-
late.storage.mozilla_lang.LangUnit method),
487

getlocations() (trans-
late.storage.omegat.OmegaTUnit method),
494

getlocations() (trans-
late.storage.php.LaravelPHPUnit method),
552

getlocations() (translate.storage.php.phpunit
method), 557

getlocations() (trans-
late.storage.pocommon.pounit method),
562

getlocations() (trans-
late.storage.poxliff.PoXliffUnit method),
571

getlocations() (trans-
late.storage.properties.proppluralunit method),
593

getlocations() (trans-
late.storage.properties.propunit method),
596

getlocations() (translate.storage.pypo.pounit
method), 606

getlocations() (translate.storage.qm.qmunit
method), 612

getlocations() (translate.storage.qph.QphUnit
method), 617

getlocations() (translate.storage.rc.rcunit
method), 623

getlocations() (trans-
late.storage.subtitles.SubtitleUnit method),
636

getlocations() (translate.storage.tbx.tbxunit
method), 641

getlocations() (translate.storage.tiki.TikiUnit
method), 647

getlocations() (translate.storage.tmx.tmxunit
method), 652

getlocations() (trans-
late.storage.trados.TradosUnit method),
656

getlocations() (translate.storage.ts2.tsunit
method), 663

getlocations() (translate.storage.txt.TxtUnit
method), 668

getlocations() (translate.storage.utx.UtxUnit

method), 674
getlocations() (trans-

late.storage.wordfast.WordfastUnit method),
684

getlocations() (translate.storage.xliff.xliffunit
method), 691

getnodetext() (in module translate.misc.ourdom),
396

getNodeText() (translate.storage.lisa.LISAunit
method), 476

getNodeText() (translate.storage.poxliff.PoXliffUnit
method), 571

getNodeText() (translate.storage.qph.QphUnit
method), 617

getNodeText() (translate.storage.tbx.tbxunit
method), 641

getNodeText() (translate.storage.tmx.tmxunit
method), 651

getNodeText() (translate.storage.ts2.tsunit method),
662

getNodeText() (translate.storage.xliff.xliffunit
method), 690

getnotes() (translate.storage.base.TranslationUnit
method), 405

getnotes() (translate.storage.catkeys.CatkeysUnit
method), 411

getnotes() (translate.storage.csvl10n.csvunit
method), 416

getnotes() (translate.storage.dtd.dtdunit method),
422

getnotes() (translate.storage.html.htmlunit method),
431

getnotes() (translate.storage.ical.icalunit method),
437

getnotes() (translate.storage.ini.iniunit method), 442
getnotes() (translate.storage.jsonl10n.ARBJsonUnit

method), 447
getnotes() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 452
getnotes() (translate.storage.jsonl10n.I18NextUnit

method), 457
getnotes() (translate.storage.jsonl10n.JsonNestedUnit

method), 463
getnotes() (translate.storage.jsonl10n.JsonUnit

method), 466
getnotes() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 471
getnotes() (translate.storage.lisa.LISAunit method),

476
getnotes() (translate.storage.mo.mounit method),

483
getnotes() (translate.storage.mozilla_lang.LangUnit

method), 487
getnotes() (translate.storage.omegat.OmegaTUnit

764 Index

Translate Toolkit Documentation, Release 3.0.0

method), 494
getnotes() (translate.storage.php.LaravelPHPUnit

method), 552
getnotes() (translate.storage.php.phpunit method),

557
getnotes() (translate.storage.pocommon.pounit

method), 562
getnotes() (translate.storage.poxliff.PoXliffUnit

method), 571
getnotes() (translate.storage.properties.proppluralunit

method), 594
getnotes() (translate.storage.properties.propunit

method), 596
getnotes() (translate.storage.pypo.pounit method),

606
getnotes() (translate.storage.qm.qmunit method),

612
getnotes() (translate.storage.qph.QphUnit method),

617
getnotes() (translate.storage.rc.rcunit method), 623
getnotes() (translate.storage.subtitles.SubtitleUnit

method), 636
getnotes() (translate.storage.tbx.tbxunit method),

641
getnotes() (translate.storage.tiki.TikiUnit method),

647
getnotes() (translate.storage.tmx.tmxunit method),

652
getnotes() (translate.storage.trados.TradosUnit

method), 656
getnotes() (translate.storage.ts2.tsunit method), 663
getnotes() (translate.storage.txt.TxtUnit method),

668
getnotes() (translate.storage.utx.UtxUnit method),

674
getnotes() (translate.storage.wordfast.WordfastUnit

method), 684
getnotes() (translate.storage.xliff.xliffunit method),

691
getnumbers() (in module trans-

late.filters.decoration), 349
getobject() (in module translate.storage.factory),

425
getoofile() (translate.storage.oo.oomultifile

method), 498
getoutput() (translate.storage.dtd.dtdunit method),

423
getoutput() (translate.storage.oo.oofile method),

497
getoutput() (translate.storage.oo.ooline method),

497
getoutput() (translate.storage.oo.oounit method),

498
getoutput() (translate.storage.php.LaravelPHPUnit

method), 552
getoutput() (translate.storage.php.phpunit method),

557
getoutput() (translate.storage.properties.propunit

method), 597
getoutput() (translate.storage.rc.rcunit method), 623
getoutputname() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

getoutputname() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getoutputname() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getoutputname() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getoutputname() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getoutputname() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getoutputname() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 392

getoutputname() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getoutputname() (trans-
late.tools.pogrep.GrepOptionParser method),
702

getoutputname() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getoutputname() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getoutputoptions() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 236

getoutputoptions() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getoutputoptions() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getoutputoptions() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getoutputoptions() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

Index 765

Translate Toolkit Documentation, Release 3.0.0

getoutputoptions() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getoutputoptions() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

getoutputoptions() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getoutputoptions() (trans-
late.tools.pogrep.GrepOptionParser method),
703

getoutputoptions() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getoutputoptions() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getParser() (translate.misc.ourdom.ExpatBuilderNS
method), 395

getparts() (translate.storage.oo.ooline method), 497
getpassthroughoptions() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 236

getpassthroughoptions() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getpassthroughoptions() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getpassthroughoptions() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getpassthroughoptions() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getpassthroughoptions() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getpassthroughoptions() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

getpassthroughoptions() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getpassthroughoptions() (trans-
late.tools.pogrep.GrepOptionParser method),
703

getpassthroughoptions() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getpassthroughoptions() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getpos() (translate.storage.html.htmlfile method), 429
getpos() (translate.storage.html.POHTMLParser

method), 427
getprojectstyle() (trans-

late.storage.base.TranslationStore method),
402

getprojectstyle() (trans-
late.storage.catkeys.CatkeysFile method),
409

getprojectstyle() (trans-
late.storage.csvl10n.csvfile method), 414

getprojectstyle() (translate.storage.dtd.dtdfile
method), 420

getprojectstyle() (translate.storage.html.htmlfile
method), 429

getprojectstyle() (trans-
late.storage.html.POHTMLParser method),
427

getprojectstyle() (translate.storage.ical.icalfile
method), 434

getprojectstyle() (translate.storage.ini.inifile
method), 439

getprojectstyle() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

getprojectstyle() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

getprojectstyle() (trans-
late.storage.jsonl10n.I18NextFile method),
455

getprojectstyle() (trans-
late.storage.jsonl10n.JsonFile method), 459

getprojectstyle() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

getprojectstyle() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

getprojectstyle() (translate.storage.lisa.LISAfile
method), 474

getprojectstyle() (translate.storage.mo.mofile
method), 479

getprojectstyle() (trans-
late.storage.mozilla_lang.LangStore method),
485

getprojectstyle() (trans-
late.storage.omegat.OmegaTFile method),
490

getprojectstyle() (trans-
late.storage.omegat.OmegaTFileTab method),
492

getprojectstyle() (trans-
late.storage.php.LaravelPHPFile method),

766 Index

Translate Toolkit Documentation, Release 3.0.0

550
getprojectstyle() (translate.storage.php.phpfile

method), 555
getprojectstyle() (trans-

late.storage.pocommon.pofile method), 559
getprojectstyle() (trans-

late.storage.poheader.poheader method),
565

getprojectstyle() (trans-
late.storage.poxliff.PoXliffFile method), 568

getprojectstyle() (trans-
late.storage.properties.gwtfile method), 582

getprojectstyle() (trans-
late.storage.properties.javafile method),
585

getprojectstyle() (trans-
late.storage.properties.javautf16file method),
586

getprojectstyle() (trans-
late.storage.properties.javautf8file method),
588

getprojectstyle() (trans-
late.storage.properties.joomlafile method),
590

getprojectstyle() (trans-
late.storage.properties.propfile method),
591

getprojectstyle() (trans-
late.storage.properties.stringsfile method),
599

getprojectstyle() (trans-
late.storage.properties.stringsutf8file method),
601

getprojectstyle() (translate.storage.pypo.pofile
method), 603

getprojectstyle() (translate.storage.qm.qmfile
method), 610

getprojectstyle() (translate.storage.qph.QphFile
method), 615

getprojectstyle() (translate.storage.rc.rcfile
method), 621

getprojectstyle() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 627

getprojectstyle() (trans-
late.storage.subtitles.MicroDVDFile method),
629

getprojectstyle() (trans-
late.storage.subtitles.SubRipFile method),
631

getprojectstyle() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

getprojectstyle() (trans-

late.storage.subtitles.SubtitleFile method),
634

getprojectstyle() (translate.storage.tbx.tbxfile
method), 639

getprojectstyle() (translate.storage.tiki.TikiStore
method), 645

getprojectstyle() (translate.storage.tmx.tmxfile
method), 650

getprojectstyle() (trans-
late.storage.trados.TradosTxtTmFile method),
659

getprojectstyle() (translate.storage.ts2.tsfile
method), 660

getprojectstyle() (translate.storage.txt.TxtFile
method), 666

getprojectstyle() (translate.storage.utx.UtxFile
method), 671

getprojectstyle() (trans-
late.storage.wordfast.WordfastTMFile method),
682

getprojectstyle() (translate.storage.xliff.xlifffile
method), 688

getrestype() (translate.storage.poxliff.PoXliffUnit
method), 571

getrestype() (translate.storage.xliff.xliffunit
method), 691

getsourcelanguage() (trans-
late.storage.base.TranslationStore method),
402

getsourcelanguage() (trans-
late.storage.catkeys.CatkeysFile method),
409

getsourcelanguage() (trans-
late.storage.csvl10n.csvfile method), 414

getsourcelanguage() (translate.storage.dtd.dtdfile
method), 421

getsourcelanguage() (trans-
late.storage.html.htmlfile method), 429

getsourcelanguage() (trans-
late.storage.html.POHTMLParser method),
427

getsourcelanguage() (trans-
late.storage.ical.icalfile method), 435

getsourcelanguage() (translate.storage.ini.inifile
method), 439

getsourcelanguage() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

getsourcelanguage() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

getsourcelanguage() (trans-
late.storage.jsonl10n.I18NextFile method),
455

Index 767

Translate Toolkit Documentation, Release 3.0.0

getsourcelanguage() (trans-
late.storage.jsonl10n.JsonFile method), 459

getsourcelanguage() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

getsourcelanguage() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

getsourcelanguage() (trans-
late.storage.lisa.LISAfile method), 474

getsourcelanguage() (translate.storage.mo.mofile
method), 480

getsourcelanguage() (trans-
late.storage.mozilla_lang.LangStore method),
485

getsourcelanguage() (trans-
late.storage.omegat.OmegaTFile method),
490

getsourcelanguage() (trans-
late.storage.omegat.OmegaTFileTab method),
492

getsourcelanguage() (trans-
late.storage.php.LaravelPHPFile method),
550

getsourcelanguage() (trans-
late.storage.php.phpfile method), 555

getsourcelanguage() (trans-
late.storage.pocommon.pofile method), 560

getsourcelanguage() (trans-
late.storage.poxliff.PoXliffFile method), 568

getsourcelanguage() (trans-
late.storage.properties.gwtfile method), 583

getsourcelanguage() (trans-
late.storage.properties.javafile method),
585

getsourcelanguage() (trans-
late.storage.properties.javautf16file method),
586

getsourcelanguage() (trans-
late.storage.properties.javautf8file method),
588

getsourcelanguage() (trans-
late.storage.properties.joomlafile method),
590

getsourcelanguage() (trans-
late.storage.properties.propfile method),
592

getsourcelanguage() (trans-
late.storage.properties.stringsfile method),
599

getsourcelanguage() (trans-
late.storage.properties.stringsutf8file method),
601

getsourcelanguage() (trans-

late.storage.pypo.pofile method), 603
getsourcelanguage() (translate.storage.qm.qmfile

method), 610
getsourcelanguage() (trans-

late.storage.qph.QphFile method), 615
getsourcelanguage() (translate.storage.rc.rcfile

method), 621
getsourcelanguage() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 627

getsourcelanguage() (trans-
late.storage.subtitles.MicroDVDFile method),
629

getsourcelanguage() (trans-
late.storage.subtitles.SubRipFile method),
631

getsourcelanguage() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

getsourcelanguage() (trans-
late.storage.subtitles.SubtitleFile method),
634

getsourcelanguage() (translate.storage.tbx.tbxfile
method), 639

getsourcelanguage() (trans-
late.storage.tiki.TikiStore method), 645

getsourcelanguage() (trans-
late.storage.tmx.tmxfile method), 650

getsourcelanguage() (trans-
late.storage.trados.TradosTxtTmFile method),
659

getsourcelanguage() (translate.storage.ts2.tsfile
method), 660

getsourcelanguage() (trans-
late.storage.txt.TxtFile method), 666

getsourcelanguage() (trans-
late.storage.utx.UtxFile method), 671

getsourcelanguage() (trans-
late.storage.wordfast.WordfastTMFile method),
682

getsourcelanguage() (trans-
late.storage.xliff.xlifffile method), 688

getstartlength() (translate.search.match.matcher
method), 399

getstartlength() (trans-
late.search.match.terminologymatcher
method), 400

getstoplength() (translate.search.match.matcher
method), 399

getstoplength() (trans-
late.search.match.terminologymatcher
method), 400

getsubfilename() (translate.storage.oo.oomultifile
method), 498

768 Index

Translate Toolkit Documentation, Release 3.0.0

getsubfilesrc() (translate.storage.oo.oomultifile
method), 498

gettarget() (translate.storage.lisa.LISAunit
method), 477

gettarget() (translate.storage.poxliff.PoXliffUnit
method), 571

gettarget() (translate.storage.qph.QphUnit
method), 617

gettarget() (translate.storage.tbx.tbxunit method),
641

gettarget() (translate.storage.tmx.tmxunit method),
652

gettarget() (translate.storage.ts2.tsunit method),
663

gettarget() (translate.storage.xliff.xliffunit method),
691

gettargetlanguage() (trans-
late.storage.base.TranslationStore method),
402

gettargetlanguage() (trans-
late.storage.catkeys.CatkeysFile method),
409

gettargetlanguage() (trans-
late.storage.csvl10n.csvfile method), 414

gettargetlanguage() (translate.storage.dtd.dtdfile
method), 421

gettargetlanguage() (trans-
late.storage.html.htmlfile method), 429

gettargetlanguage() (trans-
late.storage.html.POHTMLParser method),
427

gettargetlanguage() (trans-
late.storage.ical.icalfile method), 435

gettargetlanguage() (translate.storage.ini.inifile
method), 440

gettargetlanguage() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

gettargetlanguage() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

gettargetlanguage() (trans-
late.storage.jsonl10n.I18NextFile method),
455

gettargetlanguage() (trans-
late.storage.jsonl10n.JsonFile method), 460

gettargetlanguage() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

gettargetlanguage() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

gettargetlanguage() (trans-
late.storage.lisa.LISAfile method), 474

gettargetlanguage() (translate.storage.mo.mofile
method), 480

gettargetlanguage() (trans-
late.storage.mozilla_lang.LangStore method),
485

gettargetlanguage() (trans-
late.storage.omegat.OmegaTFile method),
490

gettargetlanguage() (trans-
late.storage.omegat.OmegaTFileTab method),
492

gettargetlanguage() (trans-
late.storage.php.LaravelPHPFile method),
550

gettargetlanguage() (trans-
late.storage.php.phpfile method), 555

gettargetlanguage() (trans-
late.storage.pocommon.pofile method), 560

gettargetlanguage() (trans-
late.storage.poheader.poheader method),
565

gettargetlanguage() (trans-
late.storage.poxliff.PoXliffFile method), 568

gettargetlanguage() (trans-
late.storage.properties.gwtfile method), 583

gettargetlanguage() (trans-
late.storage.properties.javafile method),
585

gettargetlanguage() (trans-
late.storage.properties.javautf16file method),
586

gettargetlanguage() (trans-
late.storage.properties.javautf8file method),
588

gettargetlanguage() (trans-
late.storage.properties.joomlafile method),
590

gettargetlanguage() (trans-
late.storage.properties.propfile method),
592

gettargetlanguage() (trans-
late.storage.properties.stringsfile method),
599

gettargetlanguage() (trans-
late.storage.properties.stringsutf8file method),
601

gettargetlanguage() (trans-
late.storage.pypo.pofile method), 603

gettargetlanguage() (translate.storage.qm.qmfile
method), 610

gettargetlanguage() (trans-
late.storage.qph.QphFile method), 615

gettargetlanguage() (translate.storage.rc.rcfile
method), 621

Index 769

Translate Toolkit Documentation, Release 3.0.0

gettargetlanguage() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 627

gettargetlanguage() (trans-
late.storage.subtitles.MicroDVDFile method),
629

gettargetlanguage() (trans-
late.storage.subtitles.SubRipFile method),
631

gettargetlanguage() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 632

gettargetlanguage() (trans-
late.storage.subtitles.SubtitleFile method),
634

gettargetlanguage() (translate.storage.tbx.tbxfile
method), 639

gettargetlanguage() (trans-
late.storage.tiki.TikiStore method), 645

gettargetlanguage() (trans-
late.storage.tmx.tmxfile method), 650

gettargetlanguage() (trans-
late.storage.trados.TradosTxtTmFile method),
659

gettargetlanguage() (translate.storage.ts2.tsfile
method), 661

gettargetlanguage() (trans-
late.storage.txt.TxtFile method), 666

gettargetlanguage() (trans-
late.storage.utx.UtxFile method), 671

gettargetlanguage() (trans-
late.storage.wordfast.WordfastTMFile method),
682

gettargetlanguage() (trans-
late.storage.xliff.xlifffile method), 688

gettargetlen() (trans-
late.storage.base.TranslationUnit method),
405

gettargetlen() (trans-
late.storage.catkeys.CatkeysUnit method),
411

gettargetlen() (translate.storage.csvl10n.csvunit
method), 416

gettargetlen() (translate.storage.dtd.dtdunit
method), 423

gettargetlen() (translate.storage.html.htmlunit
method), 432

gettargetlen() (translate.storage.ical.icalunit
method), 437

gettargetlen() (translate.storage.ini.iniunit
method), 442

gettargetlen() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
447

gettargetlen() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 452

gettargetlen() (trans-
late.storage.jsonl10n.I18NextUnit method),
457

gettargetlen() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
463

gettargetlen() (trans-
late.storage.jsonl10n.JsonUnit method),
466

gettargetlen() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 471

gettargetlen() (translate.storage.lisa.LISAunit
method), 477

gettargetlen() (translate.storage.mo.mounit
method), 483

gettargetlen() (trans-
late.storage.mozilla_lang.LangUnit method),
488

gettargetlen() (trans-
late.storage.omegat.OmegaTUnit method),
494

gettargetlen() (trans-
late.storage.php.LaravelPHPUnit method),
552

gettargetlen() (translate.storage.php.phpunit
method), 557

gettargetlen() (trans-
late.storage.pocommon.pounit method),
563

gettargetlen() (trans-
late.storage.poxliff.PoXliffUnit method),
571

gettargetlen() (trans-
late.storage.properties.proppluralunit method),
594

gettargetlen() (trans-
late.storage.properties.propunit method),
597

gettargetlen() (translate.storage.pypo.pounit
method), 606

gettargetlen() (translate.storage.qm.qmunit
method), 612

gettargetlen() (translate.storage.qph.QphUnit
method), 617

gettargetlen() (translate.storage.rc.rcunit
method), 623

gettargetlen() (trans-
late.storage.subtitles.SubtitleUnit method),
636

gettargetlen() (translate.storage.tbx.tbxunit

770 Index

Translate Toolkit Documentation, Release 3.0.0

method), 641
gettargetlen() (translate.storage.tiki.TikiUnit

method), 647
gettargetlen() (translate.storage.tmx.tmxunit

method), 652
gettargetlen() (trans-

late.storage.trados.TradosUnit method),
656

gettargetlen() (translate.storage.ts2.tsunit
method), 663

gettargetlen() (translate.storage.txt.TxtUnit
method), 668

gettargetlen() (translate.storage.utx.UtxUnit
method), 674

gettargetlen() (trans-
late.storage.wordfast.WordfastUnit method),
684

gettargetlen() (translate.storage.xliff.xliffunit
method), 691

gettemplatename() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

gettemplatename() (trans-
late.convert.convert.ConvertOptionParser
method), 240

gettemplatename() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

gettemplatename() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

gettemplatename() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

gettemplatename() (trans-
late.filters.pofilter.FilterOptionParser method),
351

gettemplatename() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

gettemplatename() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

gettemplatename() (trans-
late.tools.pogrep.GrepOptionParser method),
703

gettemplatename() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

gettemplatename() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getText() (in module translate.misc.xml_helpers),
398

gettext() (translate.storage.oo.ooline method), 497
gettext_country() (in module translate.lang.data),

362
gettext_domain() (in module translate.lang.data),

362
gettext_lang() (in module translate.lang.data), 362
gettranslatorcomments() (trans-

late.storage.poxliff.PoXliffUnit method),
572

getunits() (translate.storage.base.TranslationStore
method), 402

getunits() (translate.storage.base.TranslationUnit
method), 405

getunits() (translate.storage.catkeys.CatkeysFile
method), 409

getunits() (translate.storage.catkeys.CatkeysUnit
method), 411

getunits() (translate.storage.csvl10n.csvfile
method), 414

getunits() (translate.storage.csvl10n.csvunit
method), 417

getunits() (translate.storage.directory.Directory
method), 419

getunits() (translate.storage.dtd.dtdfile method), 421
getunits() (translate.storage.dtd.dtdunit method),

423
getunits() (translate.storage.html.htmlfile method),

429
getunits() (translate.storage.html.htmlunit method),

432
getunits() (translate.storage.html.POHTMLParser

method), 427
getunits() (translate.storage.ical.icalfile method),

435
getunits() (translate.storage.ical.icalunit method),

437
getunits() (translate.storage.ini.inifile method), 440
getunits() (translate.storage.ini.iniunit method), 442
getunits() (translate.storage.jsonl10n.ARBJsonFile

method), 445
getunits() (translate.storage.jsonl10n.ARBJsonUnit

method), 447
getunits() (translate.storage.jsonl10n.GoI18NJsonFile

method), 450
getunits() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 452
getunits() (translate.storage.jsonl10n.I18NextFile

method), 455
getunits() (translate.storage.jsonl10n.I18NextUnit

method), 457
getunits() (translate.storage.jsonl10n.JsonFile

method), 460
getunits() (translate.storage.jsonl10n.JsonNestedFile

method), 461

Index 771

Translate Toolkit Documentation, Release 3.0.0

getunits() (translate.storage.jsonl10n.JsonNestedUnit
method), 464

getunits() (translate.storage.jsonl10n.JsonUnit
method), 467

getunits() (translate.storage.jsonl10n.WebExtensionJsonFile
method), 469

getunits() (translate.storage.jsonl10n.WebExtensionJsonUnit
method), 471

getunits() (translate.storage.lisa.LISAfile method),
474

getunits() (translate.storage.lisa.LISAunit method),
477

getunits() (translate.storage.mo.mofile method), 480
getunits() (translate.storage.mo.mounit method),

483
getunits() (translate.storage.mozilla_lang.LangStore

method), 485
getunits() (translate.storage.mozilla_lang.LangUnit

method), 488
getunits() (translate.storage.omegat.OmegaTFile

method), 491
getunits() (translate.storage.omegat.OmegaTFileTab

method), 492
getunits() (translate.storage.omegat.OmegaTUnit

method), 495
getunits() (translate.storage.php.LaravelPHPFile

method), 550
getunits() (translate.storage.php.LaravelPHPUnit

method), 552
getunits() (translate.storage.php.phpfile method),

555
getunits() (translate.storage.php.phpunit method),

557
getunits() (translate.storage.pocommon.pofile

method), 560
getunits() (translate.storage.pocommon.pounit

method), 563
getunits() (translate.storage.poxliff.PoXliffFile

method), 568
getunits() (translate.storage.poxliff.PoXliffUnit

method), 572
getunits() (translate.storage.properties.gwtfile

method), 583
getunits() (translate.storage.properties.javafile

method), 585
getunits() (translate.storage.properties.javautf16file

method), 587
getunits() (translate.storage.properties.javautf8file

method), 588
getunits() (translate.storage.properties.joomlafile

method), 590
getunits() (translate.storage.properties.propfile

method), 592
getunits() (translate.storage.properties.proppluralunit

method), 594
getunits() (translate.storage.properties.propunit

method), 597
getunits() (translate.storage.properties.stringsfile

method), 599
getunits() (translate.storage.properties.stringsutf8file

method), 601
getunits() (translate.storage.pypo.pofile method),

603
getunits() (translate.storage.pypo.pounit method),

606
getunits() (translate.storage.qm.qmfile method), 610
getunits() (translate.storage.qm.qmunit method),

612
getunits() (translate.storage.qph.QphFile method),

615
getunits() (translate.storage.qph.QphUnit method),

617
getunits() (translate.storage.rc.rcfile method), 621
getunits() (translate.storage.rc.rcunit method), 623
getunits() (translate.storage.statistics.Statistics

method), 625
getunits() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 627
getunits() (translate.storage.subtitles.MicroDVDFile

method), 629
getunits() (translate.storage.subtitles.SubRipFile

method), 631
getunits() (translate.storage.subtitles.SubStationAlphaFile

method), 632
getunits() (translate.storage.subtitles.SubtitleFile

method), 634
getunits() (translate.storage.subtitles.SubtitleUnit

method), 636
getunits() (translate.storage.tbx.tbxfile method), 639
getunits() (translate.storage.tbx.tbxunit method),

642
getunits() (translate.storage.tiki.TikiStore method),

645
getunits() (translate.storage.tiki.TikiUnit method),

647
getunits() (translate.storage.tmx.tmxfile method),

650
getunits() (translate.storage.tmx.tmxunit method),

652
getunits() (translate.storage.trados.TradosTxtTmFile

method), 659
getunits() (translate.storage.trados.TradosUnit

method), 656
getunits() (translate.storage.ts2.tsfile method), 661
getunits() (translate.storage.ts2.tsunit method), 663
getunits() (translate.storage.txt.TxtFile method),

666
getunits() (translate.storage.txt.TxtUnit method),

772 Index

Translate Toolkit Documentation, Release 3.0.0

669
getunits() (translate.storage.utx.UtxFile method),

671
getunits() (translate.storage.utx.UtxUnit method),

674
getunits() (translate.storage.wordfast.WordfastTMFile

method), 682
getunits() (translate.storage.wordfast.WordfastUnit

method), 684
getunits() (translate.storage.xliff.xlifffile method),

688
getunits() (translate.storage.xliff.xliffunit method),

691
getunits() (translate.storage.zip.ZIPFile method),

696
geturls() (in module translate.filters.decoration), 349
getusageman() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 237

getusageman() (trans-
late.convert.convert.ConvertOptionParser
method), 240

getusageman() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

getusageman() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getusageman() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getusageman() (trans-
late.filters.pofilter.FilterOptionParser method),
351

getusageman() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

getusageman() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getusageman() (trans-
late.tools.pogrep.GrepOptionParser method),
703

getusageman() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getusageman() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getusagestring() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

getusagestring() (trans-
late.convert.convert.ConvertOptionParser

method), 240
getusagestring() (trans-

late.convert.po2moz.MozConvertOptionParser
method), 252

getusagestring() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

getusagestring() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

getusagestring() (trans-
late.filters.pofilter.FilterOptionParser method),
352

getusagestring() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

getusagestring() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

getusagestring() (trans-
late.tools.pogrep.GrepOptionParser method),
703

getusagestring() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

getusagestring() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

getvalue() (translate.storage.jsonl10n.ARBJsonUnit
method), 448

getvalue() (translate.storage.jsonl10n.GoI18NJsonUnit
method), 452

getvalue() (translate.storage.jsonl10n.I18NextUnit
method), 457

getvalue() (translate.storage.jsonl10n.JsonNestedUnit
method), 464

getvalue() (translate.storage.jsonl10n.JsonUnit
method), 467

getvalue() (translate.storage.jsonl10n.WebExtensionJsonUnit
method), 471

getvariables() (in module trans-
late.filters.decoration), 349

getXMLlang() (in module trans-
late.misc.xml_helpers), 398

getXMLspace() (in module trans-
late.misc.xml_helpers), 398

git (class in translate.storage.versioncontrol.git), 679
GnomeChecker (class in translate.filters.checks), 283
GoI18NJsonFile (class in trans-

late.storage.jsonl10n), 449
GoI18NJsonUnit (class in trans-

late.storage.jsonl10n), 451
GrepMatch (class in translate.tools.pogrep), 702
GrepOptionParser (class in translate.tools.pogrep),

Index 773

Translate Toolkit Documentation, Release 3.0.0

702
gu (class in translate.lang.gu), 368
guess_encoding() (translate.storage.html.htmlfile

method), 429
guess_encoding() (trans-

late.storage.html.POHTMLParser method),
427

guess_language() (in module translate.lang.team),
382

gwtfile (class in translate.storage.properties), 582

H
handle_charref() (translate.storage.html.htmlfile

method), 429
handle_charref() (trans-

late.storage.html.POHTMLParser method),
427

handle_entityref() (trans-
late.storage.html.htmlfile method), 429

handle_entityref() (trans-
late.storage.html.POHTMLParser method),
427

handlecsvunit() (translate.convert.csv2po.csv2po
method), 243

has_content (trans-
late.storage.placeables.strelem.StringElem
attribute), 529

has_translatable_text (trans-
late.storage.xml_extract.extract.Translatable
attribute), 693

HashProgressBar (class in trans-
late.misc.progressbar), 396

hasmarkedcomment() (trans-
late.storage.pypo.pounit method), 606

hasplural() (translate.storage.base.TranslationUnit
method), 405

hasplural() (translate.storage.catkeys.CatkeysUnit
method), 411

hasplural() (translate.storage.csvl10n.csvunit
method), 417

hasplural() (translate.storage.dtd.dtdunit method),
423

hasplural() (translate.storage.html.htmlunit
method), 432

hasplural() (translate.storage.ical.icalunit method),
437

hasplural() (translate.storage.ini.iniunit method),
442

hasplural() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

hasplural() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 452

hasplural() (translate.storage.jsonl10n.I18NextUnit
method), 457

hasplural() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

hasplural() (translate.storage.jsonl10n.JsonUnit
method), 467

hasplural() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 471

hasplural() (translate.storage.lisa.LISAunit
method), 477

hasplural() (translate.storage.mo.mounit method),
483

hasplural() (trans-
late.storage.mozilla_lang.LangUnit method),
488

hasplural() (translate.storage.omegat.OmegaTUnit
method), 495

hasplural() (translate.storage.php.LaravelPHPUnit
method), 552

hasplural() (translate.storage.php.phpunit method),
557

hasplural() (translate.storage.pocommon.pounit
method), 563

hasplural() (translate.storage.poxliff.PoXliffUnit
method), 572

hasplural() (trans-
late.storage.properties.proppluralunit method),
594

hasplural() (translate.storage.properties.propunit
method), 597

hasplural() (translate.storage.pypo.pounit method),
606

hasplural() (translate.storage.qm.qmunit method),
612

hasplural() (translate.storage.qph.QphUnit
method), 618

hasplural() (translate.storage.rc.rcunit method), 623
hasplural() (translate.storage.subtitles.SubtitleUnit

method), 637
hasplural() (translate.storage.tbx.tbxunit method),

642
hasplural() (translate.storage.tiki.TikiUnit method),

647
hasplural() (translate.storage.tmx.tmxunit method),

652
hasplural() (translate.storage.trados.TradosUnit

method), 656
hasplural() (translate.storage.ts2.tsunit method),

663
hasplural() (translate.storage.txt.TxtUnit method),

669
hasplural() (translate.storage.utx.UtxUnit method),

774 Index

Translate Toolkit Documentation, Release 3.0.0

674
hasplural() (trans-

late.storage.wordfast.WordfastUnit method),
684

hasplural() (translate.storage.xliff.xliffunit method),
691

hassuggestion() (trans-
late.filters.checks.StandardUnitChecker
method), 341

hastypecomment() (translate.storage.pypo.pounit
method), 606

he (class in translate.lang.he), 369
header (translate.storage.wordfast.WordfastHeader at-

tribute), 681
header() (translate.storage.mo.mofile method), 480
header() (translate.storage.pocommon.pofile method),

560
header() (translate.storage.poheader.poheader

method), 565
header() (translate.storage.poxliff.PoXliffFile

method), 568
header() (translate.storage.pypo.pofile method), 603
hg (class in translate.storage.versioncontrol.hg), 679
hi (class in translate.lang.hi), 370
htmlentitydecode() (in module trans-

late.misc.quote), 397
htmlentityencode() (in module trans-

late.misc.quote), 397
htmlfile (class in translate.storage.html), 428
htmlunit (class in translate.storage.html), 430
hy (class in translate.lang.hy), 371

I
I18NextFile (class in translate.storage.jsonl10n), 454
I18NextUnit (class in translate.storage.jsonl10n), 456
ical2po (class in translate.convert.ical2po), 244
icalfile (class in translate.storage.ical), 434
icalunit (class in translate.storage.ical), 436
ignoretests (translate.lang.common.Common

attribute), 360
inc2po() (in module trans-

late.convert.mozfunny2prop), 246
inc2prop() (in module trans-

late.convert.mozfunny2prop), 246
index() (translate.misc.multistring.multistring

method), 388
indicpunc (translate.lang.common.Common at-

tribute), 360
infer_state() (trans-

late.storage.base.TranslationUnit method),
405

infer_state() (trans-
late.storage.catkeys.CatkeysUnit method),
412

infer_state() (translate.storage.csvl10n.csvunit
method), 417

infer_state() (translate.storage.dtd.dtdunit
method), 423

infer_state() (translate.storage.html.htmlunit
method), 432

infer_state() (translate.storage.ical.icalunit
method), 437

infer_state() (translate.storage.ini.iniunit method),
442

infer_state() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

infer_state() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 452

infer_state() (trans-
late.storage.jsonl10n.I18NextUnit method),
457

infer_state() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

infer_state() (translate.storage.jsonl10n.JsonUnit
method), 467

infer_state() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

infer_state() (translate.storage.lisa.LISAunit
method), 477

infer_state() (translate.storage.mo.mounit
method), 483

infer_state() (trans-
late.storage.mozilla_lang.LangUnit method),
488

infer_state() (trans-
late.storage.omegat.OmegaTUnit method),
495

infer_state() (trans-
late.storage.php.LaravelPHPUnit method),
552

infer_state() (translate.storage.php.phpunit
method), 557

infer_state() (translate.storage.pocommon.pounit
method), 563

infer_state() (translate.storage.poxliff.PoXliffUnit
method), 572

infer_state() (trans-
late.storage.properties.proppluralunit method),
594

infer_state() (trans-
late.storage.properties.propunit method),
597

infer_state() (translate.storage.pypo.pounit
method), 606

Index 775

Translate Toolkit Documentation, Release 3.0.0

infer_state() (translate.storage.qm.qmunit
method), 612

infer_state() (translate.storage.qph.QphUnit
method), 618

infer_state() (translate.storage.rc.rcunit method),
623

infer_state() (trans-
late.storage.subtitles.SubtitleUnit method),
637

infer_state() (translate.storage.tbx.tbxunit
method), 642

infer_state() (translate.storage.tiki.TikiUnit
method), 647

infer_state() (translate.storage.tmx.tmxunit
method), 652

infer_state() (translate.storage.trados.TradosUnit
method), 656

infer_state() (translate.storage.ts2.tsunit method),
663

infer_state() (translate.storage.txt.TxtUnit
method), 669

infer_state() (translate.storage.utx.UtxUnit
method), 674

infer_state() (trans-
late.storage.wordfast.WordfastUnit method),
684

infer_state() (translate.storage.xliff.xliffunit
method), 691

ini2po (class in translate.convert.ini2po), 245
inifile (class in translate.storage.ini), 439
init_headers() (translate.storage.mo.mofile

method), 480
init_headers() (translate.storage.pocommon.pofile

method), 560
init_headers() (trans-

late.storage.poheader.poheader method),
565

init_headers() (translate.storage.poxliff.PoXliffFile
method), 568

init_headers() (translate.storage.pypo.pofile
method), 603

initbody() (translate.storage.lisa.LISAfile method),
474

initbody() (translate.storage.poxliff.PoXliffFile
method), 568

initbody() (translate.storage.qph.QphFile method),
615

initbody() (translate.storage.tbx.tbxfile method), 639
initbody() (translate.storage.tmx.tmxfile method),

650
initbody() (translate.storage.ts2.tsfile method), 661
initbody() (translate.storage.xliff.xlifffile method),

688
inittm() (translate.search.match.matcher method),

400
inittm() (translate.search.match.terminologymatcher

method), 400
iniunit (class in translate.storage.ini), 440
insert() (translate.storage.placeables.base.Bpt

method), 500
insert() (translate.storage.placeables.base.Bx

method), 508
insert() (translate.storage.placeables.base.Ept

method), 502
insert() (translate.storage.placeables.base.Ex

method), 510
insert() (translate.storage.placeables.base.G

method), 507
insert() (translate.storage.placeables.base.It

method), 505
insert() (translate.storage.placeables.base.Ph

method), 504
insert() (translate.storage.placeables.base.Sub

method), 513
insert() (translate.storage.placeables.base.X

method), 512
insert() (translate.storage.placeables.general.AltAttrPlaceable

method), 515
insert() (translate.storage.placeables.general.XMLEntityPlaceable

method), 517
insert() (translate.storage.placeables.general.XMLTagPlaceable

method), 518
insert() (translate.storage.placeables.interfaces.BasePlaceable

method), 520
insert() (translate.storage.placeables.interfaces.InvisiblePlaceable

method), 522
insert() (translate.storage.placeables.interfaces.MaskingPlaceable

method), 524
insert() (translate.storage.placeables.interfaces.ReplacementPlaceable

method), 525
insert() (translate.storage.placeables.interfaces.SubflowPlaceable

method), 527
insert() (translate.storage.placeables.strelem.StringElem

method), 529
insert() (translate.storage.placeables.terminology.TerminologyPlaceable

method), 531
insert() (translate.storage.placeables.xliff.Bpt

method), 533
insert() (translate.storage.placeables.xliff.Bx

method), 538
insert() (translate.storage.placeables.xliff.Ept

method), 535
insert() (translate.storage.placeables.xliff.Ex

method), 540
insert() (translate.storage.placeables.xliff.G

method), 541
insert() (translate.storage.placeables.xliff.It method),

543

776 Index

Translate Toolkit Documentation, Release 3.0.0

insert() (translate.storage.placeables.xliff.Ph
method), 546

insert() (translate.storage.placeables.xliff.Sub
method), 545

insert() (translate.storage.placeables.xliff.UnknownXML
method), 548

insert() (translate.storage.placeables.xliff.X method),
537

insert_between() (trans-
late.storage.placeables.base.Bpt method),
500

insert_between() (trans-
late.storage.placeables.base.Bx method),
508

insert_between() (trans-
late.storage.placeables.base.Ept method),
502

insert_between() (trans-
late.storage.placeables.base.Ex method),
510

insert_between() (trans-
late.storage.placeables.base.G method),
507

insert_between() (trans-
late.storage.placeables.base.It method),
505

insert_between() (trans-
late.storage.placeables.base.Ph method),
504

insert_between() (trans-
late.storage.placeables.base.Sub method),
513

insert_between() (trans-
late.storage.placeables.base.X method),
512

insert_between() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

insert_between() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

insert_between() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 519

insert_between() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 520

insert_between() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

insert_between() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 524

insert_between() (trans-

late.storage.placeables.interfaces.ReplacementPlaceable
method), 525

insert_between() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

insert_between() (trans-
late.storage.placeables.strelem.StringElem
method), 529

insert_between() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 531

insert_between() (trans-
late.storage.placeables.xliff.Bpt method),
533

insert_between() (trans-
late.storage.placeables.xliff.Bx method),
538

insert_between() (trans-
late.storage.placeables.xliff.Ept method),
535

insert_between() (trans-
late.storage.placeables.xliff.Ex method),
540

insert_between() (trans-
late.storage.placeables.xliff.G method), 541

insert_between() (trans-
late.storage.placeables.xliff.It method), 543

insert_between() (trans-
late.storage.placeables.xliff.Ph method),
546

insert_between() (trans-
late.storage.placeables.xliff.Sub method),
545

insert_between() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

insert_between() (trans-
late.storage.placeables.xliff.X method), 537

install() (translate.misc.ourdom.ExpatBuilderNS
method), 395

int2byte() (in module translate.storage.oo), 497
intuplelist() (in module translate.filters.checks),

349
InvalidBundleError, 408
InvalidStateObjectError, 686
invertedpunc (translate.lang.common.Common at-

tribute), 360
InvisiblePlaceable (class in trans-

late.storage.placeables.interfaces), 521
IOSChecker (class in translate.filters.checks), 289
is_available() (in module trans-

late.storage.versioncontrol.bzr), 678
is_available() (in module trans-

late.storage.versioncontrol.cvs), 678

Index 777

Translate Toolkit Documentation, Release 3.0.0

is_available() (in module trans-
late.storage.versioncontrol.darcs), 678

is_available() (in module trans-
late.storage.versioncontrol.git), 679

is_available() (in module trans-
late.storage.versioncontrol.hg), 679

is_available() (in module trans-
late.storage.versioncontrol.svn), 679

is_comment_end() (in module trans-
late.storage.properties), 583

is_comment_one_line() (in module trans-
late.storage.properties), 584

is_comment_start() (in module trans-
late.storage.properties), 584

is_css_entity() (in module trans-
late.convert.dtd2po), 243

is_iterable_but_not_string() (in module
translate.convert.po2rc), 255

is_line_continuation() (in module trans-
late.storage.properties), 584

isalnum() (translate.misc.multistring.multistring
method), 388

isalpha() (translate.misc.multistring.multistring
method), 388

isapproved() (translate.storage.poxliff.PoXliffUnit
method), 572

isapproved() (translate.storage.xliff.xliffunit
method), 692

isarchive() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

isarchive() (trans-
late.convert.po2tmx.TmxOptionParser
method), 257

isarchive() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

isascii() (translate.misc.multistring.multistring
method), 388

isblank() (translate.storage.base.TranslationUnit
method), 405

isblank() (translate.storage.catkeys.CatkeysUnit
method), 412

isblank() (translate.storage.csvl10n.csvunit method),
417

isblank() (translate.storage.dtd.dtdunit method), 423
isblank() (translate.storage.html.htmlunit method),

432
isblank() (translate.storage.ical.icalunit method),

437
isblank() (translate.storage.ini.iniunit method), 442
isblank() (translate.storage.jsonl10n.ARBJsonUnit

method), 448
isblank() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 453
isblank() (translate.storage.jsonl10n.I18NextUnit

method), 457
isblank() (translate.storage.jsonl10n.JsonNestedUnit

method), 464
isblank() (translate.storage.jsonl10n.JsonUnit

method), 467
isblank() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 472
isblank() (translate.storage.lisa.LISAunit method),

477
isblank() (translate.storage.mo.mounit method), 483
isblank() (translate.storage.mozilla_lang.LangUnit

method), 488
isblank() (translate.storage.omegat.OmegaTUnit

method), 495
isblank() (translate.storage.php.LaravelPHPUnit

method), 552
isblank() (translate.storage.php.phpunit method),

557
isblank() (translate.storage.pocommon.pounit

method), 563
isblank() (translate.storage.poxliff.PoXliffUnit

method), 572
isblank() (translate.storage.properties.proppluralunit

method), 594
isblank() (translate.storage.properties.propunit

method), 597
isblank() (translate.storage.pypo.pounit method),

606
isblank() (translate.storage.qm.qmunit method), 612
isblank() (translate.storage.qph.QphUnit method),

618
isblank() (translate.storage.rc.rcunit method), 623
isblank() (translate.storage.subtitles.SubtitleUnit

method), 637
isblank() (translate.storage.tbx.tbxunit method), 642
isblank() (translate.storage.tiki.TikiUnit method),

647
isblank() (translate.storage.tmx.tmxunit method),

652
isblank() (translate.storage.trados.TradosUnit

method), 656
isblank() (translate.storage.ts2.tsunit method), 663
isblank() (translate.storage.txt.TxtUnit method), 669
isblank() (translate.storage.utx.UtxUnit method),

674
isblank() (translate.storage.wordfast.WordfastUnit

method), 684
isblank() (translate.storage.xliff.xliffunit method),

692
isdecimal() (translate.misc.multistring.multistring

method), 388
isdigit() (translate.misc.multistring.multistring

778 Index

Translate Toolkit Documentation, Release 3.0.0

method), 389
iseditable (translate.storage.placeables.strelem.StringElem

attribute), 529
isempty() (translate.storage.base.TranslationStore

method), 402
isempty() (translate.storage.catkeys.CatkeysFile

method), 409
isempty() (translate.storage.csvl10n.csvfile method),

414
isempty() (translate.storage.dtd.dtdfile method), 421
isempty() (translate.storage.html.htmlfile method),

429
isempty() (translate.storage.html.POHTMLParser

method), 427
isempty() (translate.storage.ical.icalfile method), 435
isempty() (translate.storage.ini.inifile method), 440
isempty() (translate.storage.jsonl10n.ARBJsonFile

method), 445
isempty() (translate.storage.jsonl10n.GoI18NJsonFile

method), 450
isempty() (translate.storage.jsonl10n.I18NextFile

method), 455
isempty() (translate.storage.jsonl10n.JsonFile

method), 460
isempty() (translate.storage.jsonl10n.JsonNestedFile

method), 461
isempty() (translate.storage.jsonl10n.WebExtensionJsonFile

method), 469
isempty() (translate.storage.lisa.LISAfile method),

474
isempty() (translate.storage.mo.mofile method), 480
isempty() (translate.storage.mozilla_lang.LangStore

method), 485
isempty() (translate.storage.omegat.OmegaTFile

method), 491
isempty() (translate.storage.omegat.OmegaTFileTab

method), 492
isempty() (translate.storage.php.LaravelPHPFile

method), 550
isempty() (translate.storage.php.phpfile method), 555
isempty() (translate.storage.pocommon.pofile

method), 560
isempty() (translate.storage.poxliff.PoXliffFile

method), 568
isempty() (translate.storage.properties.gwtfile

method), 583
isempty() (translate.storage.properties.javafile

method), 585
isempty() (translate.storage.properties.javautf16file

method), 587
isempty() (translate.storage.properties.javautf8file

method), 588
isempty() (translate.storage.properties.joomlafile

method), 590

isempty() (translate.storage.properties.propfile
method), 592

isempty() (translate.storage.properties.stringsfile
method), 599

isempty() (translate.storage.properties.stringsutf8file
method), 601

isempty() (translate.storage.pypo.pofile method), 604
isempty() (translate.storage.qm.qmfile method), 610
isempty() (translate.storage.qph.QphFile method),

615
isempty() (translate.storage.rc.rcfile method), 621
isempty() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 627
isempty() (translate.storage.subtitles.MicroDVDFile

method), 629
isempty() (translate.storage.subtitles.SubRipFile

method), 631
isempty() (translate.storage.subtitles.SubStationAlphaFile

method), 633
isempty() (translate.storage.subtitles.SubtitleFile

method), 634
isempty() (translate.storage.tbx.tbxfile method), 639
isempty() (translate.storage.tiki.TikiStore method),

645
isempty() (translate.storage.tmx.tmxfile method), 650
isempty() (translate.storage.trados.TradosTxtTmFile

method), 659
isempty() (translate.storage.ts2.tsfile method), 661
isempty() (translate.storage.txt.TxtFile method), 666
isempty() (translate.storage.utx.UtxFile method), 671
isempty() (translate.storage.wordfast.WordfastTMFile

method), 682
isempty() (translate.storage.xliff.xlifffile method), 688
isexcluded() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 237

isexcluded() (trans-
late.convert.convert.ConvertOptionParser
method), 240

isexcluded() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

isexcluded() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

isexcluded() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

isexcluded() (trans-
late.filters.pofilter.FilterOptionParser method),
352

isexcluded() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

Index 779

Translate Toolkit Documentation, Release 3.0.0

isexcluded() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

isexcluded() (trans-
late.tools.pogrep.GrepOptionParser method),
703

isexcluded() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

isexcluded() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

isexcluded() (translate.tools.pydiff.DirDiffer
method), 713

isfragile (translate.storage.placeables.strelem.StringElem
attribute), 529

isfuzzy() (translate.filters.checks.StandardUnitChecker
method), 341

isfuzzy() (translate.storage.base.TranslationUnit
method), 405

isfuzzy() (translate.storage.catkeys.CatkeysUnit
method), 412

isfuzzy() (translate.storage.csvl10n.csvunit method),
417

isfuzzy() (translate.storage.dtd.dtdunit method), 423
isfuzzy() (translate.storage.html.htmlunit method),

432
isfuzzy() (translate.storage.ical.icalunit method),

437
isfuzzy() (translate.storage.ini.iniunit method), 442
isfuzzy() (translate.storage.jsonl10n.ARBJsonUnit

method), 448
isfuzzy() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 453
isfuzzy() (translate.storage.jsonl10n.I18NextUnit

method), 457
isfuzzy() (translate.storage.jsonl10n.JsonNestedUnit

method), 464
isfuzzy() (translate.storage.jsonl10n.JsonUnit

method), 467
isfuzzy() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 472
isfuzzy() (translate.storage.lisa.LISAunit method),

477
isfuzzy() (translate.storage.mo.mounit method), 483
isfuzzy() (translate.storage.mozilla_lang.LangUnit

method), 488
isfuzzy() (translate.storage.omegat.OmegaTUnit

method), 495
isfuzzy() (translate.storage.php.LaravelPHPUnit

method), 552
isfuzzy() (translate.storage.php.phpunit method),

557
isfuzzy() (translate.storage.pocommon.pounit

method), 563
isfuzzy() (translate.storage.poxliff.PoXliffUnit

method), 572
isfuzzy() (translate.storage.properties.proppluralunit

method), 594
isfuzzy() (translate.storage.properties.propunit

method), 597
isfuzzy() (translate.storage.pypo.pounit method),

606
isfuzzy() (translate.storage.qm.qmunit method), 612
isfuzzy() (translate.storage.qph.QphUnit method),

618
isfuzzy() (translate.storage.rc.rcunit method), 623
isfuzzy() (translate.storage.subtitles.SubtitleUnit

method), 637
isfuzzy() (translate.storage.tbx.tbxunit method), 642
isfuzzy() (translate.storage.tiki.TikiUnit method),

647
isfuzzy() (translate.storage.tmx.tmxunit method),

652
isfuzzy() (translate.storage.trados.TradosUnit

method), 657
isfuzzy() (translate.storage.ts2.tsunit method), 664
isfuzzy() (translate.storage.txt.TxtUnit method), 669
isfuzzy() (translate.storage.utx.UtxUnit method),

674
isfuzzy() (translate.storage.wordfast.WordfastUnit

method), 685
isfuzzy() (translate.storage.xliff.xliffunit method),

692
isheader() (translate.storage.base.TranslationUnit

method), 405
isheader() (translate.storage.catkeys.CatkeysUnit

method), 412
isheader() (translate.storage.csvl10n.csvunit

method), 417
isheader() (translate.storage.dtd.dtdunit method),

423
isheader() (translate.storage.html.htmlunit method),

432
isheader() (translate.storage.ical.icalunit method),

437
isheader() (translate.storage.ini.iniunit method), 442
isheader() (translate.storage.jsonl10n.ARBJsonUnit

method), 448
isheader() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 453
isheader() (translate.storage.jsonl10n.I18NextUnit

method), 457
isheader() (translate.storage.jsonl10n.JsonNestedUnit

method), 464
isheader() (translate.storage.jsonl10n.JsonUnit

method), 467
isheader() (translate.storage.jsonl10n.WebExtensionJsonUnit

780 Index

Translate Toolkit Documentation, Release 3.0.0

method), 472
isheader() (translate.storage.lisa.LISAunit method),

477
isheader() (translate.storage.mo.mounit method),

483
isheader() (translate.storage.mozilla_lang.LangUnit

method), 488
isheader() (translate.storage.omegat.OmegaTUnit

method), 495
isheader() (translate.storage.php.LaravelPHPUnit

method), 552
isheader() (translate.storage.php.phpunit method),

557
isheader() (translate.storage.pocommon.pounit

method), 563
isheader() (translate.storage.poxliff.PoXliffUnit

method), 572
isheader() (translate.storage.properties.proppluralunit

method), 594
isheader() (translate.storage.properties.propunit

method), 597
isheader() (translate.storage.pypo.pounit method),

607
isheader() (translate.storage.qm.qmunit method),

612
isheader() (translate.storage.qph.QphUnit method),

618
isheader() (translate.storage.rc.rcunit method), 623
isheader() (translate.storage.subtitles.SubtitleUnit

method), 637
isheader() (translate.storage.tbx.tbxunit method),

642
isheader() (translate.storage.tiki.TikiUnit method),

647
isheader() (translate.storage.tmx.tmxunit method),

652
isheader() (translate.storage.trados.TradosUnit

method), 657
isheader() (translate.storage.ts2.tsunit method), 664
isheader() (translate.storage.txt.TxtUnit method),

669
isheader() (translate.storage.utx.UtxUnit method),

674
isheader() (translate.storage.wordfast.WordfastUnit

method), 685
isheader() (translate.storage.xliff.xliffunit method),

692
isidentifier() (trans-

late.misc.multistring.multistring method),
389

isleaf() (translate.storage.placeables.base.Bpt
method), 500

isleaf() (translate.storage.placeables.base.Bx
method), 508

isleaf() (translate.storage.placeables.base.Ept
method), 502

isleaf() (translate.storage.placeables.base.Ex
method), 510

isleaf() (translate.storage.placeables.base.G
method), 507

isleaf() (translate.storage.placeables.base.It
method), 505

isleaf() (translate.storage.placeables.base.Ph
method), 504

isleaf() (translate.storage.placeables.base.Sub
method), 513

isleaf() (translate.storage.placeables.base.X
method), 512

isleaf() (translate.storage.placeables.general.AltAttrPlaceable
method), 515

isleaf() (translate.storage.placeables.general.XMLEntityPlaceable
method), 517

isleaf() (translate.storage.placeables.general.XMLTagPlaceable
method), 519

isleaf() (translate.storage.placeables.interfaces.BasePlaceable
method), 520

isleaf() (translate.storage.placeables.interfaces.InvisiblePlaceable
method), 522

isleaf() (translate.storage.placeables.interfaces.MaskingPlaceable
method), 524

isleaf() (translate.storage.placeables.interfaces.ReplacementPlaceable
method), 525

isleaf() (translate.storage.placeables.interfaces.SubflowPlaceable
method), 527

isleaf() (translate.storage.placeables.strelem.StringElem
method), 529

isleaf() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 531

isleaf() (translate.storage.placeables.xliff.Bpt
method), 533

isleaf() (translate.storage.placeables.xliff.Bx
method), 538

isleaf() (translate.storage.placeables.xliff.Ept
method), 535

isleaf() (translate.storage.placeables.xliff.Ex
method), 540

isleaf() (translate.storage.placeables.xliff.G
method), 541

isleaf() (translate.storage.placeables.xliff.It method),
543

isleaf() (translate.storage.placeables.xliff.Ph
method), 546

isleaf() (translate.storage.placeables.xliff.Sub
method), 545

isleaf() (translate.storage.placeables.xliff.UnknownXML
method), 548

isleaf() (translate.storage.placeables.xliff.X method),
537

Index 781

Translate Toolkit Documentation, Release 3.0.0

islower() (translate.misc.multistring.multistring
method), 389

isnull() (translate.storage.dtd.dtdunit method), 423
isnumeric() (translate.misc.multistring.multistring

method), 389
isobsolete() (trans-

late.storage.base.TranslationUnit method),
405

isobsolete() (translate.storage.catkeys.CatkeysUnit
method), 412

isobsolete() (translate.storage.csvl10n.csvunit
method), 417

isobsolete() (translate.storage.dtd.dtdunit method),
423

isobsolete() (translate.storage.html.htmlunit
method), 432

isobsolete() (translate.storage.ical.icalunit
method), 437

isobsolete() (translate.storage.ini.iniunit method),
442

isobsolete() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

isobsolete() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

isobsolete() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

isobsolete() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

isobsolete() (translate.storage.jsonl10n.JsonUnit
method), 467

isobsolete() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

isobsolete() (translate.storage.lisa.LISAunit
method), 477

isobsolete() (translate.storage.mo.mounit method),
483

isobsolete() (trans-
late.storage.mozilla_lang.LangUnit method),
488

isobsolete() (trans-
late.storage.omegat.OmegaTUnit method),
495

isobsolete() (trans-
late.storage.php.LaravelPHPUnit method),
552

isobsolete() (translate.storage.php.phpunit
method), 557

isobsolete() (translate.storage.pocommon.pounit
method), 563

isobsolete() (translate.storage.poxliff.PoXliffUnit
method), 572

isobsolete() (trans-
late.storage.properties.proppluralunit method),
594

isobsolete() (translate.storage.properties.propunit
method), 597

isobsolete() (translate.storage.pypo.pounit
method), 607

isobsolete() (translate.storage.qm.qmunit method),
612

isobsolete() (translate.storage.qph.QphUnit
method), 618

isobsolete() (translate.storage.rc.rcunit method),
623

isobsolete() (trans-
late.storage.subtitles.SubtitleUnit method),
637

isobsolete() (translate.storage.tbx.tbxunit method),
642

isobsolete() (translate.storage.tiki.TikiUnit
method), 647

isobsolete() (translate.storage.tmx.tmxunit
method), 652

isobsolete() (translate.storage.trados.TradosUnit
method), 657

isobsolete() (translate.storage.ts2.tsunit method),
664

isobsolete() (translate.storage.txt.TxtUnit method),
669

isobsolete() (translate.storage.utx.UtxUnit
method), 674

isobsolete() (trans-
late.storage.wordfast.WordfastUnit method),
685

isobsolete() (translate.storage.xliff.xliffunit
method), 692

isocode() (in module translate.lang.poedit), 378
isprintable() (trans-

late.misc.multistring.multistring method),
389

ispurepunctuation() (in module trans-
late.filters.decoration), 349

isrecursive() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

isrecursive() (trans-
late.convert.convert.ConvertOptionParser
method), 240

isrecursive() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

isrecursive() (trans-
late.convert.po2tmx.TmxOptionParser

782 Index

Translate Toolkit Documentation, Release 3.0.0

method), 258
isrecursive() (trans-

late.convert.po2wordfast.WfOptionParser
method), 262

isrecursive() (trans-
late.filters.pofilter.FilterOptionParser method),
352

isrecursive() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

isrecursive() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

isrecursive() (trans-
late.tools.pogrep.GrepOptionParser method),
703

isrecursive() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

isrecursive() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

isreview() (translate.filters.checks.StandardUnitChecker
method), 341

isreview() (translate.storage.base.TranslationUnit
method), 405

isreview() (translate.storage.catkeys.CatkeysUnit
method), 412

isreview() (translate.storage.csvl10n.csvunit
method), 417

isreview() (translate.storage.dtd.dtdunit method),
423

isreview() (translate.storage.html.htmlunit method),
432

isreview() (translate.storage.ical.icalunit method),
437

isreview() (translate.storage.ini.iniunit method), 442
isreview() (translate.storage.jsonl10n.ARBJsonUnit

method), 448
isreview() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 453
isreview() (translate.storage.jsonl10n.I18NextUnit

method), 458
isreview() (translate.storage.jsonl10n.JsonNestedUnit

method), 464
isreview() (translate.storage.jsonl10n.JsonUnit

method), 467
isreview() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 472
isreview() (translate.storage.lisa.LISAunit method),

477
isreview() (translate.storage.mo.mounit method),

483
isreview() (translate.storage.mozilla_lang.LangUnit

method), 488
isreview() (translate.storage.omegat.OmegaTUnit

method), 495
isreview() (translate.storage.php.LaravelPHPUnit

method), 552
isreview() (translate.storage.php.phpunit method),

557
isreview() (translate.storage.pocommon.pounit

method), 563
isreview() (translate.storage.poxliff.PoXliffUnit

method), 572
isreview() (translate.storage.properties.proppluralunit

method), 594
isreview() (translate.storage.properties.propunit

method), 597
isreview() (translate.storage.pypo.pounit method),

607
isreview() (translate.storage.qm.qmunit method),

612
isreview() (translate.storage.qph.QphUnit method),

618
isreview() (translate.storage.rc.rcunit method), 623
isreview() (translate.storage.subtitles.SubtitleUnit

method), 637
isreview() (translate.storage.tbx.tbxunit method),

642
isreview() (translate.storage.tiki.TikiUnit method),

647
isreview() (translate.storage.tmx.tmxunit method),

653
isreview() (translate.storage.trados.TradosUnit

method), 657
isreview() (translate.storage.ts2.tsunit method), 664
isreview() (translate.storage.txt.TxtUnit method),

669
isreview() (translate.storage.utx.UtxUnit method),

674
isreview() (translate.storage.wordfast.WordfastUnit

method), 685
isreview() (translate.storage.xliff.xliffunit method),

692
isspace() (translate.misc.multistring.multistring

method), 389
istitle() (translate.misc.multistring.multistring

method), 389
istranslatable (trans-

late.storage.placeables.strelem.StringElem
attribute), 530

istranslatable() (trans-
late.storage.base.TranslationUnit method),
405

istranslatable() (trans-
late.storage.catkeys.CatkeysUnit method),
412

Index 783

Translate Toolkit Documentation, Release 3.0.0

istranslatable() (trans-
late.storage.csvl10n.csvunit method), 417

istranslatable() (translate.storage.dtd.dtdunit
method), 423

istranslatable() (translate.storage.html.htmlunit
method), 432

istranslatable() (translate.storage.ical.icalunit
method), 437

istranslatable() (translate.storage.ini.iniunit
method), 442

istranslatable() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

istranslatable() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

istranslatable() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

istranslatable() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

istranslatable() (trans-
late.storage.jsonl10n.JsonUnit method),
467

istranslatable() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

istranslatable() (translate.storage.lisa.LISAunit
method), 477

istranslatable() (translate.storage.mo.mounit
method), 483

istranslatable() (trans-
late.storage.mozilla_lang.LangUnit method),
488

istranslatable() (trans-
late.storage.omegat.OmegaTUnit method),
495

istranslatable() (trans-
late.storage.php.LaravelPHPUnit method),
553

istranslatable() (translate.storage.php.phpunit
method), 557

istranslatable() (trans-
late.storage.pocommon.pounit method),
563

istranslatable() (trans-
late.storage.poxliff.PoXliffUnit method),
572

istranslatable() (trans-
late.storage.properties.proppluralunit method),
594

istranslatable() (trans-
late.storage.properties.propunit method),

597
istranslatable() (translate.storage.pypo.pounit

method), 607
istranslatable() (translate.storage.qm.qmunit

method), 612
istranslatable() (translate.storage.qph.QphUnit

method), 618
istranslatable() (translate.storage.rc.rcunit

method), 624
istranslatable() (trans-

late.storage.subtitles.SubtitleUnit method),
637

istranslatable() (translate.storage.tbx.tbxunit
method), 642

istranslatable() (translate.storage.tiki.TikiUnit
method), 647

istranslatable() (translate.storage.tmx.tmxunit
method), 653

istranslatable() (trans-
late.storage.trados.TradosUnit method),
657

istranslatable() (translate.storage.ts2.tsunit
method), 664

istranslatable() (translate.storage.txt.TxtUnit
method), 669

istranslatable() (translate.storage.utx.UtxUnit
method), 674

istranslatable() (trans-
late.storage.wordfast.WordfastUnit method),
685

istranslatable() (translate.storage.xliff.xliffunit
method), 692

istranslated() (trans-
late.storage.base.TranslationUnit method),
405

istranslated() (trans-
late.storage.catkeys.CatkeysUnit method),
412

istranslated() (translate.storage.csvl10n.csvunit
method), 417

istranslated() (translate.storage.dtd.dtdunit
method), 423

istranslated() (translate.storage.html.htmlunit
method), 432

istranslated() (translate.storage.ical.icalunit
method), 437

istranslated() (translate.storage.ini.iniunit
method), 442

istranslated() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

istranslated() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

784 Index

Translate Toolkit Documentation, Release 3.0.0

istranslated() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

istranslated() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

istranslated() (trans-
late.storage.jsonl10n.JsonUnit method),
467

istranslated() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

istranslated() (translate.storage.lisa.LISAunit
method), 477

istranslated() (translate.storage.mo.mounit
method), 483

istranslated() (trans-
late.storage.mozilla_lang.LangUnit method),
488

istranslated() (trans-
late.storage.omegat.OmegaTUnit method),
495

istranslated() (trans-
late.storage.php.LaravelPHPUnit method),
553

istranslated() (translate.storage.php.phpunit
method), 557

istranslated() (trans-
late.storage.pocommon.pounit method),
563

istranslated() (trans-
late.storage.poxliff.PoXliffUnit method),
572

istranslated() (trans-
late.storage.properties.proppluralunit method),
594

istranslated() (trans-
late.storage.properties.propunit method),
597

istranslated() (translate.storage.pypo.pounit
method), 607

istranslated() (translate.storage.qm.qmunit
method), 613

istranslated() (translate.storage.qph.QphUnit
method), 618

istranslated() (translate.storage.rc.rcunit
method), 624

istranslated() (trans-
late.storage.subtitles.SubtitleUnit method),
637

istranslated() (translate.storage.tbx.tbxunit
method), 642

istranslated() (translate.storage.tiki.TikiUnit
method), 647

istranslated() (translate.storage.tmx.tmxunit
method), 653

istranslated() (trans-
late.storage.trados.TradosUnit method),
657

istranslated() (translate.storage.ts2.tsunit
method), 664

istranslated() (translate.storage.txt.TxtUnit
method), 669

istranslated() (translate.storage.utx.UtxUnit
method), 675

istranslated() (trans-
late.storage.wordfast.WordfastUnit method),
685

istranslated() (translate.storage.xliff.xliffunit
method), 692

isupper() (translate.misc.multistring.multistring
method), 389

isvalidaccelerator() (in module trans-
late.filters.decoration), 349

isvalidinputname() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

isvalidinputname() (trans-
late.convert.convert.ConvertOptionParser
method), 240

isvalidinputname() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

isvalidinputname() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

isvalidinputname() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

isvalidinputname() (trans-
late.filters.pofilter.FilterOptionParser method),
352

isvalidinputname() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

isvalidinputname() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

isvalidinputname() (trans-
late.tools.pogrep.GrepOptionParser method),
703

isvalidinputname() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

isvalidinputname() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

isvisible (translate.storage.placeables.strelem.StringElem

Index 785

Translate Toolkit Documentation, Release 3.0.0

attribute), 530
It (class in translate.storage.placeables.base), 504
It (class in translate.storage.placeables.xliff), 542
it2po() (in module translate.convert.mozfunny2prop),

246
it2prop() (in module trans-

late.convert.mozfunny2prop), 246
items() (translate.misc.dictutils.cidict method), 387
items() (translate.storage.oo.unormalizechar

method), 498
iter_depth_first() (trans-

late.storage.placeables.base.Bpt method),
501

iter_depth_first() (trans-
late.storage.placeables.base.Bx method),
509

iter_depth_first() (trans-
late.storage.placeables.base.Ept method),
502

iter_depth_first() (trans-
late.storage.placeables.base.Ex method),
510

iter_depth_first() (trans-
late.storage.placeables.base.G method),
507

iter_depth_first() (trans-
late.storage.placeables.base.It method),
505

iter_depth_first() (trans-
late.storage.placeables.base.Ph method),
504

iter_depth_first() (trans-
late.storage.placeables.base.Sub method),
513

iter_depth_first() (trans-
late.storage.placeables.base.X method),
512

iter_depth_first() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

iter_depth_first() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

iter_depth_first() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 519

iter_depth_first() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 521

iter_depth_first() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

iter_depth_first() (trans-
late.storage.placeables.interfaces.MaskingPlaceable

method), 524
iter_depth_first() (trans-

late.storage.placeables.interfaces.ReplacementPlaceable
method), 526

iter_depth_first() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

iter_depth_first() (trans-
late.storage.placeables.strelem.StringElem
method), 530

iter_depth_first() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 532

iter_depth_first() (trans-
late.storage.placeables.xliff.Bpt method),
534

iter_depth_first() (trans-
late.storage.placeables.xliff.Bx method),
538

iter_depth_first() (trans-
late.storage.placeables.xliff.Ept method),
535

iter_depth_first() (trans-
late.storage.placeables.xliff.Ex method),
540

iter_depth_first() (trans-
late.storage.placeables.xliff.G method), 542

iter_depth_first() (trans-
late.storage.placeables.xliff.It method), 543

iter_depth_first() (trans-
late.storage.placeables.xliff.Ph method),
546

iter_depth_first() (trans-
late.storage.placeables.xliff.Sub method),
545

iter_depth_first() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

iter_depth_first() (trans-
late.storage.placeables.xliff.X method), 537

J
ja (class in translate.lang.ja), 371
java_utf8_properties_encode() (in module

translate.misc.quote), 397
javafile (class in translate.storage.properties), 584
javapropertiesencode() (in module trans-

late.misc.quote), 397
javautf16file (class in trans-

late.storage.properties), 586
javautf8file (class in translate.storage.properties),

587
join() (translate.misc.multistring.multistring method),

389

786 Index

Translate Toolkit Documentation, Release 3.0.0

joomlafile (class in translate.storage.properties),
589

json2po (class in translate.convert.json2po), 245
JsonFile (class in translate.storage.jsonl10n), 459
JsonNestedFile (class in trans-

late.storage.jsonl10n), 460
JsonNestedUnit (class in trans-

late.storage.jsonl10n), 462
JsonUnit (class in translate.storage.jsonl10n), 465

K
KdeChecker (class in translate.filters.checks), 294
kdecomments() (trans-

late.filters.checks.CCLicenseChecker method),
273

kdecomments() (trans-
late.filters.checks.DrupalChecker method),
279

kdecomments() (trans-
late.filters.checks.GnomeChecker method),
285

kdecomments() (translate.filters.checks.IOSChecker
method), 291

kdecomments() (translate.filters.checks.KdeChecker
method), 296

kdecomments() (translate.filters.checks.L20nChecker
method), 302

kdecomments() (trans-
late.filters.checks.LibreOfficeChecker method),
308

kdecomments() (trans-
late.filters.checks.MinimalChecker method),
314

kdecomments() (trans-
late.filters.checks.MozillaChecker method),
319

kdecomments() (trans-
late.filters.checks.OpenOfficeChecker method),
325

kdecomments() (trans-
late.filters.checks.ReducedChecker method),
331

kdecomments() (trans-
late.filters.checks.StandardChecker method),
337

kdecomments() (translate.filters.checks.TermChecker
method), 344

key_strip() (translate.storage.properties.Dialect
class method), 577

key_strip() (trans-
late.storage.properties.DialectFlex class
method), 577

key_strip() (trans-
late.storage.properties.DialectGaia class

method), 578
key_strip() (trans-

late.storage.properties.DialectGwt class
method), 578

key_strip() (trans-
late.storage.properties.DialectJava class
method), 579

key_strip() (trans-
late.storage.properties.DialectJavaUtf16
class method), 579

key_strip() (trans-
late.storage.properties.DialectJavaUtf8 class
method), 580

key_strip() (trans-
late.storage.properties.DialectJoomla class
method), 580

key_strip() (trans-
late.storage.properties.DialectMozilla class
method), 580

key_strip() (trans-
late.storage.properties.DialectSkype class
method), 581

key_strip() (trans-
late.storage.properties.DialectStrings class
method), 581

key_strip() (trans-
late.storage.properties.DialectStringsUtf8
class method), 582

keys() (translate.misc.dictutils.cidict method), 387
keys() (translate.storage.oo.unormalizechar method),

498
khmerpunc (translate.lang.km.km attribute), 373
km (class in translate.lang.km), 372
kn (class in translate.lang.kn), 373
ko (class in translate.lang.ko), 374

L
L20nChecker (class in translate.filters.checks), 300
labelsuffixes (in module translate.storage.dtd),

425
labelsuffixes (in module trans-

late.storage.properties), 591
lang2po (class in translate.convert.mozlang2po), 246
lang_codes (in module translate.lang.poedit), 378
lang_names (in module translate.lang.poedit), 378
LANG_TEAM_CONTACT_SNIPPETS (in module trans-

late.lang.team), 381
LangStore (class in translate.storage.mozilla_lang),

485
LanguageError, 649
languagematch() (in module translate.lang.data),

362
languages (in module translate.lang.data), 362
LangUnit (class in translate.storage.mozilla_lang), 486

Index 787

Translate Toolkit Documentation, Release 3.0.0

LaravelPHPFile (class in translate.storage.php), 549
LaravelPHPUnit (class in translate.storage.php), 551
lastChild (translate.misc.ourdom.Document at-

tribute), 395
lastChild (translate.misc.ourdom.Element attribute),

395
launch_server() (in module translate.misc.wsgi),

398
length_difference() (translate.lang.af.af class

method), 355
length_difference() (translate.lang.am.am class

method), 356
length_difference() (translate.lang.ar.ar class

method), 357
length_difference() (translate.lang.bn.bn class

method), 357
length_difference() (trans-

late.lang.code_or.code_or class method),
358

length_difference() (trans-
late.lang.common.Common class method),
360

length_difference() (translate.lang.de.de class
method), 364

length_difference() (translate.lang.el.el class
method), 364

length_difference() (translate.lang.es.es class
method), 365

length_difference() (translate.lang.fa.fa class
method), 366

length_difference() (translate.lang.fi.fi class
method), 367

length_difference() (translate.lang.fr.fr class
method), 368

length_difference() (translate.lang.gu.gu class
method), 369

length_difference() (translate.lang.he.he class
method), 369

length_difference() (translate.lang.hi.hi class
method), 370

length_difference() (translate.lang.hy.hy class
method), 371

length_difference() (translate.lang.ja.ja class
method), 372

length_difference() (translate.lang.km.km class
method), 373

length_difference() (translate.lang.kn.kn class
method), 373

length_difference() (translate.lang.ko.ko class
method), 374

length_difference() (translate.lang.ml.ml class
method), 375

length_difference() (translate.lang.mr.mr class
method), 376

length_difference() (translate.lang.ne.ne class
method), 376

length_difference() (translate.lang.pa.pa class
method), 377

length_difference() (translate.lang.si.si class
method), 379

length_difference() (translate.lang.st.st class
method), 379

length_difference() (translate.lang.sv.sv class
method), 380

length_difference() (translate.lang.ta.ta class
method), 381

length_difference() (translate.lang.te.te class
method), 382

length_difference() (translate.lang.th.th class
method), 383

length_difference() (translate.lang.ug.ug class
method), 384

length_difference() (translate.lang.ur.ur class
method), 384

length_difference() (translate.lang.vi.vi class
method), 385

length_difference() (translate.lang.zh.zh class
method), 386

LibreOfficeChecker (class in trans-
late.filters.checks), 306

LISAfile (class in translate.storage.lisa), 473
LISAunit (class in translate.storage.lisa), 475
listseperator (translate.lang.common.Common at-

tribute), 360
listsubfiles() (translate.storage.oo.oomultifile

method), 498
ljust() (translate.misc.multistring.multistring

method), 389
load() (translate.storage.bundleprojstore.BundleProjectStore

method), 407
load() (translate.storage.projstore.ProjectStore

method), 575
localName (translate.misc.ourdom.Document at-

tribute), 395
localName (translate.misc.ourdom.Element attribute),

395
long() (translate.filters.checks.CCLicenseChecker

method), 273
long() (translate.filters.checks.DrupalChecker

method), 279
long() (translate.filters.checks.GnomeChecker

method), 285
long() (translate.filters.checks.IOSChecker method),

291
long() (translate.filters.checks.KdeChecker method),

296
long() (translate.filters.checks.L20nChecker method),

302

788 Index

Translate Toolkit Documentation, Release 3.0.0

long() (translate.filters.checks.LibreOfficeChecker
method), 308

long() (translate.filters.checks.MinimalChecker
method), 314

long() (translate.filters.checks.MozillaChecker
method), 320

long() (translate.filters.checks.OpenOfficeChecker
method), 325

long() (translate.filters.checks.ReducedChecker
method), 331

long() (translate.filters.checks.StandardChecker
method), 337

long() (translate.filters.checks.TermChecker method),
344

lower() (translate.misc.multistring.multistring
method), 389

lsep (in module translate.storage.pypo), 602
lstrip() (translate.misc.multistring.multistring

method), 389

M
main() (in module translate.tools.phppo2pypo), 697
main() (in module translate.tools.pydiff), 713
main() (in module translate.tools.pypo2phppo), 713
make_postore_adder() (in module trans-

late.storage.xml_extract.extract), 694
makeheader() (translate.storage.mo.mofile method),

480
makeheader() (translate.storage.pocommon.pofile

method), 560
makeheader() (translate.storage.poheader.poheader

method), 565
makeheader() (translate.storage.poxliff.PoXliffFile

method), 568
makeheader() (translate.storage.pypo.pofile method),

604
makeheaderdict() (translate.storage.mo.mofile

method), 480
makeheaderdict() (trans-

late.storage.pocommon.pofile method), 560
makeheaderdict() (trans-

late.storage.poheader.poheader method),
565

makeheaderdict() (trans-
late.storage.poxliff.PoXliffFile method), 568

makeheaderdict() (translate.storage.pypo.pofile
method), 604

makeindex() (translate.convert.csv2po.csv2po
method), 243

makeindex() (translate.storage.base.TranslationStore
method), 402

makeindex() (translate.storage.catkeys.CatkeysFile
method), 409

makeindex() (translate.storage.csvl10n.csvfile
method), 414

makeindex() (translate.storage.dtd.dtdfile method),
421

makeindex() (translate.storage.html.htmlfile method),
430

makeindex() (translate.storage.html.POHTMLParser
method), 427

makeindex() (translate.storage.ical.icalfile method),
435

makeindex() (translate.storage.ini.inifile method),
440

makeindex() (trans-
late.storage.jsonl10n.ARBJsonFile method),
445

makeindex() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

makeindex() (translate.storage.jsonl10n.I18NextFile
method), 455

makeindex() (translate.storage.jsonl10n.JsonFile
method), 460

makeindex() (trans-
late.storage.jsonl10n.JsonNestedFile method),
461

makeindex() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 469

makeindex() (translate.storage.lisa.LISAfile method),
474

makeindex() (translate.storage.mo.mofile method),
480

makeindex() (trans-
late.storage.mozilla_lang.LangStore method),
486

makeindex() (translate.storage.omegat.OmegaTFile
method), 491

makeindex() (trans-
late.storage.omegat.OmegaTFileTab method),
492

makeindex() (translate.storage.php.LaravelPHPFile
method), 550

makeindex() (translate.storage.php.phpfile method),
555

makeindex() (translate.storage.pocommon.pofile
method), 560

makeindex() (translate.storage.poxliff.PoXliffFile
method), 568

makeindex() (translate.storage.properties.gwtfile
method), 583

makeindex() (translate.storage.properties.javafile
method), 585

makeindex() (trans-
late.storage.properties.javautf16file method),

Index 789

Translate Toolkit Documentation, Release 3.0.0

587
makeindex() (translate.storage.properties.javautf8file

method), 588
makeindex() (translate.storage.properties.joomlafile

method), 590
makeindex() (translate.storage.properties.propfile

method), 592
makeindex() (translate.storage.properties.stringsfile

method), 599
makeindex() (trans-

late.storage.properties.stringsutf8file method),
601

makeindex() (translate.storage.pypo.pofile method),
604

makeindex() (translate.storage.qm.qmfile method),
610

makeindex() (translate.storage.qph.QphFile method),
615

makeindex() (translate.storage.rc.rcfile method), 621
makeindex() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 628

makeindex() (trans-
late.storage.subtitles.MicroDVDFile method),
629

makeindex() (translate.storage.subtitles.SubRipFile
method), 631

makeindex() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

makeindex() (translate.storage.subtitles.SubtitleFile
method), 634

makeindex() (translate.storage.tbx.tbxfile method),
639

makeindex() (translate.storage.tiki.TikiStore method),
645

makeindex() (translate.storage.tmx.tmxfile method),
650

makeindex() (trans-
late.storage.trados.TradosTxtTmFile method),
659

makeindex() (translate.storage.ts2.tsfile method), 661
makeindex() (translate.storage.txt.TxtFile method),

666
makeindex() (translate.storage.utx.UtxFile method),

672
makeindex() (trans-

late.storage.wordfast.WordfastTMFile method),
682

makeindex() (translate.storage.xliff.xlifffile method),
688

makekey() (in module translate.storage.oo), 497
makeobsolete() (trans-

late.storage.base.TranslationUnit method),

405
makeobsolete() (trans-

late.storage.catkeys.CatkeysUnit method),
412

makeobsolete() (translate.storage.csvl10n.csvunit
method), 417

makeobsolete() (translate.storage.dtd.dtdunit
method), 423

makeobsolete() (translate.storage.html.htmlunit
method), 432

makeobsolete() (translate.storage.ical.icalunit
method), 438

makeobsolete() (translate.storage.ini.iniunit
method), 442

makeobsolete() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

makeobsolete() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

makeobsolete() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

makeobsolete() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

makeobsolete() (trans-
late.storage.jsonl10n.JsonUnit method),
467

makeobsolete() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

makeobsolete() (translate.storage.lisa.LISAunit
method), 477

makeobsolete() (translate.storage.mo.mounit
method), 483

makeobsolete() (trans-
late.storage.mozilla_lang.LangUnit method),
488

makeobsolete() (trans-
late.storage.omegat.OmegaTUnit method),
495

makeobsolete() (trans-
late.storage.php.LaravelPHPUnit method),
553

makeobsolete() (translate.storage.php.phpunit
method), 558

makeobsolete() (trans-
late.storage.pocommon.pounit method),
563

makeobsolete() (trans-
late.storage.poxliff.PoXliffUnit method),
572

makeobsolete() (trans-

790 Index

Translate Toolkit Documentation, Release 3.0.0

late.storage.properties.proppluralunit method),
594

makeobsolete() (trans-
late.storage.properties.propunit method),
597

makeobsolete() (translate.storage.pypo.pounit
method), 607

makeobsolete() (translate.storage.qm.qmunit
method), 613

makeobsolete() (translate.storage.qph.QphUnit
method), 618

makeobsolete() (translate.storage.rc.rcunit
method), 624

makeobsolete() (trans-
late.storage.subtitles.SubtitleUnit method),
637

makeobsolete() (translate.storage.tbx.tbxunit
method), 642

makeobsolete() (translate.storage.tiki.TikiUnit
method), 648

makeobsolete() (translate.storage.tmx.tmxunit
method), 653

makeobsolete() (trans-
late.storage.trados.TradosUnit method),
657

makeobsolete() (translate.storage.ts2.tsunit
method), 664

makeobsolete() (translate.storage.txt.TxtUnit
method), 669

makeobsolete() (translate.storage.utx.UtxUnit
method), 675

makeobsolete() (trans-
late.storage.wordfast.WordfastUnit method),
685

makeobsolete() (translate.storage.xliff.xliffunit
method), 692

maketrans() (translate.misc.multistring.multistring
static method), 390

ManHelpFormatter (class in trans-
late.misc.optrecurse), 391

ManPageOption (class in translate.misc.optrecurse),
391

map() (translate.storage.placeables.base.Bpt method),
501

map() (translate.storage.placeables.base.Bx method),
509

map() (translate.storage.placeables.base.Ept method),
502

map() (translate.storage.placeables.base.Ex method),
510

map() (translate.storage.placeables.base.G method),
507

map() (translate.storage.placeables.base.It method),
505

map() (translate.storage.placeables.base.Ph method),
504

map() (translate.storage.placeables.base.Sub method),
513

map() (translate.storage.placeables.base.X method),
512

map() (translate.storage.placeables.general.AltAttrPlaceable
method), 515

map() (translate.storage.placeables.general.XMLEntityPlaceable
method), 517

map() (translate.storage.placeables.general.XMLTagPlaceable
method), 519

map() (translate.storage.placeables.interfaces.BasePlaceable
method), 521

map() (translate.storage.placeables.interfaces.InvisiblePlaceable
method), 522

map() (translate.storage.placeables.interfaces.MaskingPlaceable
method), 524

map() (translate.storage.placeables.interfaces.ReplacementPlaceable
method), 526

map() (translate.storage.placeables.interfaces.SubflowPlaceable
method), 527

map() (translate.storage.placeables.strelem.StringElem
method), 530

map() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 532

map() (translate.storage.placeables.xliff.Bpt method),
534

map() (translate.storage.placeables.xliff.Bx method),
538

map() (translate.storage.placeables.xliff.Ept method),
535

map() (translate.storage.placeables.xliff.Ex method),
540

map() (translate.storage.placeables.xliff.G method), 542
map() (translate.storage.placeables.xliff.It method), 543
map() (translate.storage.placeables.xliff.Ph method),

546
map() (translate.storage.placeables.xliff.Sub method),

545
map() (translate.storage.placeables.xliff.UnknownXML

method), 548
map() (translate.storage.placeables.xliff.X method), 537
markapproved() (trans-

late.storage.poxliff.PoXliffUnit method),
572

markapproved() (translate.storage.xliff.xliffunit
method), 692

markfuzzy() (translate.storage.base.TranslationUnit
method), 405

markfuzzy() (translate.storage.catkeys.CatkeysUnit
method), 412

markfuzzy() (translate.storage.csvl10n.csvunit
method), 417

Index 791

Translate Toolkit Documentation, Release 3.0.0

markfuzzy() (translate.storage.dtd.dtdunit method),
423

markfuzzy() (translate.storage.html.htmlunit
method), 432

markfuzzy() (translate.storage.ical.icalunit method),
438

markfuzzy() (translate.storage.ini.iniunit method),
443

markfuzzy() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

markfuzzy() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

markfuzzy() (translate.storage.jsonl10n.I18NextUnit
method), 458

markfuzzy() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

markfuzzy() (translate.storage.jsonl10n.JsonUnit
method), 467

markfuzzy() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

markfuzzy() (translate.storage.lisa.LISAunit
method), 477

markfuzzy() (translate.storage.mo.mounit method),
484

markfuzzy() (trans-
late.storage.mozilla_lang.LangUnit method),
488

markfuzzy() (translate.storage.omegat.OmegaTUnit
method), 495

markfuzzy() (translate.storage.php.LaravelPHPUnit
method), 553

markfuzzy() (translate.storage.php.phpunit method),
558

markfuzzy() (translate.storage.pocommon.pounit
method), 563

markfuzzy() (translate.storage.poxliff.PoXliffUnit
method), 572

markfuzzy() (trans-
late.storage.properties.proppluralunit method),
594

markfuzzy() (translate.storage.properties.propunit
method), 597

markfuzzy() (translate.storage.pypo.pounit method),
607

markfuzzy() (translate.storage.qm.qmunit method),
613

markfuzzy() (translate.storage.qph.QphUnit
method), 618

markfuzzy() (translate.storage.rc.rcunit method), 624
markfuzzy() (translate.storage.subtitles.SubtitleUnit

method), 637
markfuzzy() (translate.storage.tbx.tbxunit method),

642
markfuzzy() (translate.storage.tiki.TikiUnit method),

648
markfuzzy() (translate.storage.tmx.tmxunit method),

653
markfuzzy() (translate.storage.trados.TradosUnit

method), 657
markfuzzy() (translate.storage.ts2.tsunit method),

664
markfuzzy() (translate.storage.txt.TxtUnit method),

669
markfuzzy() (translate.storage.utx.UtxUnit method),

675
markfuzzy() (trans-

late.storage.wordfast.WordfastUnit method),
685

markfuzzy() (translate.storage.xliff.xliffunit method),
692

markreviewneeded() (trans-
late.storage.base.TranslationUnit method),
406

markreviewneeded() (trans-
late.storage.catkeys.CatkeysUnit method),
412

markreviewneeded() (trans-
late.storage.csvl10n.csvunit method), 417

markreviewneeded() (translate.storage.dtd.dtdunit
method), 424

markreviewneeded() (trans-
late.storage.html.htmlunit method), 432

markreviewneeded() (trans-
late.storage.ical.icalunit method), 438

markreviewneeded() (translate.storage.ini.iniunit
method), 443

markreviewneeded() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

markreviewneeded() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

markreviewneeded() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

markreviewneeded() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
464

markreviewneeded() (trans-
late.storage.jsonl10n.JsonUnit method),
467

markreviewneeded() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

792 Index

Translate Toolkit Documentation, Release 3.0.0

markreviewneeded() (trans-
late.storage.lisa.LISAunit method), 477

markreviewneeded() (translate.storage.mo.mounit
method), 484

markreviewneeded() (trans-
late.storage.mozilla_lang.LangUnit method),
488

markreviewneeded() (trans-
late.storage.omegat.OmegaTUnit method),
495

markreviewneeded() (trans-
late.storage.php.LaravelPHPUnit method),
553

markreviewneeded() (trans-
late.storage.php.phpunit method), 558

markreviewneeded() (trans-
late.storage.pocommon.pounit method),
563

markreviewneeded() (trans-
late.storage.poxliff.PoXliffUnit method),
572

markreviewneeded() (trans-
late.storage.properties.proppluralunit method),
594

markreviewneeded() (trans-
late.storage.properties.propunit method),
597

markreviewneeded() (trans-
late.storage.pypo.pounit method), 607

markreviewneeded() (translate.storage.qm.qmunit
method), 613

markreviewneeded() (trans-
late.storage.qph.QphUnit method), 618

markreviewneeded() (translate.storage.rc.rcunit
method), 624

markreviewneeded() (trans-
late.storage.subtitles.SubtitleUnit method),
637

markreviewneeded() (translate.storage.tbx.tbxunit
method), 642

markreviewneeded() (trans-
late.storage.tiki.TikiUnit method), 648

markreviewneeded() (trans-
late.storage.tmx.tmxunit method), 653

markreviewneeded() (trans-
late.storage.trados.TradosUnit method),
657

markreviewneeded() (translate.storage.ts2.tsunit
method), 664

markreviewneeded() (translate.storage.txt.TxtUnit
method), 669

markreviewneeded() (trans-
late.storage.utx.UtxUnit method), 675

markreviewneeded() (trans-

late.storage.wordfast.WordfastUnit method),
685

markreviewneeded() (trans-
late.storage.xliff.xliffunit method), 692

MaskingPlaceable (class in trans-
late.storage.placeables.interfaces), 523

match_entities() (trans-
late.convert.accesskey.UnitMixer method),
234

match_fuzzy() (in module trans-
late.tools.pretranslate), 712

match_header() (translate.storage.csvl10n.csvunit
method), 417

match_source() (in module trans-
late.tools.pretranslate), 712

match_template_id() (in module trans-
late.tools.pretranslate), 712

match_template_location() (in module trans-
late.tools.pretranslate), 712

matcher (class in translate.search.match), 399
matchers (translate.storage.placeables.terminology.TerminologyPlaceable

attribute), 532
matches() (translate.search.match.matcher method),

400
matches() (translate.search.match.terminologymatcher

method), 400
memory() (in module translate.tools.pretranslate), 712
merge() (translate.storage.base.TranslationUnit

method), 406
merge() (translate.storage.catkeys.CatkeysUnit

method), 412
merge() (translate.storage.csvl10n.csvunit method),

418
merge() (translate.storage.dtd.dtdunit method), 424
merge() (translate.storage.html.htmlunit method), 433
merge() (translate.storage.ical.icalunit method), 438
merge() (translate.storage.ini.iniunit method), 443
merge() (translate.storage.jsonl10n.ARBJsonUnit

method), 448
merge() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 453
merge() (translate.storage.jsonl10n.I18NextUnit

method), 458
merge() (translate.storage.jsonl10n.JsonNestedUnit

method), 464
merge() (translate.storage.jsonl10n.JsonUnit method),

468
merge() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 472
merge() (translate.storage.lisa.LISAunit method), 478
merge() (translate.storage.mo.mounit method), 484
merge() (translate.storage.mozilla_lang.LangUnit

method), 489
merge() (translate.storage.omegat.OmegaTUnit

Index 793

Translate Toolkit Documentation, Release 3.0.0

method), 495
merge() (translate.storage.php.LaravelPHPUnit

method), 553
merge() (translate.storage.php.phpunit method), 558
merge() (translate.storage.pocommon.pounit method),

563
merge() (translate.storage.poxliff.PoXliffUnit method),

573
merge() (translate.storage.properties.proppluralunit

method), 595
merge() (translate.storage.properties.propunit

method), 598
merge() (translate.storage.pypo.pounit method), 607
merge() (translate.storage.qm.qmunit method), 613
merge() (translate.storage.qph.QphUnit method), 618
merge() (translate.storage.rc.rcunit method), 624
merge() (translate.storage.subtitles.SubtitleUnit

method), 637
merge() (translate.storage.tbx.tbxunit method), 643
merge() (translate.storage.tiki.TikiUnit method), 648
merge() (translate.storage.tmx.tmxunit method), 653
merge() (translate.storage.trados.TradosUnit method),

657
merge() (translate.storage.ts2.tsunit method), 664
merge() (translate.storage.txt.TxtUnit method), 669
merge() (translate.storage.utx.UtxUnit method), 675
merge() (translate.storage.wordfast.WordfastUnit

method), 685
merge() (translate.storage.xliff.xliffunit method), 692
merge_on (translate.storage.base.TranslationStore at-

tribute), 402
merge_on (translate.storage.catkeys.CatkeysFile

attribute), 409
merge_on (translate.storage.csvl10n.csvfile attribute),

414
merge_on (translate.storage.dtd.dtdfile attribute), 421
merge_on (translate.storage.html.htmlfile attribute),

430
merge_on (translate.storage.html.POHTMLParser at-

tribute), 427
merge_on (translate.storage.ical.icalfile attribute), 435
merge_on (translate.storage.ini.inifile attribute), 440
merge_on (translate.storage.jsonl10n.ARBJsonFile at-

tribute), 445
merge_on (translate.storage.jsonl10n.GoI18NJsonFile

attribute), 450
merge_on (translate.storage.jsonl10n.I18NextFile at-

tribute), 455
merge_on (translate.storage.jsonl10n.JsonFile at-

tribute), 460
merge_on (translate.storage.jsonl10n.JsonNestedFile

attribute), 461
merge_on (translate.storage.jsonl10n.WebExtensionJsonFile

attribute), 469

merge_on (translate.storage.lisa.LISAfile attribute),
474

merge_on (translate.storage.mo.mofile attribute), 480
merge_on (translate.storage.mozilla_lang.LangStore

attribute), 486
merge_on (translate.storage.omegat.OmegaTFile at-

tribute), 491
merge_on (translate.storage.omegat.OmegaTFileTab

attribute), 492
merge_on (translate.storage.php.LaravelPHPFile at-

tribute), 550
merge_on (translate.storage.php.phpfile attribute), 555
merge_on (translate.storage.pocommon.pofile at-

tribute), 560
merge_on (translate.storage.poxliff.PoXliffFile at-

tribute), 568
merge_on (translate.storage.properties.gwtfile at-

tribute), 583
merge_on (translate.storage.properties.javafile at-

tribute), 585
merge_on (translate.storage.properties.javautf16file at-

tribute), 587
merge_on (translate.storage.properties.javautf8file at-

tribute), 588
merge_on (translate.storage.properties.joomlafile at-

tribute), 590
merge_on (translate.storage.properties.propfile at-

tribute), 592
merge_on (translate.storage.properties.stringsfile at-

tribute), 599
merge_on (translate.storage.properties.stringsutf8file

attribute), 601
merge_on (translate.storage.pypo.pofile attribute), 604
merge_on (translate.storage.qm.qmfile attribute), 610
merge_on (translate.storage.qph.QphFile attribute),

615
merge_on (translate.storage.rc.rcfile attribute), 621
merge_on (translate.storage.subtitles.AdvSubStationAlphaFile

attribute), 628
merge_on (translate.storage.subtitles.MicroDVDFile

attribute), 629
merge_on (translate.storage.subtitles.SubRipFile at-

tribute), 631
merge_on (translate.storage.subtitles.SubStationAlphaFile

attribute), 633
merge_on (translate.storage.subtitles.SubtitleFile at-

tribute), 634
merge_on (translate.storage.tbx.tbxfile attribute), 639
merge_on (translate.storage.tiki.TikiStore attribute),

645
merge_on (translate.storage.tmx.tmxfile attribute), 650
merge_on (translate.storage.trados.TradosTxtTmFile

attribute), 659
merge_on (translate.storage.ts2.tsfile attribute), 661

794 Index

Translate Toolkit Documentation, Release 3.0.0

merge_on (translate.storage.txt.TxtFile attribute), 666
merge_on (translate.storage.utx.UtxFile attribute), 672
merge_on (translate.storage.wordfast.WordfastTMFile

attribute), 682
merge_on (translate.storage.xliff.xlifffile attribute), 689
merge_store() (in module translate.convert.sub2po),

267
merge_store() (translate.convert.json2po.json2po

method), 246
merge_store() (translate.convert.rc2po.rc2po

method), 267
merge_store() (translate.convert.resx2po.resx2po

method), 267
merge_stores() (translate.convert.ical2po.ical2po

method), 244
merge_stores() (translate.convert.ini2po.ini2po

method), 245
merge_stores() (trans-

late.convert.mozlang2po.lang2po method),
247

merge_stores() (translate.convert.php2po.php2po
method), 248

merge_stores() (translate.convert.po2ical.po2ical
method), 249

merge_stores() (translate.convert.po2ini.po2ini
method), 250

merge_stores() (translate.convert.po2txt.po2txt
method), 260

merge_stores() (trans-
late.convert.po2yaml.po2yaml method),
265

merge_stores() (translate.convert.txt2po.txt2po
method), 269

merge_stores() (trans-
late.convert.yaml2po.yaml2po method),
270

mergeheaders() (translate.storage.mo.mofile
method), 481

mergeheaders() (translate.storage.pocommon.pofile
method), 560

mergeheaders() (trans-
late.storage.poheader.poheader method),
565

mergeheaders() (translate.storage.poxliff.PoXliffFile
method), 569

mergeheaders() (translate.storage.pypo.pofile
method), 604

mergestore() (translate.convert.po2html.po2html
method), 249

mergestore() (translate.convert.prop2po.prop2po
method), 266

mergestores() (in module translate.tools.pomerge),
705

MessageProgressBar (class in trans-

late.misc.progressbar), 396
MicroDVDFile (class in translate.storage.subtitles),

628
Mimetypes (translate.storage.base.TranslationStore at-

tribute), 401
MinimalChecker (class in translate.filters.checks),

312
miscpunc (translate.lang.common.Common attribute),

361
mix_units() (translate.convert.accesskey.UnitMixer

method), 234
mkdir() (translate.convert.convert.ArchiveConvertOptionParser

method), 237
mkdir() (translate.convert.convert.ConvertOptionParser

method), 240
mkdir() (translate.convert.po2moz.MozConvertOptionParser

method), 252
mkdir() (translate.convert.po2tmx.TmxOptionParser

method), 258
mkdir() (translate.convert.po2wordfast.WfOptionParser

method), 262
mkdir() (translate.filters.pofilter.FilterOptionParser

method), 352
mkdir() (translate.misc.optrecurse.RecursiveOptionParser

method), 393
mkdir() (translate.tools.poconflicts.ConflictOptionParser

method), 699
mkdir() (translate.tools.pogrep.GrepOptionParser

method), 703
mkdir() (translate.tools.porestructure.SplitOptionParser

method), 706
mkdir() (translate.tools.poterminology.TerminologyOptionParser

method), 710
ml (class in translate.lang.ml), 375
mofile (class in translate.storage.mo), 479
mounit (class in translate.storage.mo), 482
mounpack() (in module translate.storage.mo), 484
MozConvertOptionParser (class in trans-

late.convert.po2moz), 251
mozilla_pluralequation (trans-

late.lang.common.Common attribute), 361
MozillaChecker (class in translate.filters.checks),

317
mozillaescapemarginspaces() (in module

translate.misc.quote), 397
mr (class in translate.lang.mr), 375
msgidcomment (translate.storage.pypo.pounit at-

tribute), 607
multifilter() (in module translate.filters.helpers),

350
multifiltertestmethod() (in module trans-

late.filters.helpers), 350
multistring (class in translate.misc.multistring), 387
multistring_to_rich() (trans-

Index 795

Translate Toolkit Documentation, Release 3.0.0

late.storage.base.TranslationUnit method),
406

multistring_to_rich() (trans-
late.storage.catkeys.CatkeysUnit method),
412

multistring_to_rich() (trans-
late.storage.csvl10n.csvunit method), 418

multistring_to_rich() (trans-
late.storage.dtd.dtdunit method), 424

multistring_to_rich() (trans-
late.storage.html.htmlunit method), 433

multistring_to_rich() (trans-
late.storage.ical.icalunit method), 438

multistring_to_rich() (trans-
late.storage.ini.iniunit method), 443

multistring_to_rich() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
448

multistring_to_rich() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

multistring_to_rich() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

multistring_to_rich() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
465

multistring_to_rich() (trans-
late.storage.jsonl10n.JsonUnit method),
468

multistring_to_rich() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 472

multistring_to_rich() (trans-
late.storage.lisa.LISAunit method), 478

multistring_to_rich() (trans-
late.storage.mo.mounit method), 484

multistring_to_rich() (trans-
late.storage.mozilla_lang.LangUnit method),
489

multistring_to_rich() (trans-
late.storage.omegat.OmegaTUnit method),
495

multistring_to_rich() (trans-
late.storage.php.LaravelPHPUnit method),
553

multistring_to_rich() (trans-
late.storage.php.phpunit method), 558

multistring_to_rich() (trans-
late.storage.pocommon.pounit method),
564

multistring_to_rich() (trans-
late.storage.poxliff.PoXliffUnit method),
573

multistring_to_rich() (trans-
late.storage.properties.proppluralunit method),
595

multistring_to_rich() (trans-
late.storage.properties.propunit method),
598

multistring_to_rich() (trans-
late.storage.pypo.pounit method), 607

multistring_to_rich() (trans-
late.storage.qm.qmunit method), 613

multistring_to_rich() (trans-
late.storage.qph.QphUnit method), 618

multistring_to_rich() (trans-
late.storage.rc.rcunit method), 624

multistring_to_rich() (trans-
late.storage.subtitles.SubtitleUnit method),
637

multistring_to_rich() (trans-
late.storage.tbx.tbxunit method), 643

multistring_to_rich() (trans-
late.storage.tiki.TikiUnit method), 648

multistring_to_rich() (trans-
late.storage.tmx.tmxunit method), 653

multistring_to_rich() (trans-
late.storage.trados.TradosUnit method),
657

multistring_to_rich() (trans-
late.storage.ts2.tsunit method), 664

multistring_to_rich() (trans-
late.storage.txt.TxtUnit method), 670

multistring_to_rich() (trans-
late.storage.utx.UtxUnit method), 675

multistring_to_rich() (trans-
late.storage.wordfast.WordfastUnit method),
685

multistring_to_rich() (trans-
late.storage.xliff.xliffunit class method),
692

musttranslatewords() (trans-
late.filters.checks.CCLicenseChecker method),
273

musttranslatewords() (trans-
late.filters.checks.DrupalChecker method),
279

musttranslatewords() (trans-
late.filters.checks.GnomeChecker method),
285

musttranslatewords() (trans-
late.filters.checks.IOSChecker method), 291

musttranslatewords() (trans-
late.filters.checks.KdeChecker method),
297

musttranslatewords() (trans-
late.filters.checks.L20nChecker method),

796 Index

Translate Toolkit Documentation, Release 3.0.0

302
musttranslatewords() (trans-

late.filters.checks.LibreOfficeChecker method),
308

musttranslatewords() (trans-
late.filters.checks.MinimalChecker method),
314

musttranslatewords() (trans-
late.filters.checks.MozillaChecker method),
320

musttranslatewords() (trans-
late.filters.checks.OpenOfficeChecker method),
325

musttranslatewords() (trans-
late.filters.checks.ReducedChecker method),
331

musttranslatewords() (trans-
late.filters.checks.StandardChecker method),
337

musttranslatewords() (trans-
late.filters.checks.TermChecker method),
344

N
Name (translate.storage.base.TranslationStore attribute),

401
namespaced() (in module trans-

late.misc.xml_helpers), 398
namespaced() (translate.storage.lisa.LISAfile

method), 474
namespaced() (translate.storage.lisa.LISAunit

method), 478
namespaced() (translate.storage.poxliff.PoXliffFile

method), 569
namespaced() (translate.storage.poxliff.PoXliffUnit

method), 573
namespaced() (translate.storage.qph.QphFile

method), 615
namespaced() (translate.storage.qph.QphUnit

method), 619
namespaced() (translate.storage.tbx.tbxfile method),

639
namespaced() (translate.storage.tbx.tbxunit method),

643
namespaced() (translate.storage.tmx.tmxfile method),

650
namespaced() (translate.storage.tmx.tmxunit

method), 653
namespaced() (translate.storage.ts2.tsfile method),

661
namespaced() (translate.storage.ts2.tsunit method),

664
namespaced() (translate.storage.xliff.xlifffile method),

689

namespaced() (translate.storage.xliff.xliffunit
method), 692

native_distance() (in module trans-
late.search.lshtein), 399

ne (class in translate.lang.ne), 376
newlines() (translate.filters.checks.CCLicenseChecker

method), 273
newlines() (translate.filters.checks.DrupalChecker

method), 279
newlines() (translate.filters.checks.GnomeChecker

method), 285
newlines() (translate.filters.checks.IOSChecker

method), 291
newlines() (translate.filters.checks.KdeChecker

method), 297
newlines() (translate.filters.checks.L20nChecker

method), 303
newlines() (translate.filters.checks.LibreOfficeChecker

method), 308
newlines() (translate.filters.checks.MinimalChecker

method), 314
newlines() (translate.filters.checks.MozillaChecker

method), 320
newlines() (translate.filters.checks.OpenOfficeChecker

method), 325
newlines() (translate.filters.checks.ReducedChecker

method), 331
newlines() (translate.filters.checks.StandardChecker

method), 337
newlines() (translate.filters.checks.TermChecker

method), 344
NoInitialStateError, 686
NoProgressBar (class in translate.misc.progressbar),

396
normalize() (in module translate.lang.data), 363
normalize_space() (in module trans-

late.misc.xml_helpers), 398
normalize_xml_space() (in module trans-

late.misc.xml_helpers), 398
normalized_unicode() (in module trans-

late.lang.data), 363
normalizefilename() (in module trans-

late.storage.oo), 497
notranslatewords() (trans-

late.filters.checks.CCLicenseChecker method),
273

notranslatewords() (trans-
late.filters.checks.DrupalChecker method),
279

notranslatewords() (trans-
late.filters.checks.GnomeChecker method),
285

notranslatewords() (trans-
late.filters.checks.IOSChecker method), 291

Index 797

Translate Toolkit Documentation, Release 3.0.0

notranslatewords() (trans-
late.filters.checks.KdeChecker method),
297

notranslatewords() (trans-
late.filters.checks.L20nChecker method),
303

notranslatewords() (trans-
late.filters.checks.LibreOfficeChecker method),
308

notranslatewords() (trans-
late.filters.checks.MinimalChecker method),
314

notranslatewords() (trans-
late.filters.checks.MozillaChecker method),
320

notranslatewords() (trans-
late.filters.checks.OpenOfficeChecker method),
326

notranslatewords() (trans-
late.filters.checks.ReducedChecker method),
331

notranslatewords() (trans-
late.filters.checks.StandardChecker method),
337

notranslatewords() (trans-
late.filters.checks.TermChecker method),
344

nplurals (translate.lang.common.Common attribute),
361

nplurals() (translate.filters.checks.StandardUnitChecker
method), 341

numbers() (translate.filters.checks.CCLicenseChecker
method), 274

numbers() (translate.filters.checks.DrupalChecker
method), 280

numbers() (translate.filters.checks.GnomeChecker
method), 285

numbers() (translate.filters.checks.IOSChecker
method), 291

numbers() (translate.filters.checks.KdeChecker
method), 297

numbers() (translate.filters.checks.L20nChecker
method), 303

numbers() (translate.filters.checks.LibreOfficeChecker
method), 308

numbers() (translate.filters.checks.MinimalChecker
method), 314

numbers() (translate.filters.checks.MozillaChecker
method), 320

numbers() (translate.filters.checks.OpenOfficeChecker
method), 326

numbers() (translate.filters.checks.ReducedChecker
method), 331

numbers() (translate.filters.checks.StandardChecker

method), 337
numbers() (translate.filters.checks.TermChecker

method), 344
numbertranslate() (translate.lang.af.af class

method), 355
numbertranslate() (translate.lang.am.am class

method), 356
numbertranslate() (translate.lang.ar.ar class

method), 357
numbertranslate() (translate.lang.bn.bn class

method), 357
numbertranslate() (trans-

late.lang.code_or.code_or class method),
358

numbertranslate() (trans-
late.lang.common.Common class method),
361

numbertranslate() (translate.lang.de.de class
method), 364

numbertranslate() (translate.lang.el.el class
method), 364

numbertranslate() (translate.lang.es.es class
method), 365

numbertranslate() (translate.lang.fa.fa class
method), 366

numbertranslate() (translate.lang.fi.fi class
method), 367

numbertranslate() (translate.lang.fr.fr class
method), 368

numbertranslate() (translate.lang.gu.gu class
method), 369

numbertranslate() (translate.lang.he.he class
method), 369

numbertranslate() (translate.lang.hi.hi class
method), 370

numbertranslate() (translate.lang.hy.hy class
method), 371

numbertranslate() (translate.lang.ja.ja class
method), 372

numbertranslate() (translate.lang.km.km class
method), 373

numbertranslate() (translate.lang.kn.kn class
method), 373

numbertranslate() (translate.lang.ko.ko class
method), 374

numbertranslate() (translate.lang.ml.ml class
method), 375

numbertranslate() (translate.lang.mr.mr class
method), 376

numbertranslate() (translate.lang.ne.ne class
method), 376

numbertranslate() (translate.lang.pa.pa class
method), 377

numbertranslate() (translate.lang.si.si class

798 Index

Translate Toolkit Documentation, Release 3.0.0

method), 379
numbertranslate() (translate.lang.st.st class

method), 380
numbertranslate() (translate.lang.sv.sv class

method), 380
numbertranslate() (translate.lang.ta.ta class

method), 381
numbertranslate() (translate.lang.te.te class

method), 382
numbertranslate() (translate.lang.th.th class

method), 383
numbertranslate() (translate.lang.ug.ug class

method), 384
numbertranslate() (translate.lang.ur.ur class

method), 384
numbertranslate() (translate.lang.vi.vi class

method), 385
numbertranslate() (translate.lang.zh.zh class

method), 386
numbertuple (translate.lang.common.Common

attribute), 361
numstart() (translate.lang.af.af class method), 355
numstart() (translate.lang.am.am class method), 356
numstart() (translate.lang.ar.ar class method), 357
numstart() (translate.lang.bn.bn class method), 357
numstart() (translate.lang.code_or.code_or class

method), 358
numstart() (translate.lang.common.Common class

method), 361
numstart() (translate.lang.de.de class method), 364
numstart() (translate.lang.el.el class method), 364
numstart() (translate.lang.es.es class method), 365
numstart() (translate.lang.fa.fa class method), 366
numstart() (translate.lang.fi.fi class method), 367
numstart() (translate.lang.fr.fr class method), 368
numstart() (translate.lang.gu.gu class method), 369
numstart() (translate.lang.he.he class method), 369
numstart() (translate.lang.hi.hi class method), 370
numstart() (translate.lang.hy.hy class method), 371
numstart() (translate.lang.ja.ja class method), 372
numstart() (translate.lang.km.km class method), 373
numstart() (translate.lang.kn.kn class method), 373
numstart() (translate.lang.ko.ko class method), 374
numstart() (translate.lang.ml.ml class method), 375
numstart() (translate.lang.mr.mr class method), 376
numstart() (translate.lang.ne.ne class method), 376
numstart() (translate.lang.pa.pa class method), 377
numstart() (translate.lang.si.si class method), 379
numstart() (translate.lang.st.st class method), 380
numstart() (translate.lang.sv.sv class method), 380
numstart() (translate.lang.ta.ta class method), 381
numstart() (translate.lang.te.te class method), 382
numstart() (translate.lang.th.th class method), 383
numstart() (translate.lang.ug.ug class method), 384

numstart() (translate.lang.ur.ur class method), 384
numstart() (translate.lang.vi.vi class method), 385
numstart() (translate.lang.zh.zh class method), 386

O
OMEGAT_FIELDNAMES (in module trans-

late.storage.omegat), 490
OmegaTDialect (class in translate.storage.omegat),

490
OmegaTFile (class in translate.storage.omegat), 490
OmegaTFileTab (class in translate.storage.omegat),

491
OmegaTUnit (class in translate.storage.omegat), 493
oofile (class in translate.storage.oo), 497
ooline (class in translate.storage.oo), 497
oomultifile (class in translate.storage.oo), 498
oounit (class in translate.storage.oo), 498
openarchive() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 237

openarchive() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

openarchive() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

openinputfile() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

openinputfile() (trans-
late.convert.convert.ConvertOptionParser
method), 240

openinputfile() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

openinputfile() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

openinputfile() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

openinputfile() (trans-
late.filters.pofilter.FilterOptionParser method),
352

openinputfile() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

openinputfile() (translate.storage.oo.oomultifile
method), 498

openinputfile() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

openinputfile() (trans-
late.tools.pogrep.GrepOptionParser method),

Index 799

Translate Toolkit Documentation, Release 3.0.0

703
openinputfile() (trans-

late.tools.porestructure.SplitOptionParser
method), 706

openinputfile() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

OpenOfficeChecker (class in trans-
late.filters.checks), 323

openoutputfile() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

openoutputfile() (trans-
late.convert.convert.ConvertOptionParser
method), 240

openoutputfile() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

openoutputfile() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

openoutputfile() (trans-
late.convert.po2wordfast.WfOptionParser
method), 262

openoutputfile() (trans-
late.filters.pofilter.FilterOptionParser method),
352

openoutputfile() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

openoutputfile() (translate.storage.oo.oomultifile
method), 498

openoutputfile() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

openoutputfile() (trans-
late.tools.pogrep.GrepOptionParser method),
703

openoutputfile() (trans-
late.tools.porestructure.SplitOptionParser
method), 706

openoutputfile() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

opentemplatefile() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

opentemplatefile() (trans-
late.convert.convert.ConvertOptionParser
method), 240

opentemplatefile() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

opentemplatefile() (trans-

late.convert.po2tmx.TmxOptionParser
method), 258

opentemplatefile() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

opentemplatefile() (trans-
late.filters.pofilter.FilterOptionParser method),
352

opentemplatefile() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

opentemplatefile() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

opentemplatefile() (trans-
late.tools.pogrep.GrepOptionParser method),
703

opentemplatefile() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

opentemplatefile() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

opentempoutputfile() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

opentempoutputfile() (trans-
late.convert.convert.ConvertOptionParser
method), 240

opentempoutputfile() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

opentempoutputfile() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

opentempoutputfile() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

opentempoutputfile() (trans-
late.filters.pofilter.FilterOptionParser method),
352

opentempoutputfile() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

opentempoutputfile() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

opentempoutputfile() (trans-
late.tools.pogrep.GrepOptionParser method),
703

opentempoutputfile() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

opentempoutputfile() (trans-

800 Index

Translate Toolkit Documentation, Release 3.0.0

late.tools.poterminology.TerminologyOptionParser
method), 710

options() (translate.filters.checks.CCLicenseChecker
method), 274

options() (translate.filters.checks.DrupalChecker
method), 280

options() (translate.filters.checks.GnomeChecker
method), 286

options() (translate.filters.checks.IOSChecker
method), 291

options() (translate.filters.checks.KdeChecker
method), 297

options() (translate.filters.checks.L20nChecker
method), 303

options() (translate.filters.checks.LibreOfficeChecker
method), 309

options() (translate.filters.checks.MinimalChecker
method), 314

options() (translate.filters.checks.MozillaChecker
method), 320

options() (translate.filters.checks.OpenOfficeChecker
method), 326

options() (translate.filters.checks.ReducedChecker
method), 331

options() (translate.filters.checks.StandardChecker
method), 337

options() (translate.filters.checks.TermChecker
method), 344

outputconflicts() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

outputterminology() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

P
pa (class in translate.lang.pa), 377
parse() (in module translate.misc.ourdom), 396
parse() (in module trans-

late.storage.placeables.parse), 528
parse() (translate.storage.base.TranslationStore

method), 402
parse() (translate.storage.catkeys.CatkeysFile

method), 409
parse() (translate.storage.csvl10n.csvfile method), 415
parse() (translate.storage.dtd.dtdfile method), 421
parse() (translate.storage.dtd.dtdunit method), 424
parse() (translate.storage.html.htmlfile method), 430
parse() (translate.storage.html.POHTMLParser

method), 427
parse() (translate.storage.ical.icalfile method), 435
parse() (translate.storage.ini.inifile method), 440
parse() (translate.storage.jsonl10n.ARBJsonFile

method), 445

parse() (translate.storage.jsonl10n.GoI18NJsonFile
method), 450

parse() (translate.storage.jsonl10n.I18NextFile
method), 455

parse() (translate.storage.jsonl10n.JsonFile method),
460

parse() (translate.storage.jsonl10n.JsonNestedFile
method), 462

parse() (translate.storage.jsonl10n.WebExtensionJsonFile
method), 469

parse() (translate.storage.lisa.LISAfile method), 474
parse() (translate.storage.mo.mofile method), 481
parse() (translate.storage.mozilla_lang.LangStore

method), 486
parse() (translate.storage.omegat.OmegaTFile

method), 491
parse() (translate.storage.omegat.OmegaTFileTab

method), 492
parse() (translate.storage.oo.oofile method), 497
parse() (translate.storage.php.LaravelPHPFile

method), 550
parse() (translate.storage.php.phpfile method), 555
parse() (translate.storage.placeables.general.AltAttrPlaceable

class method), 515
parse() (translate.storage.placeables.general.XMLEntityPlaceable

class method), 517
parse() (translate.storage.placeables.general.XMLTagPlaceable

class method), 519
parse() (translate.storage.placeables.strelem.StringElem

class method), 530
parse() (translate.storage.placeables.terminology.TerminologyPlaceable

class method), 532
parse() (translate.storage.placeables.xliff.UnknownXML

class method), 548
parse() (translate.storage.pocommon.pofile method),

560
parse() (translate.storage.poxliff.PoXliffFile method),

569
parse() (translate.storage.properties.gwtfile method),

583
parse() (translate.storage.properties.javafile method),

585
parse() (translate.storage.properties.javautf16file

method), 587
parse() (translate.storage.properties.javautf8file

method), 588
parse() (translate.storage.properties.joomlafile

method), 590
parse() (translate.storage.properties.propfile method),

592
parse() (translate.storage.properties.stringsfile

method), 599
parse() (translate.storage.properties.stringsutf8file

method), 601

Index 801

Translate Toolkit Documentation, Release 3.0.0

parse() (translate.storage.pypo.pofile method), 604
parse() (translate.storage.qm.qmfile method), 610
parse() (translate.storage.qph.QphFile method), 615
parse() (translate.storage.rc.rcfile method), 621
parse() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 628
parse() (translate.storage.subtitles.MicroDVDFile

method), 629
parse() (translate.storage.subtitles.SubRipFile

method), 631
parse() (translate.storage.subtitles.SubStationAlphaFile

method), 633
parse() (translate.storage.subtitles.SubtitleFile

method), 634
parse() (translate.storage.tbx.tbxfile method), 640
parse() (translate.storage.tiki.TikiStore method), 645
parse() (translate.storage.tmx.tmxfile method), 650
parse() (translate.storage.trados.TradosTxtTmFile

method), 659
parse() (translate.storage.ts2.tsfile method), 661
parse() (translate.storage.txt.TxtFile method), 667
parse() (translate.storage.utx.UtxFile method), 672
parse() (translate.storage.wordfast.WordfastTMFile

method), 682
parse() (translate.storage.xliff.xlifffile method), 689
parse_args() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 237

parse_args() (trans-
late.convert.convert.ConvertOptionParser
method), 241

parse_args() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 252

parse_args() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

parse_args() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

parse_args() (trans-
late.filters.pofilter.FilterOptionParser method),
352

parse_args() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

parse_args() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

parse_args() (trans-
late.tools.pogrep.GrepOptionParser method),
703

parse_args() (trans-
late.tools.porestructure.SplitOptionParser

method), 707
parse_args() (trans-

late.tools.poterminology.TerminologyOptionParser
method), 710

parse_files() (trans-
late.storage.benchmark.TranslateBenchmarker
method), 407

parse_noinput() (trans-
late.filters.pofilter.FilterOptionParser method),
352

parse_placeables() (trans-
late.storage.benchmark.TranslateBenchmarker
method), 407

parse_tag() (in module trans-
late.storage.xml_extract.misc), 695

ParseError, 401
parseFile() (translate.misc.ourdom.ExpatBuilderNS

method), 395
parsefile() (translate.storage.base.TranslationStore

class method), 403
parsefile() (translate.storage.catkeys.CatkeysFile

class method), 409
parsefile() (translate.storage.csvl10n.csvfile class

method), 415
parsefile() (translate.storage.dtd.dtdfile class

method), 421
parsefile() (translate.storage.html.htmlfile class

method), 430
parsefile() (translate.storage.html.POHTMLParser

class method), 427
parsefile() (translate.storage.ical.icalfile class

method), 435
parsefile() (translate.storage.ini.inifile class

method), 440
parsefile() (trans-

late.storage.jsonl10n.ARBJsonFile class
method), 446

parsefile() (trans-
late.storage.jsonl10n.GoI18NJsonFile class
method), 450

parsefile() (translate.storage.jsonl10n.I18NextFile
class method), 455

parsefile() (translate.storage.jsonl10n.JsonFile
class method), 460

parsefile() (trans-
late.storage.jsonl10n.JsonNestedFile class
method), 462

parsefile() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
class method), 469

parsefile() (translate.storage.lisa.LISAfile class
method), 475

parsefile() (translate.storage.mo.mofile class
method), 481

802 Index

Translate Toolkit Documentation, Release 3.0.0

parsefile() (trans-
late.storage.mozilla_lang.LangStore class
method), 486

parsefile() (translate.storage.omegat.OmegaTFile
class method), 491

parsefile() (trans-
late.storage.omegat.OmegaTFileTab class
method), 493

parsefile() (translate.storage.php.LaravelPHPFile
class method), 550

parsefile() (translate.storage.php.phpfile class
method), 555

parsefile() (translate.storage.pocommon.pofile
class method), 561

parsefile() (translate.storage.poxliff.PoXliffFile
class method), 569

parsefile() (translate.storage.properties.gwtfile
class method), 583

parsefile() (translate.storage.properties.javafile
class method), 585

parsefile() (trans-
late.storage.properties.javautf16file class
method), 587

parsefile() (translate.storage.properties.javautf8file
class method), 588

parsefile() (translate.storage.properties.joomlafile
class method), 590

parsefile() (translate.storage.properties.propfile
class method), 592

parsefile() (translate.storage.properties.stringsfile
class method), 599

parsefile() (trans-
late.storage.properties.stringsutf8file class
method), 601

parsefile() (translate.storage.pypo.pofile class
method), 604

parsefile() (translate.storage.qm.qmfile class
method), 610

parsefile() (translate.storage.qph.QphFile class
method), 615

parsefile() (translate.storage.rc.rcfile class
method), 621

parsefile() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
class method), 628

parsefile() (trans-
late.storage.subtitles.MicroDVDFile class
method), 629

parsefile() (translate.storage.subtitles.SubRipFile
class method), 631

parsefile() (trans-
late.storage.subtitles.SubStationAlphaFile
class method), 633

parsefile() (translate.storage.subtitles.SubtitleFile

class method), 634
parsefile() (translate.storage.tbx.tbxfile class

method), 640
parsefile() (translate.storage.tiki.TikiStore class

method), 645
parsefile() (translate.storage.tmx.tmxfile class

method), 650
parsefile() (trans-

late.storage.trados.TradosTxtTmFile class
method), 659

parsefile() (translate.storage.ts2.tsfile class
method), 661

parsefile() (translate.storage.txt.TxtFile class
method), 667

parsefile() (translate.storage.utx.UtxFile class
method), 672

parsefile() (trans-
late.storage.wordfast.WordfastTMFile class
method), 682

parsefile() (translate.storage.xliff.xlifffile class
method), 689

parseheader() (translate.storage.mo.mofile method),
481

parseheader() (translate.storage.pocommon.pofile
method), 561

parseheader() (trans-
late.storage.poheader.poheader method),
565

parseheader() (translate.storage.poxliff.PoXliffFile
method), 569

parseheader() (translate.storage.pypo.pofile
method), 604

parseheaderstring() (in module trans-
late.storage.poheader), 564

ParseState (class in trans-
late.storage.xml_extract.extract), 693

parseString() (in module translate.misc.ourdom),
396

parseString() (trans-
late.misc.ourdom.ExpatBuilderNS method),
395

parsestring() (trans-
late.storage.base.TranslationStore class
method), 403

parsestring() (trans-
late.storage.catkeys.CatkeysFile class method),
409

parsestring() (translate.storage.csvl10n.csvfile
class method), 415

parsestring() (translate.storage.dtd.dtdfile class
method), 421

parsestring() (translate.storage.html.htmlfile class
method), 430

parsestring() (trans-

Index 803

Translate Toolkit Documentation, Release 3.0.0

late.storage.html.POHTMLParser class
method), 427

parsestring() (translate.storage.ical.icalfile class
method), 435

parsestring() (translate.storage.ini.inifile class
method), 440

parsestring() (trans-
late.storage.jsonl10n.ARBJsonFile class
method), 446

parsestring() (trans-
late.storage.jsonl10n.GoI18NJsonFile class
method), 450

parsestring() (trans-
late.storage.jsonl10n.I18NextFile class
method), 455

parsestring() (translate.storage.jsonl10n.JsonFile
class method), 460

parsestring() (trans-
late.storage.jsonl10n.JsonNestedFile class
method), 462

parsestring() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
class method), 469

parsestring() (translate.storage.lisa.LISAfile class
method), 475

parsestring() (translate.storage.mo.mofile class
method), 481

parsestring() (trans-
late.storage.mozilla_lang.LangStore class
method), 486

parsestring() (trans-
late.storage.omegat.OmegaTFile class
method), 491

parsestring() (trans-
late.storage.omegat.OmegaTFileTab class
method), 493

parsestring() (trans-
late.storage.php.LaravelPHPFile class
method), 550

parsestring() (translate.storage.php.phpfile class
method), 555

parsestring() (translate.storage.pocommon.pofile
class method), 561

parsestring() (translate.storage.poxliff.PoXliffFile
class method), 569

parsestring() (translate.storage.properties.gwtfile
class method), 583

parsestring() (translate.storage.properties.javafile
class method), 585

parsestring() (trans-
late.storage.properties.javautf16file class
method), 587

parsestring() (trans-
late.storage.properties.javautf8file class

method), 589
parsestring() (trans-

late.storage.properties.joomlafile class
method), 590

parsestring() (translate.storage.properties.propfile
class method), 592

parsestring() (trans-
late.storage.properties.stringsfile class
method), 600

parsestring() (trans-
late.storage.properties.stringsutf8file class
method), 601

parsestring() (translate.storage.pypo.pofile class
method), 604

parsestring() (translate.storage.qm.qmfile class
method), 610

parsestring() (translate.storage.qph.QphFile class
method), 615

parsestring() (translate.storage.rc.rcfile class
method), 621

parsestring() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
class method), 628

parsestring() (trans-
late.storage.subtitles.MicroDVDFile class
method), 629

parsestring() (trans-
late.storage.subtitles.SubRipFile class method),
631

parsestring() (trans-
late.storage.subtitles.SubStationAlphaFile
class method), 633

parsestring() (trans-
late.storage.subtitles.SubtitleFile class
method), 635

parsestring() (translate.storage.tbx.tbxfile class
method), 640

parsestring() (translate.storage.tiki.TikiStore class
method), 645

parsestring() (translate.storage.tmx.tmxfile class
method), 650

parsestring() (trans-
late.storage.trados.TradosTxtTmFile class
method), 659

parsestring() (translate.storage.ts2.tsfile class
method), 661

parsestring() (translate.storage.txt.TxtFile class
method), 667

parsestring() (translate.storage.utx.UtxFile class
method), 672

parsestring() (trans-
late.storage.wordfast.WordfastTMFile class
method), 682

parsestring() (translate.storage.xliff.xlifffile class

804 Index

Translate Toolkit Documentation, Release 3.0.0

method), 689
partition() (translate.misc.multistring.multistring

method), 390
Ph (class in translate.storage.placeables.base), 502
Ph (class in translate.storage.placeables.xliff), 545
php2po (class in translate.convert.php2po), 248
phpdecode() (in module translate.storage.php), 554
phpencode() (in module translate.storage.php), 554
phpfile (class in translate.storage.php), 554
phpunit (class in translate.storage.php), 556
pluralequation (translate.lang.common.Common

attribute), 361
po2dtd (class in translate.convert.po2dtd), 248
po2html (class in translate.convert.po2html), 249
po2ical (class in translate.convert.po2ical), 249
po2inc() (in module trans-

late.convert.prop2mozfunny), 265
po2ini (class in translate.convert.po2ini), 249
po2ini() (in module trans-

late.convert.prop2mozfunny), 265
po2it() (in module translate.convert.prop2mozfunny),

266
po2lang (class in translate.convert.po2mozlang), 250
po2tiki (class in translate.convert.po2tiki), 255
po2txt (class in translate.convert.po2txt), 260
po2yaml (class in translate.convert.po2yaml), 264
pofile (class in translate.storage.pocommon), 559
pofile (class in translate.storage.pypo), 602
poheader (class in translate.storage.poheader), 564
POHTMLParser (class in translate.storage.html), 426
pop() (translate.misc.dictutils.cidict method), 387
pop() (translate.storage.oo.unormalizechar method),

498
popitem() (translate.misc.dictutils.cidict method), 387
popitem() (translate.storage.oo.unormalizechar

method), 498
potifyformat() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 237

potifyformat() (trans-
late.convert.convert.ConvertOptionParser
method), 241

potifyformat() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

potifyformat() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

potifyformat() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

pounit (class in translate.storage.pocommon), 561
pounit (class in translate.storage.pypo), 605
PoWrapper (class in translate.storage.pypo), 602

PoXliffFile (class in translate.storage.poxliff), 566
PoXliffUnit (class in translate.storage.poxliff), 570
pretranslate_file() (in module trans-

late.tools.pretranslate), 712
pretranslate_store() (in module trans-

late.tools.pretranslate), 712
pretranslate_unit() (in module trans-

late.tools.pretranslate), 712
prev_source (translate.storage.pypo.pounit at-

tribute), 607
print_help() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 237

print_help() (trans-
late.convert.convert.ConvertOptionParser
method), 241

print_help() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

print_help() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

print_help() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

print_help() (trans-
late.filters.pofilter.FilterOptionParser method),
352

print_help() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

print_help() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

print_help() (trans-
late.tools.pogrep.GrepOptionParser method),
703

print_help() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

print_help() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

print_manpage() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

print_manpage() (trans-
late.convert.convert.ConvertOptionParser
method), 241

print_manpage() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

print_manpage() (trans-
late.convert.po2tmx.TmxOptionParser

Index 805

Translate Toolkit Documentation, Release 3.0.0

method), 258
print_manpage() (trans-

late.convert.po2wordfast.WfOptionParser
method), 263

print_manpage() (trans-
late.filters.pofilter.FilterOptionParser method),
352

print_manpage() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

print_manpage() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 699

print_manpage() (trans-
late.tools.pogrep.GrepOptionParser method),
703

print_manpage() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

print_manpage() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

print_tree() (translate.storage.placeables.base.Bpt
method), 501

print_tree() (translate.storage.placeables.base.Bx
method), 509

print_tree() (translate.storage.placeables.base.Ept
method), 502

print_tree() (translate.storage.placeables.base.Ex
method), 510

print_tree() (translate.storage.placeables.base.G
method), 507

print_tree() (translate.storage.placeables.base.It
method), 505

print_tree() (translate.storage.placeables.base.Ph
method), 504

print_tree() (translate.storage.placeables.base.Sub
method), 514

print_tree() (translate.storage.placeables.base.X
method), 512

print_tree() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

print_tree() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

print_tree() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 519

print_tree() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 521

print_tree() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable

method), 522
print_tree() (trans-

late.storage.placeables.interfaces.MaskingPlaceable
method), 524

print_tree() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 526

print_tree() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

print_tree() (trans-
late.storage.placeables.strelem.StringElem
method), 530

print_tree() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 532

print_tree() (translate.storage.placeables.xliff.Bpt
method), 534

print_tree() (translate.storage.placeables.xliff.Bx
method), 538

print_tree() (translate.storage.placeables.xliff.Ept
method), 535

print_tree() (translate.storage.placeables.xliff.Ex
method), 540

print_tree() (translate.storage.placeables.xliff.G
method), 542

print_tree() (translate.storage.placeables.xliff.It
method), 543

print_tree() (translate.storage.placeables.xliff.Ph
method), 547

print_tree() (translate.storage.placeables.xliff.Sub
method), 545

print_tree() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

print_tree() (translate.storage.placeables.xliff.X
method), 537

print_usage() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

print_usage() (trans-
late.convert.convert.ConvertOptionParser
method), 241

print_usage() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

print_usage() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

print_usage() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

print_usage() (trans-
late.filters.pofilter.FilterOptionParser method),

806 Index

Translate Toolkit Documentation, Release 3.0.0

352
print_usage() (trans-

late.misc.optrecurse.RecursiveOptionParser
method), 393

print_usage() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

print_usage() (trans-
late.tools.pogrep.GrepOptionParser method),
703

print_usage() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

print_usage() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 710

print_version() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 237

print_version() (trans-
late.convert.convert.ConvertOptionParser
method), 241

print_version() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

print_version() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

print_version() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

print_version() (trans-
late.filters.pofilter.FilterOptionParser method),
352

print_version() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

print_version() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

print_version() (trans-
late.tools.pogrep.GrepOptionParser method),
703

print_version() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

print_version() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

printf() (translate.filters.checks.CCLicenseChecker
method), 274

printf() (translate.filters.checks.DrupalChecker
method), 280

printf() (translate.filters.checks.GnomeChecker

method), 286
printf() (translate.filters.checks.IOSChecker

method), 291
printf() (translate.filters.checks.KdeChecker

method), 297
printf() (translate.filters.checks.L20nChecker

method), 303
printf() (translate.filters.checks.LibreOfficeChecker

method), 309
printf() (translate.filters.checks.MinimalChecker

method), 314
printf() (translate.filters.checks.MozillaChecker

method), 320
printf() (translate.filters.checks.OpenOfficeChecker

method), 326
printf() (translate.filters.checks.ReducedChecker

method), 332
printf() (translate.filters.checks.StandardChecker

method), 337
printf() (translate.filters.checks.TermChecker

method), 344
process_translatable() (in module trans-

late.storage.xml_extract.extract), 694
processfile() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

processfile() (trans-
late.convert.convert.ConvertOptionParser
method), 241

processfile() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

processfile() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

processfile() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

processfile() (trans-
late.filters.pofilter.FilterOptionParser method),
352

processfile() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 393

processfile() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

processfile() (trans-
late.tools.pogrep.GrepOptionParser method),
703

processfile() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

processfile() (trans-

Index 807

Translate Toolkit Documentation, Release 3.0.0

late.tools.poterminology.TerminologyOptionParser
method), 711

ProgressBar (class in translate.misc.progressbar),
396

Project (class in translate.storage.project), 574
ProjectStore (class in translate.storage.projstore),

575
prop2inc() (in module trans-

late.convert.prop2mozfunny), 266
prop2it() (in module trans-

late.convert.prop2mozfunny), 266
prop2po (class in translate.convert.prop2po), 266
propertiesdecode() (in module trans-

late.misc.quote), 397
propfile (class in translate.storage.properties), 591
proppluralunit (class in trans-

late.storage.properties), 592
propunit (class in translate.storage.properties), 595
prune() (translate.storage.placeables.base.Bpt

method), 501
prune() (translate.storage.placeables.base.Bx

method), 509
prune() (translate.storage.placeables.base.Ept

method), 502
prune() (translate.storage.placeables.base.Ex

method), 510
prune() (translate.storage.placeables.base.G method),

507
prune() (translate.storage.placeables.base.It method),

505
prune() (translate.storage.placeables.base.Ph

method), 504
prune() (translate.storage.placeables.base.Sub

method), 514
prune() (translate.storage.placeables.base.X method),

512
prune() (translate.storage.placeables.general.AltAttrPlaceable

method), 515
prune() (translate.storage.placeables.general.XMLEntityPlaceable

method), 517
prune() (translate.storage.placeables.general.XMLTagPlaceable

method), 519
prune() (translate.storage.placeables.interfaces.BasePlaceable

method), 521
prune() (translate.storage.placeables.interfaces.InvisiblePlaceable

method), 522
prune() (translate.storage.placeables.interfaces.MaskingPlaceable

method), 524
prune() (translate.storage.placeables.interfaces.ReplacementPlaceable

method), 526
prune() (translate.storage.placeables.interfaces.SubflowPlaceable

method), 527
prune() (translate.storage.placeables.strelem.StringElem

method), 530

prune() (translate.storage.placeables.terminology.TerminologyPlaceable
method), 532

prune() (translate.storage.placeables.xliff.Bpt
method), 534

prune() (translate.storage.placeables.xliff.Bx method),
538

prune() (translate.storage.placeables.xliff.Ept
method), 535

prune() (translate.storage.placeables.xliff.Ex method),
540

prune() (translate.storage.placeables.xliff.G method),
542

prune() (translate.storage.placeables.xliff.It method),
543

prune() (translate.storage.placeables.xliff.Ph method),
547

prune() (translate.storage.placeables.xliff.Sub
method), 545

prune() (translate.storage.placeables.xliff.UnknownXML
method), 548

prune() (translate.storage.placeables.xliff.X method),
537

puncdict (translate.lang.common.Common attribute),
361

puncend() (in module translate.filters.decoration), 350
puncspacing() (trans-

late.filters.checks.CCLicenseChecker method),
274

puncspacing() (trans-
late.filters.checks.DrupalChecker method),
280

puncspacing() (trans-
late.filters.checks.GnomeChecker method),
286

puncspacing() (translate.filters.checks.IOSChecker
method), 292

puncspacing() (translate.filters.checks.KdeChecker
method), 297

puncspacing() (translate.filters.checks.L20nChecker
method), 303

puncspacing() (trans-
late.filters.checks.LibreOfficeChecker method),
309

puncspacing() (trans-
late.filters.checks.MinimalChecker method),
315

puncspacing() (trans-
late.filters.checks.MozillaChecker method),
320

puncspacing() (trans-
late.filters.checks.OpenOfficeChecker method),
326

puncspacing() (trans-
late.filters.checks.ReducedChecker method),

808 Index

Translate Toolkit Documentation, Release 3.0.0

332
puncspacing() (trans-

late.filters.checks.StandardChecker method),
338

puncspacing() (translate.filters.checks.TermChecker
method), 345

puncstart() (in module translate.filters.decoration),
350

punctranslate() (translate.lang.af.af class
method), 355

punctranslate() (translate.lang.am.am class
method), 356

punctranslate() (translate.lang.ar.ar class
method), 357

punctranslate() (translate.lang.bn.bn class
method), 358

punctranslate() (translate.lang.code_or.code_or
class method), 358

punctranslate() (translate.lang.common.Common
class method), 361

punctranslate() (translate.lang.de.de class
method), 364

punctranslate() (translate.lang.el.el class method),
365

punctranslate() (translate.lang.es.es class
method), 365

punctranslate() (translate.lang.fa.fa class
method), 366

punctranslate() (translate.lang.fi.fi class method),
367

punctranslate() (translate.lang.fr.fr class method),
368

punctranslate() (translate.lang.gu.gu class
method), 369

punctranslate() (translate.lang.he.he class
method), 369

punctranslate() (translate.lang.hi.hi class
method), 370

punctranslate() (translate.lang.hy.hy class
method), 371

punctranslate() (translate.lang.ja.ja class
method), 372

punctranslate() (translate.lang.km.km class
method), 373

punctranslate() (translate.lang.kn.kn class
method), 373

punctranslate() (translate.lang.ko.ko class
method), 374

punctranslate() (translate.lang.ml.ml class
method), 375

punctranslate() (translate.lang.mr.mr class
method), 376

punctranslate() (translate.lang.ne.ne class
method), 377

punctranslate() (translate.lang.pa.pa class
method), 377

punctranslate() (translate.lang.si.si class method),
379

punctranslate() (translate.lang.st.st class method),
380

punctranslate() (translate.lang.sv.sv class
method), 380

punctranslate() (translate.lang.ta.ta class
method), 381

punctranslate() (translate.lang.te.te class method),
382

punctranslate() (translate.lang.th.th class
method), 383

punctranslate() (translate.lang.ug.ug class
method), 384

punctranslate() (translate.lang.ur.ur class
method), 384

punctranslate() (translate.lang.vi.vi class method),
385

punctranslate() (translate.lang.zh.zh class
method), 386

punctuation (translate.lang.common.Common
attribute), 361

purepunc() (translate.filters.checks.CCLicenseChecker
method), 274

purepunc() (translate.filters.checks.DrupalChecker
method), 280

purepunc() (translate.filters.checks.GnomeChecker
method), 286

purepunc() (translate.filters.checks.IOSChecker
method), 292

purepunc() (translate.filters.checks.KdeChecker
method), 297

purepunc() (translate.filters.checks.L20nChecker
method), 303

purepunc() (translate.filters.checks.LibreOfficeChecker
method), 309

purepunc() (translate.filters.checks.MinimalChecker
method), 315

purepunc() (translate.filters.checks.MozillaChecker
method), 321

purepunc() (translate.filters.checks.OpenOfficeChecker
method), 326

purepunc() (translate.filters.checks.ReducedChecker
method), 332

purepunc() (translate.filters.checks.StandardChecker
method), 338

purepunc() (translate.filters.checks.TermChecker
method), 345

Python Enhancement Proposals
PEP 257, 169
PEP 8, 161, 163, 166

python_distance() (in module trans-

Index 809

Translate Toolkit Documentation, Release 3.0.0

late.search.lshtein), 399
pythonbraceformat() (trans-

late.filters.checks.CCLicenseChecker method),
274

pythonbraceformat() (trans-
late.filters.checks.DrupalChecker method),
280

pythonbraceformat() (trans-
late.filters.checks.GnomeChecker method),
286

pythonbraceformat() (trans-
late.filters.checks.IOSChecker method), 292

pythonbraceformat() (trans-
late.filters.checks.KdeChecker method),
298

pythonbraceformat() (trans-
late.filters.checks.L20nChecker method),
303

pythonbraceformat() (trans-
late.filters.checks.LibreOfficeChecker method),
309

pythonbraceformat() (trans-
late.filters.checks.MinimalChecker method),
315

pythonbraceformat() (trans-
late.filters.checks.MozillaChecker method),
321

pythonbraceformat() (trans-
late.filters.checks.OpenOfficeChecker method),
326

pythonbraceformat() (trans-
late.filters.checks.ReducedChecker method),
332

pythonbraceformat() (trans-
late.filters.checks.StandardChecker method),
338

pythonbraceformat() (trans-
late.filters.checks.TermChecker method),
345

Q
qmfile (class in translate.storage.qm), 609
qmunit (class in translate.storage.qm), 611
qmunpack() (in module translate.storage.qm), 614
QphFile (class in translate.storage.qph), 614
QphUnit (class in translate.storage.qph), 616
quote_plus() (in module trans-

late.storage.pocommon), 564
quoteforandroid() (in module trans-

late.storage.dtd), 425
quotefordtd() (in module translate.storage.dtd),

425
quoteforpo() (in module translate.storage.pypo),

608

quotes (translate.lang.common.Common attribute),
361

R
rc2po (class in translate.convert.rc2po), 267
rc_statement() (in module translate.storage.rc),

620
rcfile (class in translate.storage.rc), 620
RCS_METADIR (trans-

late.storage.versioncontrol.GenericRevisionControlSystem
attribute), 676

rcunit (class in translate.storage.rc), 622
read_obsolete_lines() (in module trans-

late.storage.poparser), 566
read_prevmsgid_lines() (in module trans-

late.storage.poparser), 566
real_index() (in module translate.tools.pogrep), 704
reclassifyunit() (trans-

late.storage.statistics.Statistics method),
625

recursearchivefiles() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

recursearchivefiles() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

recursearchivefiles() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

recurseinputfilelist() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

recurseinputfilelist() (trans-
late.convert.convert.ConvertOptionParser
method), 241

recurseinputfilelist() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

recurseinputfilelist() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

recurseinputfilelist() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

recurseinputfilelist() (trans-
late.filters.pofilter.FilterOptionParser method),
352

recurseinputfilelist() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

recurseinputfilelist() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

recurseinputfilelist() (trans-

810 Index

Translate Toolkit Documentation, Release 3.0.0

late.tools.pogrep.GrepOptionParser method),
704

recurseinputfilelist() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

recurseinputfilelist() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

recurseinputfiles() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

recurseinputfiles() (trans-
late.convert.convert.ConvertOptionParser
method), 241

recurseinputfiles() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

recurseinputfiles() (trans-
late.convert.po2tmx.TmxOptionParser
method), 258

recurseinputfiles() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

recurseinputfiles() (trans-
late.filters.pofilter.FilterOptionParser method),
352

recurseinputfiles() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

recurseinputfiles() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

recurseinputfiles() (trans-
late.tools.pogrep.GrepOptionParser method),
704

recurseinputfiles() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

recurseinputfiles() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

RecursiveOptionParser (class in trans-
late.misc.optrecurse), 392

recursiveprocess() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

recursiveprocess() (trans-
late.convert.convert.ConvertOptionParser
method), 241

recursiveprocess() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

recursiveprocess() (trans-
late.convert.po2tmx.TmxOptionParser

method), 259
recursiveprocess() (trans-

late.convert.po2wordfast.WfOptionParser
method), 263

recursiveprocess() (trans-
late.filters.pofilter.FilterOptionParser method),
352

recursiveprocess() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

recursiveprocess() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

recursiveprocess() (trans-
late.tools.pogrep.GrepOptionParser method),
704

recursiveprocess() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

recursiveprocess() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

redtd (class in translate.convert.po2dtd), 248
reduce_tree() (in module trans-

late.storage.xml_extract.misc), 695
ReducedChecker (class in translate.filters.checks),

329
register_dialect() (in module trans-

late.storage.ini), 443
register_dialect() (in module trans-

late.storage.properties), 598
reindent() (in module translate.misc.xml_helpers),

398
remove_file() (trans-

late.storage.bundleprojstore.BundleProjectStore
method), 407

remove_file() (translate.storage.project.Project
method), 574

remove_file() (trans-
late.storage.projstore.ProjectStore method),
575

remove_spreadsheet_escapes() (trans-
late.storage.csvl10n.csvunit method), 418

remove_type() (trans-
late.storage.placeables.base.Bpt method),
501

remove_type() (translate.storage.placeables.base.Bx
method), 509

remove_type() (trans-
late.storage.placeables.base.Ept method),
502

remove_type() (translate.storage.placeables.base.Ex
method), 510

remove_type() (translate.storage.placeables.base.G

Index 811

Translate Toolkit Documentation, Release 3.0.0

method), 507
remove_type() (translate.storage.placeables.base.It

method), 506
remove_type() (trans-

late.storage.placeables.base.Ph method),
504

remove_type() (trans-
late.storage.placeables.base.Sub method),
514

remove_type() (translate.storage.placeables.base.X
method), 512

remove_type() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 515

remove_type() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

remove_type() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 519

remove_type() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 521

remove_type() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

remove_type() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 524

remove_type() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 526

remove_type() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 527

remove_type() (trans-
late.storage.placeables.strelem.StringElem
method), 530

remove_type() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 532

remove_type() (trans-
late.storage.placeables.xliff.Bpt method),
534

remove_type() (translate.storage.placeables.xliff.Bx
method), 539

remove_type() (trans-
late.storage.placeables.xliff.Ept method),
535

remove_type() (translate.storage.placeables.xliff.Ex
method), 540

remove_type() (translate.storage.placeables.xliff.G
method), 542

remove_type() (translate.storage.placeables.xliff.It

method), 543
remove_type() (translate.storage.placeables.xliff.Ph

method), 547
remove_type() (trans-

late.storage.placeables.xliff.Sub method),
545

remove_type() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

remove_type() (translate.storage.placeables.xliff.X
method), 537

remove_unit_from_index() (trans-
late.storage.base.TranslationStore method),
403

remove_unit_from_index() (trans-
late.storage.catkeys.CatkeysFile method),
409

remove_unit_from_index() (trans-
late.storage.csvl10n.csvfile method), 415

remove_unit_from_index() (trans-
late.storage.dtd.dtdfile method), 421

remove_unit_from_index() (trans-
late.storage.html.htmlfile method), 430

remove_unit_from_index() (trans-
late.storage.html.POHTMLParser method),
427

remove_unit_from_index() (trans-
late.storage.ical.icalfile method), 435

remove_unit_from_index() (trans-
late.storage.ini.inifile method), 440

remove_unit_from_index() (trans-
late.storage.jsonl10n.ARBJsonFile method),
446

remove_unit_from_index() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

remove_unit_from_index() (trans-
late.storage.jsonl10n.I18NextFile method),
455

remove_unit_from_index() (trans-
late.storage.jsonl10n.JsonFile method), 460

remove_unit_from_index() (trans-
late.storage.jsonl10n.JsonNestedFile method),
462

remove_unit_from_index() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

remove_unit_from_index() (trans-
late.storage.lisa.LISAfile method), 475

remove_unit_from_index() (trans-
late.storage.mo.mofile method), 481

remove_unit_from_index() (trans-
late.storage.mozilla_lang.LangStore method),
486

812 Index

Translate Toolkit Documentation, Release 3.0.0

remove_unit_from_index() (trans-
late.storage.omegat.OmegaTFile method),
491

remove_unit_from_index() (trans-
late.storage.omegat.OmegaTFileTab method),
493

remove_unit_from_index() (trans-
late.storage.php.LaravelPHPFile method),
550

remove_unit_from_index() (trans-
late.storage.php.phpfile method), 555

remove_unit_from_index() (trans-
late.storage.pocommon.pofile method), 561

remove_unit_from_index() (trans-
late.storage.poxliff.PoXliffFile method), 569

remove_unit_from_index() (trans-
late.storage.properties.gwtfile method), 583

remove_unit_from_index() (trans-
late.storage.properties.javafile method),
585

remove_unit_from_index() (trans-
late.storage.properties.javautf16file method),
587

remove_unit_from_index() (trans-
late.storage.properties.javautf8file method),
589

remove_unit_from_index() (trans-
late.storage.properties.joomlafile method),
590

remove_unit_from_index() (trans-
late.storage.properties.propfile method),
592

remove_unit_from_index() (trans-
late.storage.properties.stringsfile method),
600

remove_unit_from_index() (trans-
late.storage.properties.stringsutf8file method),
601

remove_unit_from_index() (trans-
late.storage.pypo.pofile method), 604

remove_unit_from_index() (trans-
late.storage.qm.qmfile method), 610

remove_unit_from_index() (trans-
late.storage.qph.QphFile method), 615

remove_unit_from_index() (trans-
late.storage.rc.rcfile method), 621

remove_unit_from_index() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 628

remove_unit_from_index() (trans-
late.storage.subtitles.MicroDVDFile method),
630

remove_unit_from_index() (trans-
late.storage.subtitles.SubRipFile method),

631
remove_unit_from_index() (trans-

late.storage.subtitles.SubStationAlphaFile
method), 633

remove_unit_from_index() (trans-
late.storage.subtitles.SubtitleFile method),
635

remove_unit_from_index() (trans-
late.storage.tbx.tbxfile method), 640

remove_unit_from_index() (trans-
late.storage.tiki.TikiStore method), 645

remove_unit_from_index() (trans-
late.storage.tmx.tmxfile method), 650

remove_unit_from_index() (trans-
late.storage.trados.TradosTxtTmFile method),
659

remove_unit_from_index() (trans-
late.storage.ts2.tsfile method), 661

remove_unit_from_index() (trans-
late.storage.txt.TxtFile method), 667

remove_unit_from_index() (trans-
late.storage.utx.UtxFile method), 672

remove_unit_from_index() (trans-
late.storage.wordfast.WordfastTMFile method),
682

remove_unit_from_index() (trans-
late.storage.xliff.xlifffile method), 689

removedefaultfile() (trans-
late.storage.poxliff.PoXliffFile method), 569

removedefaultfile() (trans-
late.storage.xliff.xlifffile method), 689

removeduplicates() (translate.storage.pypo.pofile
method), 604

removeinvalidamps() (in module trans-
late.storage.dtd), 425

removekdecomments() (in module trans-
late.filters.prefilters), 354

removenotes() (trans-
late.storage.base.TranslationUnit method),
406

removenotes() (trans-
late.storage.catkeys.CatkeysUnit method),
413

removenotes() (translate.storage.csvl10n.csvunit
method), 418

removenotes() (translate.storage.dtd.dtdunit
method), 424

removenotes() (translate.storage.html.htmlunit
method), 433

removenotes() (translate.storage.ical.icalunit
method), 438

removenotes() (translate.storage.ini.iniunit method),
443

removenotes() (trans-

Index 813

Translate Toolkit Documentation, Release 3.0.0

late.storage.jsonl10n.ARBJsonUnit method),
449

removenotes() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 453

removenotes() (trans-
late.storage.jsonl10n.I18NextUnit method),
458

removenotes() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
465

removenotes() (translate.storage.jsonl10n.JsonUnit
method), 468

removenotes() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 473

removenotes() (translate.storage.lisa.LISAunit
method), 478

removenotes() (translate.storage.mo.mounit
method), 484

removenotes() (trans-
late.storage.mozilla_lang.LangUnit method),
489

removenotes() (trans-
late.storage.omegat.OmegaTUnit method),
496

removenotes() (trans-
late.storage.php.LaravelPHPUnit method),
553

removenotes() (translate.storage.php.phpunit
method), 558

removenotes() (translate.storage.pocommon.pounit
method), 564

removenotes() (translate.storage.poxliff.PoXliffUnit
method), 573

removenotes() (trans-
late.storage.properties.proppluralunit method),
595

removenotes() (trans-
late.storage.properties.propunit method),
598

removenotes() (translate.storage.pypo.pounit
method), 607

removenotes() (translate.storage.qm.qmunit
method), 613

removenotes() (translate.storage.qph.QphUnit
method), 619

removenotes() (translate.storage.rc.rcunit method),
624

removenotes() (trans-
late.storage.subtitles.SubtitleUnit method),
638

removenotes() (translate.storage.tbx.tbxunit
method), 643

removenotes() (translate.storage.tiki.TikiUnit
method), 648

removenotes() (translate.storage.tmx.tmxunit
method), 653

removenotes() (translate.storage.trados.TradosUnit
method), 657

removenotes() (translate.storage.ts2.tsunit method),
665

removenotes() (translate.storage.txt.TxtUnit
method), 670

removenotes() (translate.storage.utx.UtxUnit
method), 675

removenotes() (trans-
late.storage.wordfast.WordfastUnit method),
685

removenotes() (translate.storage.xliff.xliffunit
method), 693

renderer (translate.storage.placeables.strelem.StringElem
attribute), 530

replace() (translate.misc.multistring.multistring
method), 390

replace_dom_text() (in module trans-
late.storage.xml_extract.generate), 694

ReplacementPlaceable (class in trans-
late.storage.placeables.interfaces), 524

Replacer (class in translate.convert.convert), 242
replacestrings() (in module trans-

late.convert.csv2po), 243
require_index() (trans-

late.storage.base.TranslationStore method),
403

require_index() (trans-
late.storage.catkeys.CatkeysFile method),
409

require_index() (translate.storage.csvl10n.csvfile
method), 415

require_index() (translate.storage.dtd.dtdfile
method), 421

require_index() (translate.storage.html.htmlfile
method), 430

require_index() (trans-
late.storage.html.POHTMLParser method),
427

require_index() (translate.storage.ical.icalfile
method), 435

require_index() (translate.storage.ini.inifile
method), 440

require_index() (trans-
late.storage.jsonl10n.ARBJsonFile method),
446

require_index() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 450

require_index() (trans-

814 Index

Translate Toolkit Documentation, Release 3.0.0

late.storage.jsonl10n.I18NextFile method),
455

require_index() (trans-
late.storage.jsonl10n.JsonFile method), 460

require_index() (trans-
late.storage.jsonl10n.JsonNestedFile method),
462

require_index() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

require_index() (translate.storage.lisa.LISAfile
method), 475

require_index() (translate.storage.mo.mofile
method), 481

require_index() (trans-
late.storage.mozilla_lang.LangStore method),
486

require_index() (trans-
late.storage.omegat.OmegaTFile method),
491

require_index() (trans-
late.storage.omegat.OmegaTFileTab method),
493

require_index() (trans-
late.storage.php.LaravelPHPFile method),
550

require_index() (translate.storage.php.phpfile
method), 555

require_index() (trans-
late.storage.pocommon.pofile method), 561

require_index() (trans-
late.storage.poxliff.PoXliffFile method), 569

require_index() (trans-
late.storage.properties.gwtfile method), 583

require_index() (trans-
late.storage.properties.javafile method),
585

require_index() (trans-
late.storage.properties.javautf16file method),
587

require_index() (trans-
late.storage.properties.javautf8file method),
589

require_index() (trans-
late.storage.properties.joomlafile method),
590

require_index() (trans-
late.storage.properties.propfile method),
592

require_index() (trans-
late.storage.properties.stringsfile method),
600

require_index() (trans-
late.storage.properties.stringsutf8file method),

601
require_index() (translate.storage.pypo.pofile

method), 604
require_index() (translate.storage.qm.qmfile

method), 610
require_index() (translate.storage.qph.QphFile

method), 616
require_index() (translate.storage.rc.rcfile

method), 621
require_index() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 628

require_index() (trans-
late.storage.subtitles.MicroDVDFile method),
630

require_index() (trans-
late.storage.subtitles.SubRipFile method),
631

require_index() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

require_index() (trans-
late.storage.subtitles.SubtitleFile method),
635

require_index() (translate.storage.tbx.tbxfile
method), 640

require_index() (translate.storage.tiki.TikiStore
method), 645

require_index() (translate.storage.tmx.tmxfile
method), 650

require_index() (trans-
late.storage.trados.TradosTxtTmFile method),
659

require_index() (translate.storage.ts2.tsfile
method), 661

require_index() (translate.storage.txt.TxtFile
method), 667

require_index() (translate.storage.utx.UtxFile
method), 672

require_index() (trans-
late.storage.wordfast.WordfastTMFile method),
682

require_index() (translate.storage.xliff.xlifffile
method), 689

reset() (translate.misc.ourdom.ExpatBuilderNS
method), 395

reset() (translate.storage.html.htmlfile method), 430
reset() (translate.storage.html.POHTMLParser

method), 427
resurrect() (translate.storage.pypo.pounit method),

607
resx2po (class in translate.convert.resx2po), 267
rfind() (translate.misc.multistring.multistring

method), 390

Index 815

Translate Toolkit Documentation, Release 3.0.0

rich_parsers (trans-
late.storage.base.TranslationUnit attribute),
406

rich_source (translate.storage.base.TranslationUnit
attribute), 406

rich_source (translate.storage.catkeys.CatkeysUnit
attribute), 413

rich_source (translate.storage.csvl10n.csvunit
attribute), 418

rich_source (translate.storage.dtd.dtdunit attribute),
424

rich_source (translate.storage.html.htmlunit at-
tribute), 433

rich_source (translate.storage.ical.icalunit at-
tribute), 438

rich_source (translate.storage.ini.iniunit attribute),
443

rich_source (trans-
late.storage.jsonl10n.ARBJsonUnit attribute),
449

rich_source (trans-
late.storage.jsonl10n.GoI18NJsonUnit at-
tribute), 454

rich_source (translate.storage.jsonl10n.I18NextUnit
attribute), 458

rich_source (trans-
late.storage.jsonl10n.JsonNestedUnit at-
tribute), 465

rich_source (translate.storage.jsonl10n.JsonUnit at-
tribute), 468

rich_source (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
attribute), 473

rich_source (translate.storage.lisa.LISAunit at-
tribute), 478

rich_source (translate.storage.mo.mounit attribute),
484

rich_source (trans-
late.storage.mozilla_lang.LangUnit attribute),
489

rich_source (translate.storage.omegat.OmegaTUnit
attribute), 496

rich_source (translate.storage.php.LaravelPHPUnit
attribute), 553

rich_source (translate.storage.php.phpunit at-
tribute), 558

rich_source (translate.storage.pocommon.pounit at-
tribute), 564

rich_source (translate.storage.poxliff.PoXliffUnit at-
tribute), 573

rich_source (trans-
late.storage.properties.proppluralunit at-
tribute), 595

rich_source (translate.storage.properties.propunit

attribute), 598
rich_source (translate.storage.pypo.pounit at-

tribute), 607
rich_source (translate.storage.qm.qmunit attribute),

613
rich_source (translate.storage.qph.QphUnit at-

tribute), 619
rich_source (translate.storage.rc.rcunit attribute),

624
rich_source (translate.storage.subtitles.SubtitleUnit

attribute), 638
rich_source (translate.storage.tbx.tbxunit attribute),

643
rich_source (translate.storage.tiki.TikiUnit at-

tribute), 648
rich_source (translate.storage.tmx.tmxunit at-

tribute), 653
rich_source (translate.storage.trados.TradosUnit at-

tribute), 657
rich_source (translate.storage.ts2.tsunit attribute),

665
rich_source (translate.storage.txt.TxtUnit attribute),

670
rich_source (translate.storage.utx.UtxUnit at-

tribute), 675
rich_source (trans-

late.storage.wordfast.WordfastUnit attribute),
685

rich_source (translate.storage.xliff.xliffunit at-
tribute), 693

rich_target (translate.storage.base.TranslationUnit
attribute), 406

rich_target (translate.storage.catkeys.CatkeysUnit
attribute), 413

rich_target (translate.storage.csvl10n.csvunit
attribute), 418

rich_target (translate.storage.dtd.dtdunit attribute),
424

rich_target (translate.storage.html.htmlunit at-
tribute), 433

rich_target (translate.storage.ical.icalunit at-
tribute), 438

rich_target (translate.storage.ini.iniunit attribute),
443

rich_target (trans-
late.storage.jsonl10n.ARBJsonUnit attribute),
449

rich_target (trans-
late.storage.jsonl10n.GoI18NJsonUnit at-
tribute), 454

rich_target (translate.storage.jsonl10n.I18NextUnit
attribute), 458

rich_target (trans-
late.storage.jsonl10n.JsonNestedUnit at-

816 Index

Translate Toolkit Documentation, Release 3.0.0

tribute), 465
rich_target (translate.storage.jsonl10n.JsonUnit at-

tribute), 468
rich_target (trans-

late.storage.jsonl10n.WebExtensionJsonUnit
attribute), 473

rich_target (translate.storage.lisa.LISAunit at-
tribute), 478

rich_target (translate.storage.mo.mounit attribute),
484

rich_target (trans-
late.storage.mozilla_lang.LangUnit attribute),
489

rich_target (translate.storage.omegat.OmegaTUnit
attribute), 496

rich_target (translate.storage.php.LaravelPHPUnit
attribute), 553

rich_target (translate.storage.php.phpunit at-
tribute), 558

rich_target (translate.storage.pocommon.pounit at-
tribute), 564

rich_target (translate.storage.poxliff.PoXliffUnit at-
tribute), 573

rich_target (trans-
late.storage.properties.proppluralunit at-
tribute), 595

rich_target (translate.storage.properties.propunit
attribute), 598

rich_target (translate.storage.pypo.pounit at-
tribute), 608

rich_target (translate.storage.qm.qmunit attribute),
613

rich_target (translate.storage.qph.QphUnit at-
tribute), 619

rich_target (translate.storage.rc.rcunit attribute),
624

rich_target (translate.storage.subtitles.SubtitleUnit
attribute), 638

rich_target (translate.storage.tbx.tbxunit attribute),
643

rich_target (translate.storage.tiki.TikiUnit at-
tribute), 648

rich_target (translate.storage.tmx.tmxunit at-
tribute), 653

rich_target (translate.storage.trados.TradosUnit at-
tribute), 658

rich_target (translate.storage.ts2.tsunit attribute),
665

rich_target (translate.storage.txt.TxtUnit attribute),
670

rich_target (translate.storage.utx.UtxUnit at-
tribute), 675

rich_target (trans-
late.storage.wordfast.WordfastUnit attribute),

686
rich_target (translate.storage.xliff.xliffunit at-

tribute), 693
rich_to_multistring() (trans-

late.storage.base.TranslationUnit class
method), 406

rich_to_multistring() (trans-
late.storage.catkeys.CatkeysUnit class method),
413

rich_to_multistring() (trans-
late.storage.csvl10n.csvunit class method),
418

rich_to_multistring() (trans-
late.storage.dtd.dtdunit class method), 424

rich_to_multistring() (trans-
late.storage.html.htmlunit class method),
433

rich_to_multistring() (trans-
late.storage.ical.icalunit class method),
438

rich_to_multistring() (trans-
late.storage.ini.iniunit class method), 443

rich_to_multistring() (trans-
late.storage.jsonl10n.ARBJsonUnit class
method), 449

rich_to_multistring() (trans-
late.storage.jsonl10n.GoI18NJsonUnit class
method), 454

rich_to_multistring() (trans-
late.storage.jsonl10n.I18NextUnit class
method), 458

rich_to_multistring() (trans-
late.storage.jsonl10n.JsonNestedUnit class
method), 465

rich_to_multistring() (trans-
late.storage.jsonl10n.JsonUnit class method),
468

rich_to_multistring() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
class method), 473

rich_to_multistring() (trans-
late.storage.lisa.LISAunit class method),
478

rich_to_multistring() (trans-
late.storage.mo.mounit class method), 484

rich_to_multistring() (trans-
late.storage.mozilla_lang.LangUnit class
method), 489

rich_to_multistring() (trans-
late.storage.omegat.OmegaTUnit class
method), 496

rich_to_multistring() (trans-
late.storage.php.LaravelPHPUnit class
method), 553

Index 817

Translate Toolkit Documentation, Release 3.0.0

rich_to_multistring() (trans-
late.storage.php.phpunit class method),
558

rich_to_multistring() (trans-
late.storage.pocommon.pounit class method),
564

rich_to_multistring() (trans-
late.storage.poxliff.PoXliffUnit class method),
573

rich_to_multistring() (trans-
late.storage.properties.proppluralunit class
method), 595

rich_to_multistring() (trans-
late.storage.properties.propunit class method),
598

rich_to_multistring() (trans-
late.storage.pypo.pounit class method),
608

rich_to_multistring() (trans-
late.storage.qm.qmunit class method), 613

rich_to_multistring() (trans-
late.storage.qph.QphUnit class method),
619

rich_to_multistring() (trans-
late.storage.rc.rcunit class method), 624

rich_to_multistring() (trans-
late.storage.subtitles.SubtitleUnit class
method), 638

rich_to_multistring() (trans-
late.storage.tbx.tbxunit class method), 643

rich_to_multistring() (trans-
late.storage.tiki.TikiUnit class method),
648

rich_to_multistring() (trans-
late.storage.tmx.tmxunit class method), 654

rich_to_multistring() (trans-
late.storage.trados.TradosUnit class method),
658

rich_to_multistring() (trans-
late.storage.ts2.tsunit class method), 665

rich_to_multistring() (trans-
late.storage.txt.TxtUnit class method), 670

rich_to_multistring() (trans-
late.storage.utx.UtxUnit class method), 675

rich_to_multistring() (trans-
late.storage.wordfast.WordfastUnit class
method), 686

rich_to_multistring() (trans-
late.storage.xliff.xliffunit class method),
693

rindex() (translate.misc.multistring.multistring
method), 390

rjust() (translate.misc.multistring.multistring
method), 390

rpartition() (translate.misc.multistring.multistring
method), 390

rsplit() (translate.misc.multistring.multistring
method), 390

rstrip() (translate.misc.multistring.multistring
method), 390

RTF_ESCAPES (in module translate.storage.trados),
654

rtlpunc (translate.lang.common.Common attribute),
361

run() (translate.convert.convert.ArchiveConvertOptionParser
method), 238

run() (translate.convert.convert.ConvertOptionParser
method), 241

run() (translate.convert.ical2po.ical2po method), 245
run() (translate.convert.ini2po.ini2po method), 245
run() (translate.convert.mozlang2po.lang2po method),

247
run() (translate.convert.php2po.php2po method), 248
run() (translate.convert.po2ical.po2ical method), 249
run() (translate.convert.po2ini.po2ini method), 250
run() (translate.convert.po2moz.MozConvertOptionParser

method), 253
run() (translate.convert.po2mozlang.po2lang method),

250
run() (translate.convert.po2tiki.po2tiki method), 256
run() (translate.convert.po2tmx.TmxOptionParser

method), 259
run() (translate.convert.po2txt.po2txt method), 260
run() (translate.convert.po2wordfast.WfOptionParser

method), 263
run() (translate.convert.po2yaml.po2yaml method),

265
run() (translate.convert.tiki2po.tiki2po method), 268
run() (translate.convert.txt2po.txt2po method), 269
run() (translate.convert.yaml2po.yaml2po method),

270
run() (translate.filters.pofilter.FilterOptionParser

method), 353
run() (translate.misc.optrecurse.RecursiveOptionParser

method), 394
run() (translate.tools.poconflicts.ConflictOptionParser

method), 700
run() (translate.tools.pogrep.GrepOptionParser

method), 704
run() (translate.tools.porestructure.SplitOptionParser

method), 707
run() (translate.tools.poterminology.TerminologyOptionParser

method), 711
run_command() (in module trans-

late.storage.versioncontrol), 677
run_converter() (in module trans-

late.convert.ical2po), 245
run_converter() (in module trans-

818 Index

Translate Toolkit Documentation, Release 3.0.0

late.convert.ini2po), 245
run_converter() (in module trans-

late.convert.mozlang2po), 247
run_converter() (in module trans-

late.convert.php2po), 248
run_converter() (in module trans-

late.convert.po2ical), 249
run_converter() (in module trans-

late.convert.po2ini), 250
run_converter() (in module trans-

late.convert.po2mozlang), 250
run_converter() (in module trans-

late.convert.po2tiki), 256
run_converter() (in module trans-

late.convert.po2txt), 260
run_converter() (in module trans-

late.convert.po2yaml), 265
run_converter() (in module trans-

late.convert.tiki2po), 268
run_converter() (in module trans-

late.convert.txt2po), 269
run_converter() (in module trans-

late.convert.yaml2po), 270
run_filters() (trans-

late.filters.checks.CCLicenseChecker method),
274

run_filters() (trans-
late.filters.checks.DrupalChecker method),
280

run_filters() (trans-
late.filters.checks.GnomeChecker method),
286

run_filters() (translate.filters.checks.IOSChecker
method), 292

run_filters() (translate.filters.checks.KdeChecker
method), 298

run_filters() (translate.filters.checks.L20nChecker
method), 303

run_filters() (trans-
late.filters.checks.LibreOfficeChecker method),
309

run_filters() (trans-
late.filters.checks.MinimalChecker method),
315

run_filters() (trans-
late.filters.checks.MozillaChecker method),
321

run_filters() (trans-
late.filters.checks.OpenOfficeChecker method),
326

run_filters() (trans-
late.filters.checks.ReducedChecker method),
332

run_filters() (trans-

late.filters.checks.StandardChecker method),
338

run_filters() (trans-
late.filters.checks.StandardUnitChecker
method), 341

run_filters() (translate.filters.checks.TeeChecker
method), 342

run_filters() (translate.filters.checks.TermChecker
method), 345

run_filters() (trans-
late.filters.checks.TranslationChecker method),
348

run_filters() (translate.filters.checks.UnitChecker
method), 348

run_test() (translate.filters.checks.CCLicenseChecker
method), 274

run_test() (translate.filters.checks.DrupalChecker
method), 280

run_test() (translate.filters.checks.GnomeChecker
method), 286

run_test() (translate.filters.checks.IOSChecker
method), 292

run_test() (translate.filters.checks.KdeChecker
method), 298

run_test() (translate.filters.checks.L20nChecker
method), 303

run_test() (translate.filters.checks.LibreOfficeChecker
method), 309

run_test() (translate.filters.checks.MinimalChecker
method), 315

run_test() (translate.filters.checks.MozillaChecker
method), 321

run_test() (translate.filters.checks.OpenOfficeChecker
method), 326

run_test() (translate.filters.checks.ReducedChecker
method), 332

run_test() (translate.filters.checks.StandardChecker
method), 338

run_test() (translate.filters.checks.StandardUnitChecker
method), 341

run_test() (translate.filters.checks.TermChecker
method), 345

run_test() (translate.filters.checks.TranslationChecker
method), 348

run_test() (translate.filters.checks.UnitChecker
method), 348

runclean() (in module translate.tools.poclean), 697
runfilter() (in module translate.filters.pofilter), 353
rungrep() (in module translate.tools.pogrep), 705
runtests() (in module translate.filters.checks), 349

S
save() (translate.storage.base.TranslationStore

method), 403

Index 819

Translate Toolkit Documentation, Release 3.0.0

save() (translate.storage.bundleprojstore.BundleProjectStore
method), 407

save() (translate.storage.catkeys.CatkeysFile method),
409

save() (translate.storage.csvl10n.csvfile method), 415
save() (translate.storage.dtd.dtdfile method), 421
save() (translate.storage.html.htmlfile method), 430
save() (translate.storage.html.POHTMLParser

method), 427
save() (translate.storage.ical.icalfile method), 435
save() (translate.storage.ini.inifile method), 440
save() (translate.storage.jsonl10n.ARBJsonFile

method), 446
save() (translate.storage.jsonl10n.GoI18NJsonFile

method), 451
save() (translate.storage.jsonl10n.I18NextFile

method), 455
save() (translate.storage.jsonl10n.JsonFile method),

460
save() (translate.storage.jsonl10n.JsonNestedFile

method), 462
save() (translate.storage.jsonl10n.WebExtensionJsonFile

method), 470
save() (translate.storage.lisa.LISAfile method), 475
save() (translate.storage.mo.mofile method), 481
save() (translate.storage.mozilla_lang.LangStore

method), 486
save() (translate.storage.omegat.OmegaTFile method),

491
save() (translate.storage.omegat.OmegaTFileTab

method), 493
save() (translate.storage.php.LaravelPHPFile

method), 550
save() (translate.storage.php.phpfile method), 555
save() (translate.storage.pocommon.pofile method),

561
save() (translate.storage.poxliff.PoXliffFile method),

569
save() (translate.storage.project.Project method), 574
save() (translate.storage.projstore.ProjectStore

method), 575
save() (translate.storage.properties.gwtfile method),

583
save() (translate.storage.properties.javafile method),

585
save() (translate.storage.properties.javautf16file

method), 587
save() (translate.storage.properties.javautf8file

method), 589
save() (translate.storage.properties.joomlafile

method), 590
save() (translate.storage.properties.propfile method),

592
save() (translate.storage.properties.stringsfile

method), 600
save() (translate.storage.properties.stringsutf8file

method), 601
save() (translate.storage.pypo.pofile method), 604
save() (translate.storage.qm.qmfile method), 610
save() (translate.storage.qph.QphFile method), 616
save() (translate.storage.rc.rcfile method), 621
save() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 628
save() (translate.storage.subtitles.MicroDVDFile

method), 630
save() (translate.storage.subtitles.SubRipFile method),

631
save() (translate.storage.subtitles.SubStationAlphaFile

method), 633
save() (translate.storage.subtitles.SubtitleFile

method), 635
save() (translate.storage.tbx.tbxfile method), 640
save() (translate.storage.tiki.TikiStore method), 645
save() (translate.storage.tmx.tmxfile method), 650
save() (translate.storage.trados.TradosTxtTmFile

method), 659
save() (translate.storage.ts2.tsfile method), 661
save() (translate.storage.txt.TxtFile method), 667
save() (translate.storage.utx.UtxFile method), 672
save() (translate.storage.wordfast.WordfastTMFile

method), 682
save() (translate.storage.xliff.xlifffile method), 689
savefile() (translate.storage.base.TranslationStore

method), 403
savefile() (translate.storage.catkeys.CatkeysFile

method), 409
savefile() (translate.storage.csvl10n.csvfile

method), 415
savefile() (translate.storage.dtd.dtdfile method), 421
savefile() (translate.storage.html.htmlfile method),

430
savefile() (translate.storage.html.POHTMLParser

method), 428
savefile() (translate.storage.ical.icalfile method),

435
savefile() (translate.storage.ini.inifile method), 440
savefile() (translate.storage.jsonl10n.ARBJsonFile

method), 446
savefile() (translate.storage.jsonl10n.GoI18NJsonFile

method), 451
savefile() (translate.storage.jsonl10n.I18NextFile

method), 455
savefile() (translate.storage.jsonl10n.JsonFile

method), 460
savefile() (translate.storage.jsonl10n.JsonNestedFile

method), 462
savefile() (translate.storage.jsonl10n.WebExtensionJsonFile

method), 470

820 Index

Translate Toolkit Documentation, Release 3.0.0

savefile() (translate.storage.lisa.LISAfile method),
475

savefile() (translate.storage.mo.mofile method), 481
savefile() (translate.storage.mozilla_lang.LangStore

method), 486
savefile() (translate.storage.omegat.OmegaTFile

method), 491
savefile() (translate.storage.omegat.OmegaTFileTab

method), 493
savefile() (translate.storage.php.LaravelPHPFile

method), 550
savefile() (translate.storage.php.phpfile method),

555
savefile() (translate.storage.pocommon.pofile

method), 561
savefile() (translate.storage.poxliff.PoXliffFile

method), 569
savefile() (translate.storage.properties.gwtfile

method), 583
savefile() (translate.storage.properties.javafile

method), 585
savefile() (translate.storage.properties.javautf16file

method), 587
savefile() (translate.storage.properties.javautf8file

method), 589
savefile() (translate.storage.properties.joomlafile

method), 590
savefile() (translate.storage.properties.propfile

method), 592
savefile() (translate.storage.properties.stringsfile

method), 600
savefile() (translate.storage.properties.stringsutf8file

method), 601
savefile() (translate.storage.pypo.pofile method),

604
savefile() (translate.storage.qm.qmfile method), 610
savefile() (translate.storage.qph.QphFile method),

616
savefile() (translate.storage.rc.rcfile method), 621
savefile() (translate.storage.subtitles.AdvSubStationAlphaFile

method), 628
savefile() (translate.storage.subtitles.MicroDVDFile

method), 630
savefile() (translate.storage.subtitles.SubRipFile

method), 631
savefile() (translate.storage.subtitles.SubStationAlphaFile

method), 633
savefile() (translate.storage.subtitles.SubtitleFile

method), 635
savefile() (translate.storage.tbx.tbxfile method), 640
savefile() (translate.storage.tiki.TikiStore method),

645
savefile() (translate.storage.tmx.tmxfile method),

650

savefile() (translate.storage.trados.TradosTxtTmFile
method), 659

savefile() (translate.storage.ts2.tsfile method), 661
savefile() (translate.storage.txt.TxtFile method),

667
savefile() (translate.storage.utx.UtxFile method),

672
savefile() (translate.storage.wordfast.WordfastTMFile

method), 682
savefile() (translate.storage.xliff.xlifffile method),

689
SCAN_PARENTS (trans-

late.storage.versioncontrol.GenericRevisionControlSystem
attribute), 676

scanfiles() (translate.storage.directory.Directory
method), 419

scanfiles() (translate.storage.zip.ZIPFile method),
696

scripts (in module translate.lang.data), 363
searchElementsByTagName_helper() (in mod-

ule translate.misc.ourdom), 396
searchreplaceinput() (trans-

late.convert.convert.Replacer method), 242
searchreplacetemplate() (trans-

late.convert.convert.Replacer method), 242
segmentfile() (in module trans-

late.tools.posegment), 708
sentence_iter() (translate.lang.af.af class

method), 355
sentence_iter() (translate.lang.am.am class

method), 356
sentence_iter() (translate.lang.ar.ar class

method), 357
sentence_iter() (translate.lang.bn.bn class

method), 358
sentence_iter() (translate.lang.code_or.code_or

class method), 358
sentence_iter() (translate.lang.common.Common

class method), 361
sentence_iter() (translate.lang.de.de class

method), 364
sentence_iter() (translate.lang.el.el class method),

365
sentence_iter() (translate.lang.es.es class

method), 365
sentence_iter() (translate.lang.fa.fa class

method), 366
sentence_iter() (translate.lang.fi.fi class method),

367
sentence_iter() (translate.lang.fr.fr class method),

368
sentence_iter() (translate.lang.gu.gu class

method), 369
sentence_iter() (translate.lang.he.he class

Index 821

Translate Toolkit Documentation, Release 3.0.0

method), 369
sentence_iter() (translate.lang.hi.hi class

method), 370
sentence_iter() (translate.lang.hy.hy class

method), 371
sentence_iter() (translate.lang.ja.ja class

method), 372
sentence_iter() (translate.lang.km.km class

method), 373
sentence_iter() (translate.lang.kn.kn class

method), 374
sentence_iter() (translate.lang.ko.ko class

method), 374
sentence_iter() (translate.lang.ml.ml class

method), 375
sentence_iter() (translate.lang.mr.mr class

method), 376
sentence_iter() (translate.lang.ne.ne class

method), 377
sentence_iter() (translate.lang.pa.pa class

method), 378
sentence_iter() (translate.lang.si.si class method),

379
sentence_iter() (translate.lang.st.st class method),

380
sentence_iter() (translate.lang.sv.sv class

method), 380
sentence_iter() (translate.lang.ta.ta class

method), 381
sentence_iter() (translate.lang.te.te class method),

382
sentence_iter() (translate.lang.th.th class

method), 383
sentence_iter() (translate.lang.ug.ug class

method), 384
sentence_iter() (translate.lang.ur.ur class

method), 384
sentence_iter() (translate.lang.vi.vi class method),

385
sentence_iter() (translate.lang.zh.zh class

method), 386
sentencecount() (trans-

late.filters.checks.CCLicenseChecker method),
274

sentencecount() (trans-
late.filters.checks.DrupalChecker method),
280

sentencecount() (trans-
late.filters.checks.GnomeChecker method),
286

sentencecount() (trans-
late.filters.checks.IOSChecker method), 292

sentencecount() (trans-
late.filters.checks.KdeChecker method),

298
sentencecount() (trans-

late.filters.checks.L20nChecker method),
304

sentencecount() (trans-
late.filters.checks.LibreOfficeChecker method),
309

sentencecount() (trans-
late.filters.checks.MinimalChecker method),
315

sentencecount() (trans-
late.filters.checks.MozillaChecker method),
321

sentencecount() (trans-
late.filters.checks.OpenOfficeChecker method),
326

sentencecount() (trans-
late.filters.checks.ReducedChecker method),
332

sentencecount() (trans-
late.filters.checks.StandardChecker method),
338

sentencecount() (trans-
late.filters.checks.TermChecker method),
345

sentenceend (translate.lang.common.Common
attribute), 361

sentences() (translate.lang.af.af class method), 355
sentences() (translate.lang.am.am class method),

356
sentences() (translate.lang.ar.ar class method), 357
sentences() (translate.lang.bn.bn class method), 358
sentences() (translate.lang.code_or.code_or class

method), 358
sentences() (translate.lang.common.Common class

method), 361
sentences() (translate.lang.de.de class method), 364
sentences() (translate.lang.el.el class method), 365
sentences() (translate.lang.es.es class method), 365
sentences() (translate.lang.fa.fa class method), 366
sentences() (translate.lang.fi.fi class method), 367
sentences() (translate.lang.fr.fr class method), 368
sentences() (translate.lang.gu.gu class method), 369
sentences() (translate.lang.he.he class method), 370
sentences() (translate.lang.hi.hi class method), 370
sentences() (translate.lang.hy.hy class method), 371
sentences() (translate.lang.ja.ja class method), 372
sentences() (translate.lang.km.km class method),

373
sentences() (translate.lang.kn.kn class method), 374
sentences() (translate.lang.ko.ko class method), 374
sentences() (translate.lang.ml.ml class method), 375
sentences() (translate.lang.mr.mr class method), 376
sentences() (translate.lang.ne.ne class method), 377

822 Index

Translate Toolkit Documentation, Release 3.0.0

sentences() (translate.lang.pa.pa class method), 378
sentences() (translate.lang.si.si class method), 379
sentences() (translate.lang.st.st class method), 380
sentences() (translate.lang.sv.sv class method), 380
sentences() (translate.lang.ta.ta class method), 381
sentences() (translate.lang.te.te class method), 382
sentences() (translate.lang.th.th class method), 383
sentences() (translate.lang.ug.ug class method), 384
sentences() (translate.lang.ur.ur class method), 385
sentences() (translate.lang.vi.vi class method), 385
sentences() (translate.lang.zh.zh class method), 386
serialize() (translate.storage.base.TranslationStore

method), 403
serialize() (translate.storage.catkeys.CatkeysFile

method), 410
serialize() (translate.storage.csvl10n.csvfile

method), 415
serialize() (translate.storage.dtd.dtdfile method),

421
serialize() (translate.storage.html.htmlfile method),

430
serialize() (translate.storage.html.POHTMLParser

method), 428
serialize() (translate.storage.ical.icalfile method),

435
serialize() (translate.storage.ini.inifile method),

440
serialize() (trans-

late.storage.jsonl10n.ARBJsonFile method),
446

serialize() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 451

serialize() (translate.storage.jsonl10n.I18NextFile
method), 455

serialize() (translate.storage.jsonl10n.JsonFile
method), 460

serialize() (trans-
late.storage.jsonl10n.JsonNestedFile method),
462

serialize() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

serialize() (translate.storage.lisa.LISAfile method),
475

serialize() (translate.storage.mo.mofile method),
481

serialize() (trans-
late.storage.mozilla_lang.LangStore method),
486

serialize() (translate.storage.omegat.OmegaTFile
method), 491

serialize() (trans-
late.storage.omegat.OmegaTFileTab method),

493
serialize() (translate.storage.oo.oofile method),

497
serialize() (translate.storage.php.LaravelPHPFile

method), 550
serialize() (translate.storage.php.phpfile method),

555
serialize() (translate.storage.pocommon.pofile

method), 561
serialize() (translate.storage.poxliff.PoXliffFile

method), 569
serialize() (translate.storage.properties.gwtfile

method), 583
serialize() (translate.storage.properties.javafile

method), 585
serialize() (trans-

late.storage.properties.javautf16file method),
587

serialize() (translate.storage.properties.javautf8file
method), 589

serialize() (translate.storage.properties.joomlafile
method), 590

serialize() (translate.storage.properties.propfile
method), 592

serialize() (translate.storage.properties.stringsfile
method), 600

serialize() (trans-
late.storage.properties.stringsutf8file method),
601

serialize() (translate.storage.pypo.pofile method),
604

serialize() (translate.storage.qm.qmfile method),
610

serialize() (translate.storage.qph.QphFile method),
616

serialize() (translate.storage.rc.rcfile method), 621
serialize() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 628

serialize() (trans-
late.storage.subtitles.MicroDVDFile method),
630

serialize() (translate.storage.subtitles.SubRipFile
method), 631

serialize() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

serialize() (translate.storage.subtitles.SubtitleFile
method), 635

serialize() (translate.storage.tbx.tbxfile method),
640

serialize() (translate.storage.tiki.TikiStore method),
645

serialize() (translate.storage.tmx.tmxfile method),

Index 823

Translate Toolkit Documentation, Release 3.0.0

650
serialize() (trans-

late.storage.trados.TradosTxtTmFile method),
659

serialize() (translate.storage.ts2.tsfile method), 662
serialize() (translate.storage.txt.TxtFile method),

667
serialize() (translate.storage.utx.UtxFile method),

672
serialize() (trans-

late.storage.wordfast.WordfastTMFile method),
682

serialize() (translate.storage.xliff.xlifffile method),
689

SeriousFilterFailure, 334
set_time() (translate.storage.trados.TradosTxtDate

method), 655
set_time() (translate.storage.wordfast.WordfastTime

method), 683
set_timestring() (trans-

late.storage.trados.TradosTxtDate method),
655

set_timestring() (trans-
late.storage.wordfast.WordfastTime method),
683

set_usage() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

set_usage() (trans-
late.convert.convert.ConvertOptionParser
method), 241

set_usage() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

set_usage() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

set_usage() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

set_usage() (trans-
late.filters.pofilter.FilterOptionParser method),
353

set_usage() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

set_usage() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

set_usage() (trans-
late.tools.pogrep.GrepOptionParser method),
704

set_usage() (trans-
late.tools.porestructure.SplitOptionParser

method), 707
set_usage() (trans-

late.tools.poterminology.TerminologyOptionParser
method), 711

setchecksum() (trans-
late.storage.catkeys.CatkeysHeader method),
410

setconfig() (trans-
late.filters.checks.CCLicenseChecker method),
274

setconfig() (translate.filters.checks.DrupalChecker
method), 280

setconfig() (translate.filters.checks.GnomeChecker
method), 286

setconfig() (translate.filters.checks.IOSChecker
method), 292

setconfig() (translate.filters.checks.KdeChecker
method), 298

setconfig() (translate.filters.checks.L20nChecker
method), 304

setconfig() (trans-
late.filters.checks.LibreOfficeChecker method),
309

setconfig() (trans-
late.filters.checks.MinimalChecker method),
315

setconfig() (translate.filters.checks.MozillaChecker
method), 321

setconfig() (trans-
late.filters.checks.OpenOfficeChecker method),
327

setconfig() (trans-
late.filters.checks.ReducedChecker method),
332

setconfig() (trans-
late.filters.checks.StandardChecker method),
338

setconfig() (trans-
late.filters.checks.StandardUnitChecker
method), 341

setconfig() (translate.filters.checks.TermChecker
method), 345

setconfig() (trans-
late.filters.checks.TranslationChecker method),
348

setconfig() (translate.filters.checks.UnitChecker
method), 348

setcontext() (trans-
late.storage.base.TranslationUnit method),
406

setcontext() (translate.storage.catkeys.CatkeysUnit
method), 413

setcontext() (translate.storage.csvl10n.csvunit
method), 418

824 Index

Translate Toolkit Documentation, Release 3.0.0

setcontext() (translate.storage.dtd.dtdunit method),
424

setcontext() (translate.storage.html.htmlunit
method), 433

setcontext() (translate.storage.ical.icalunit
method), 438

setcontext() (translate.storage.ini.iniunit method),
443

setcontext() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
449

setcontext() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 454

setcontext() (trans-
late.storage.jsonl10n.I18NextUnit method),
459

setcontext() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
465

setcontext() (translate.storage.jsonl10n.JsonUnit
method), 468

setcontext() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 473

setcontext() (translate.storage.lisa.LISAunit
method), 478

setcontext() (translate.storage.mo.mounit method),
484

setcontext() (trans-
late.storage.mozilla_lang.LangUnit method),
489

setcontext() (trans-
late.storage.omegat.OmegaTUnit method),
496

setcontext() (trans-
late.storage.php.LaravelPHPUnit method),
554

setcontext() (translate.storage.php.phpunit
method), 558

setcontext() (translate.storage.pocommon.pounit
method), 564

setcontext() (translate.storage.poxliff.PoXliffUnit
method), 573

setcontext() (trans-
late.storage.properties.proppluralunit method),
595

setcontext() (translate.storage.properties.propunit
method), 598

setcontext() (translate.storage.pypo.pounit
method), 608

setcontext() (translate.storage.qm.qmunit method),
613

setcontext() (translate.storage.qph.QphUnit

method), 619
setcontext() (translate.storage.rc.rcunit method),

625
setcontext() (trans-

late.storage.subtitles.SubtitleUnit method),
638

setcontext() (translate.storage.tbx.tbxunit method),
643

setcontext() (translate.storage.tiki.TikiUnit
method), 648

setcontext() (translate.storage.tmx.tmxunit
method), 654

setcontext() (translate.storage.trados.TradosUnit
method), 658

setcontext() (translate.storage.ts2.tsunit method),
665

setcontext() (translate.storage.txt.TxtUnit method),
670

setcontext() (translate.storage.utx.UtxUnit
method), 675

setcontext() (trans-
late.storage.wordfast.WordfastUnit method),
686

setcontext() (translate.storage.xliff.xliffunit
method), 693

setdefault() (translate.misc.dictutils.cidict
method), 387

setdefault() (translate.storage.oo.unormalizechar
method), 499

setdict() (translate.storage.catkeys.CatkeysUnit
method), 413

setdict() (translate.storage.omegat.OmegaTUnit
method), 496

setdict() (translate.storage.utx.UtxUnit method),
676

setdict() (translate.storage.wordfast.WordfastUnit
method), 686

seterrorleveloptions() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

seterrorleveloptions() (trans-
late.convert.convert.ConvertOptionParser
method), 241

seterrorleveloptions() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

seterrorleveloptions() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

seterrorleveloptions() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

seterrorleveloptions() (trans-
late.filters.pofilter.FilterOptionParser method),

Index 825

Translate Toolkit Documentation, Release 3.0.0

353
seterrorleveloptions() (trans-

late.misc.optrecurse.RecursiveOptionParser
method), 394

seterrorleveloptions() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

seterrorleveloptions() (trans-
late.tools.pogrep.GrepOptionParser method),
704

seterrorleveloptions() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

seterrorleveloptions() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

setfilename() (translate.storage.poxliff.PoXliffFile
method), 569

setfilename() (translate.storage.xliff.xlifffile
method), 689

setformats() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

setformats() (trans-
late.convert.convert.ConvertOptionParser
method), 241

setformats() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

setformats() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

setformats() (trans-
late.convert.po2wordfast.WfOptionParser
method), 263

setformats() (trans-
late.filters.pofilter.FilterOptionParser method),
353

setformats() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

setformats() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

setformats() (trans-
late.tools.pogrep.GrepOptionParser method),
704

setformats() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

setformats() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

setid() (translate.storage.base.TranslationUnit

method), 406
setid() (translate.storage.catkeys.CatkeysUnit

method), 413
setid() (translate.storage.csvl10n.csvunit method),

418
setid() (translate.storage.dtd.dtdunit method), 424
setid() (translate.storage.html.htmlunit method), 433
setid() (translate.storage.ical.icalunit method), 438
setid() (translate.storage.ini.iniunit method), 443
setid() (translate.storage.jsonl10n.ARBJsonUnit

method), 449
setid() (translate.storage.jsonl10n.GoI18NJsonUnit

method), 454
setid() (translate.storage.jsonl10n.I18NextUnit

method), 459
setid() (translate.storage.jsonl10n.JsonNestedUnit

method), 465
setid() (translate.storage.jsonl10n.JsonUnit method),

468
setid() (translate.storage.jsonl10n.WebExtensionJsonUnit

method), 473
setid() (translate.storage.lisa.LISAunit method), 478
setid() (translate.storage.mo.mounit method), 484
setid() (translate.storage.mozilla_lang.LangUnit

method), 489
setid() (translate.storage.omegat.OmegaTUnit

method), 496
setid() (translate.storage.php.LaravelPHPUnit

method), 554
setid() (translate.storage.php.phpunit method), 558
setid() (translate.storage.pocommon.pounit method),

564
setid() (translate.storage.poxliff.PoXliffUnit method),

573
setid() (translate.storage.properties.proppluralunit

method), 595
setid() (translate.storage.properties.propunit

method), 598
setid() (translate.storage.pypo.pounit method), 608
setid() (translate.storage.qm.qmunit method), 614
setid() (translate.storage.qph.QphUnit method), 619
setid() (translate.storage.rc.rcunit method), 625
setid() (translate.storage.subtitles.SubtitleUnit

method), 638
setid() (translate.storage.tbx.tbxunit method), 643
setid() (translate.storage.tiki.TikiUnit method), 648
setid() (translate.storage.tmx.tmxunit method), 654
setid() (translate.storage.trados.TradosUnit method),

658
setid() (translate.storage.ts2.tsunit method), 665
setid() (translate.storage.txt.TxtUnit method), 670
setid() (translate.storage.utx.UtxUnit method), 676
setid() (translate.storage.wordfast.WordfastUnit

method), 686

826 Index

Translate Toolkit Documentation, Release 3.0.0

setid() (translate.storage.xliff.xliffunit method), 693
setmanpageoption() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

setmanpageoption() (trans-
late.convert.convert.ConvertOptionParser
method), 241

setmanpageoption() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

setmanpageoption() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

setmanpageoption() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

setmanpageoption() (trans-
late.filters.pofilter.FilterOptionParser method),
353

setmanpageoption() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

setmanpageoption() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

setmanpageoption() (trans-
late.tools.pogrep.GrepOptionParser method),
704

setmanpageoption() (trans-
late.tools.porestructure.SplitOptionParser
method), 707

setmanpageoption() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

setparameters() (translate.search.match.matcher
method), 400

setparameters() (trans-
late.search.match.terminologymatcher
method), 400

setparts() (translate.storage.oo.ooline method), 497
setpotoption() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

setpotoption() (trans-
late.convert.convert.ConvertOptionParser
method), 241

setpotoption() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

setpotoption() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

setpotoption() (trans-
late.convert.po2wordfast.WfOptionParser

method), 264
setprogressoptions() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

setprogressoptions() (trans-
late.convert.convert.ConvertOptionParser
method), 242

setprogressoptions() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 253

setprogressoptions() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

setprogressoptions() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

setprogressoptions() (trans-
late.filters.pofilter.FilterOptionParser method),
353

setprogressoptions() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

setprogressoptions() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

setprogressoptions() (trans-
late.tools.pogrep.GrepOptionParser method),
704

setprogressoptions() (trans-
late.tools.porestructure.SplitOptionParser
method), 708

setprogressoptions() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

setprojectstyle() (trans-
late.storage.base.TranslationStore method),
403

setprojectstyle() (trans-
late.storage.catkeys.CatkeysFile method),
410

setprojectstyle() (trans-
late.storage.csvl10n.csvfile method), 415

setprojectstyle() (translate.storage.dtd.dtdfile
method), 421

setprojectstyle() (translate.storage.html.htmlfile
method), 430

setprojectstyle() (trans-
late.storage.html.POHTMLParser method),
428

setprojectstyle() (translate.storage.ical.icalfile
method), 435

setprojectstyle() (translate.storage.ini.inifile
method), 440

setprojectstyle() (trans-

Index 827

Translate Toolkit Documentation, Release 3.0.0

late.storage.jsonl10n.ARBJsonFile method),
446

setprojectstyle() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 451

setprojectstyle() (trans-
late.storage.jsonl10n.I18NextFile method),
455

setprojectstyle() (trans-
late.storage.jsonl10n.JsonFile method), 460

setprojectstyle() (trans-
late.storage.jsonl10n.JsonNestedFile method),
462

setprojectstyle() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

setprojectstyle() (translate.storage.lisa.LISAfile
method), 475

setprojectstyle() (translate.storage.mo.mofile
method), 481

setprojectstyle() (trans-
late.storage.mozilla_lang.LangStore method),
486

setprojectstyle() (trans-
late.storage.omegat.OmegaTFile method),
491

setprojectstyle() (trans-
late.storage.omegat.OmegaTFileTab method),
493

setprojectstyle() (trans-
late.storage.php.LaravelPHPFile method),
551

setprojectstyle() (translate.storage.php.phpfile
method), 555

setprojectstyle() (trans-
late.storage.pocommon.pofile method), 561

setprojectstyle() (trans-
late.storage.poheader.poheader method),
566

setprojectstyle() (trans-
late.storage.poxliff.PoXliffFile method), 569

setprojectstyle() (trans-
late.storage.properties.gwtfile method), 583

setprojectstyle() (trans-
late.storage.properties.javafile method),
585

setprojectstyle() (trans-
late.storage.properties.javautf16file method),
587

setprojectstyle() (trans-
late.storage.properties.javautf8file method),
589

setprojectstyle() (trans-
late.storage.properties.joomlafile method),

590
setprojectstyle() (trans-

late.storage.properties.propfile method),
592

setprojectstyle() (trans-
late.storage.properties.stringsfile method),
600

setprojectstyle() (trans-
late.storage.properties.stringsutf8file method),
601

setprojectstyle() (translate.storage.pypo.pofile
method), 605

setprojectstyle() (translate.storage.qm.qmfile
method), 610

setprojectstyle() (translate.storage.qph.QphFile
method), 616

setprojectstyle() (translate.storage.rc.rcfile
method), 622

setprojectstyle() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 628

setprojectstyle() (trans-
late.storage.subtitles.MicroDVDFile method),
630

setprojectstyle() (trans-
late.storage.subtitles.SubRipFile method),
631

setprojectstyle() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

setprojectstyle() (trans-
late.storage.subtitles.SubtitleFile method),
635

setprojectstyle() (translate.storage.tbx.tbxfile
method), 640

setprojectstyle() (translate.storage.tiki.TikiStore
method), 645

setprojectstyle() (translate.storage.tmx.tmxfile
method), 651

setprojectstyle() (trans-
late.storage.trados.TradosTxtTmFile method),
659

setprojectstyle() (translate.storage.ts2.tsfile
method), 662

setprojectstyle() (translate.storage.txt.TxtFile
method), 667

setprojectstyle() (translate.storage.utx.UtxFile
method), 672

setprojectstyle() (trans-
late.storage.wordfast.WordfastTMFile method),
682

setprojectstyle() (translate.storage.xliff.xlifffile
method), 689

setsourcelanguage() (trans-

828 Index

Translate Toolkit Documentation, Release 3.0.0

late.storage.base.TranslationStore method),
403

setsourcelanguage() (trans-
late.storage.catkeys.CatkeysFile method),
410

setsourcelanguage() (trans-
late.storage.csvl10n.csvfile method), 415

setsourcelanguage() (translate.storage.dtd.dtdfile
method), 421

setsourcelanguage() (trans-
late.storage.html.htmlfile method), 430

setsourcelanguage() (trans-
late.storage.html.POHTMLParser method),
428

setsourcelanguage() (trans-
late.storage.ical.icalfile method), 435

setsourcelanguage() (translate.storage.ini.inifile
method), 440

setsourcelanguage() (trans-
late.storage.jsonl10n.ARBJsonFile method),
446

setsourcelanguage() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 451

setsourcelanguage() (trans-
late.storage.jsonl10n.I18NextFile method),
456

setsourcelanguage() (trans-
late.storage.jsonl10n.JsonFile method), 460

setsourcelanguage() (trans-
late.storage.jsonl10n.JsonNestedFile method),
462

setsourcelanguage() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

setsourcelanguage() (trans-
late.storage.lisa.LISAfile method), 475

setsourcelanguage() (translate.storage.mo.mofile
method), 481

setsourcelanguage() (trans-
late.storage.mozilla_lang.LangStore method),
486

setsourcelanguage() (trans-
late.storage.omegat.OmegaTFile method),
491

setsourcelanguage() (trans-
late.storage.omegat.OmegaTFileTab method),
493

setsourcelanguage() (trans-
late.storage.php.LaravelPHPFile method),
551

setsourcelanguage() (trans-
late.storage.php.phpfile method), 555

setsourcelanguage() (trans-

late.storage.pocommon.pofile method), 561
setsourcelanguage() (trans-

late.storage.poxliff.PoXliffFile method), 569
setsourcelanguage() (trans-

late.storage.properties.gwtfile method), 583
setsourcelanguage() (trans-

late.storage.properties.javafile method),
586

setsourcelanguage() (trans-
late.storage.properties.javautf16file method),
587

setsourcelanguage() (trans-
late.storage.properties.javautf8file method),
589

setsourcelanguage() (trans-
late.storage.properties.joomlafile method),
591

setsourcelanguage() (trans-
late.storage.properties.propfile method),
592

setsourcelanguage() (trans-
late.storage.properties.stringsfile method),
600

setsourcelanguage() (trans-
late.storage.properties.stringsutf8file method),
602

setsourcelanguage() (trans-
late.storage.pypo.pofile method), 605

setsourcelanguage() (translate.storage.qm.qmfile
method), 610

setsourcelanguage() (trans-
late.storage.qph.QphFile method), 616

setsourcelanguage() (translate.storage.rc.rcfile
method), 622

setsourcelanguage() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 628

setsourcelanguage() (trans-
late.storage.subtitles.MicroDVDFile method),
630

setsourcelanguage() (trans-
late.storage.subtitles.SubRipFile method),
631

setsourcelanguage() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

setsourcelanguage() (trans-
late.storage.subtitles.SubtitleFile method),
635

setsourcelanguage() (translate.storage.tbx.tbxfile
method), 640

setsourcelanguage() (trans-
late.storage.tiki.TikiStore method), 645

setsourcelanguage() (trans-

Index 829

Translate Toolkit Documentation, Release 3.0.0

late.storage.tmx.tmxfile method), 651
setsourcelanguage() (trans-

late.storage.trados.TradosTxtTmFile method),
659

setsourcelanguage() (translate.storage.ts2.tsfile
method), 662

setsourcelanguage() (trans-
late.storage.txt.TxtFile method), 667

setsourcelanguage() (trans-
late.storage.utx.UtxFile method), 672

setsourcelanguage() (trans-
late.storage.wordfast.WordfastTMFile method),
682

setsourcelanguage() (trans-
late.storage.xliff.xlifffile method), 689

setsuggestionstore() (trans-
late.filters.checks.CCLicenseChecker method),
275

setsuggestionstore() (trans-
late.filters.checks.DrupalChecker method),
281

setsuggestionstore() (trans-
late.filters.checks.GnomeChecker method),
286

setsuggestionstore() (trans-
late.filters.checks.IOSChecker method), 292

setsuggestionstore() (trans-
late.filters.checks.KdeChecker method),
298

setsuggestionstore() (trans-
late.filters.checks.L20nChecker method),
304

setsuggestionstore() (trans-
late.filters.checks.LibreOfficeChecker method),
309

setsuggestionstore() (trans-
late.filters.checks.MinimalChecker method),
315

setsuggestionstore() (trans-
late.filters.checks.MozillaChecker method),
321

setsuggestionstore() (trans-
late.filters.checks.OpenOfficeChecker method),
327

setsuggestionstore() (trans-
late.filters.checks.ReducedChecker method),
332

setsuggestionstore() (trans-
late.filters.checks.StandardChecker method),
338

setsuggestionstore() (trans-
late.filters.checks.StandardUnitChecker
method), 341

setsuggestionstore() (trans-

late.filters.checks.TeeChecker method), 342
setsuggestionstore() (trans-

late.filters.checks.TermChecker method),
345

setsuggestionstore() (trans-
late.filters.checks.TranslationChecker method),
348

setsuggestionstore() (trans-
late.filters.checks.UnitChecker method),
348

settarget() (translate.storage.lisa.LISAunit
method), 478

settarget() (translate.storage.poxliff.PoXliffUnit
method), 573

settarget() (translate.storage.qph.QphUnit
method), 619

settarget() (translate.storage.tbx.tbxunit method),
643

settarget() (translate.storage.tmx.tmxunit method),
654

settarget() (translate.storage.ts2.tsunit method),
665

settarget() (translate.storage.xliff.xliffunit method),
693

settargetlanguage() (trans-
late.storage.base.TranslationStore method),
403

settargetlanguage() (trans-
late.storage.catkeys.CatkeysFile method),
410

settargetlanguage() (trans-
late.storage.catkeys.CatkeysHeader method),
410

settargetlanguage() (trans-
late.storage.csvl10n.csvfile method), 415

settargetlanguage() (translate.storage.dtd.dtdfile
method), 421

settargetlanguage() (trans-
late.storage.html.htmlfile method), 430

settargetlanguage() (trans-
late.storage.html.POHTMLParser method),
428

settargetlanguage() (trans-
late.storage.ical.icalfile method), 435

settargetlanguage() (translate.storage.ini.inifile
method), 440

settargetlanguage() (trans-
late.storage.jsonl10n.ARBJsonFile method),
446

settargetlanguage() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 451

settargetlanguage() (trans-
late.storage.jsonl10n.I18NextFile method),

830 Index

Translate Toolkit Documentation, Release 3.0.0

456
settargetlanguage() (trans-

late.storage.jsonl10n.JsonFile method), 460
settargetlanguage() (trans-

late.storage.jsonl10n.JsonNestedFile method),
462

settargetlanguage() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

settargetlanguage() (trans-
late.storage.lisa.LISAfile method), 475

settargetlanguage() (translate.storage.mo.mofile
method), 481

settargetlanguage() (trans-
late.storage.mozilla_lang.LangStore method),
486

settargetlanguage() (trans-
late.storage.omegat.OmegaTFile method),
491

settargetlanguage() (trans-
late.storage.omegat.OmegaTFileTab method),
493

settargetlanguage() (trans-
late.storage.php.LaravelPHPFile method),
551

settargetlanguage() (trans-
late.storage.php.phpfile method), 555

settargetlanguage() (trans-
late.storage.pocommon.pofile method), 561

settargetlanguage() (trans-
late.storage.poheader.poheader method),
566

settargetlanguage() (trans-
late.storage.poxliff.PoXliffFile method), 569

settargetlanguage() (trans-
late.storage.properties.gwtfile method), 583

settargetlanguage() (trans-
late.storage.properties.javafile method),
586

settargetlanguage() (trans-
late.storage.properties.javautf16file method),
587

settargetlanguage() (trans-
late.storage.properties.javautf8file method),
589

settargetlanguage() (trans-
late.storage.properties.joomlafile method),
591

settargetlanguage() (trans-
late.storage.properties.propfile method),
592

settargetlanguage() (trans-
late.storage.properties.stringsfile method),
600

settargetlanguage() (trans-
late.storage.properties.stringsutf8file method),
602

settargetlanguage() (trans-
late.storage.pypo.pofile method), 605

settargetlanguage() (translate.storage.qm.qmfile
method), 611

settargetlanguage() (trans-
late.storage.qph.QphFile method), 616

settargetlanguage() (translate.storage.rc.rcfile
method), 622

settargetlanguage() (trans-
late.storage.subtitles.AdvSubStationAlphaFile
method), 628

settargetlanguage() (trans-
late.storage.subtitles.MicroDVDFile method),
630

settargetlanguage() (trans-
late.storage.subtitles.SubRipFile method),
632

settargetlanguage() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

settargetlanguage() (trans-
late.storage.subtitles.SubtitleFile method),
635

settargetlanguage() (translate.storage.tbx.tbxfile
method), 640

settargetlanguage() (trans-
late.storage.tiki.TikiStore method), 646

settargetlanguage() (trans-
late.storage.tmx.tmxfile method), 651

settargetlanguage() (trans-
late.storage.trados.TradosTxtTmFile method),
659

settargetlanguage() (translate.storage.ts2.tsfile
method), 662

settargetlanguage() (trans-
late.storage.txt.TxtFile method), 667

settargetlanguage() (trans-
late.storage.utx.UtxFile method), 672

settargetlanguage() (trans-
late.storage.wordfast.WordfastTMFile method),
682

settargetlanguage() (trans-
late.storage.xliff.xlifffile method), 689

settext() (translate.storage.oo.ooline method), 497
settimestampoption() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

settimestampoption() (trans-
late.convert.convert.ConvertOptionParser
method), 242

settimestampoption() (trans-

Index 831

Translate Toolkit Documentation, Release 3.0.0

late.convert.po2moz.MozConvertOptionParser
method), 254

settimestampoption() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

settimestampoption() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

settypecomment() (translate.storage.pypo.pounit
method), 608

setXMLlang() (in module trans-
late.misc.xml_helpers), 398

setXMLspace() (in module trans-
late.misc.xml_helpers), 398

short() (translate.filters.checks.CCLicenseChecker
method), 275

short() (translate.filters.checks.DrupalChecker
method), 281

short() (translate.filters.checks.GnomeChecker
method), 286

short() (translate.filters.checks.IOSChecker method),
292

short() (translate.filters.checks.KdeChecker method),
298

short() (translate.filters.checks.L20nChecker
method), 304

short() (translate.filters.checks.LibreOfficeChecker
method), 309

short() (translate.filters.checks.MinimalChecker
method), 315

short() (translate.filters.checks.MozillaChecker
method), 321

short() (translate.filters.checks.OpenOfficeChecker
method), 327

short() (translate.filters.checks.ReducedChecker
method), 332

short() (translate.filters.checks.StandardChecker
method), 338

short() (translate.filters.checks.TermChecker method),
345

should_output_store() (in module trans-
late.convert.convert), 242

show() (translate.misc.progressbar.DotsProgressBar
method), 396

show() (translate.misc.progressbar.HashProgressBar
method), 396

show() (translate.misc.progressbar.MessageProgressBar
method), 396

show() (translate.misc.progressbar.NoProgressBar
method), 396

show() (translate.misc.progressbar.ProgressBar
method), 396

show() (translate.misc.progressbar.VerboseProgressBar
method), 396

si (class in translate.lang.si), 379
simplecaps() (trans-

late.filters.checks.CCLicenseChecker method),
275

simplecaps() (trans-
late.filters.checks.DrupalChecker method),
281

simplecaps() (trans-
late.filters.checks.GnomeChecker method),
287

simplecaps() (translate.filters.checks.IOSChecker
method), 292

simplecaps() (translate.filters.checks.KdeChecker
method), 298

simplecaps() (translate.filters.checks.L20nChecker
method), 304

simplecaps() (trans-
late.filters.checks.LibreOfficeChecker method),
310

simplecaps() (trans-
late.filters.checks.MinimalChecker method),
315

simplecaps() (trans-
late.filters.checks.MozillaChecker method),
321

simplecaps() (trans-
late.filters.checks.OpenOfficeChecker method),
327

simplecaps() (trans-
late.filters.checks.ReducedChecker method),
332

simplecaps() (trans-
late.filters.checks.StandardChecker method),
338

simplecaps() (translate.filters.checks.TermChecker
method), 345

simpleplurals() (trans-
late.filters.checks.CCLicenseChecker method),
275

simpleplurals() (trans-
late.filters.checks.DrupalChecker method),
281

simpleplurals() (trans-
late.filters.checks.GnomeChecker method),
287

simpleplurals() (trans-
late.filters.checks.IOSChecker method), 292

simpleplurals() (trans-
late.filters.checks.KdeChecker method),
298

simpleplurals() (trans-
late.filters.checks.L20nChecker method),
304

simpleplurals() (trans-

832 Index

Translate Toolkit Documentation, Release 3.0.0

late.filters.checks.LibreOfficeChecker method),
310

simpleplurals() (trans-
late.filters.checks.MinimalChecker method),
315

simpleplurals() (trans-
late.filters.checks.MozillaChecker method),
321

simpleplurals() (trans-
late.filters.checks.OpenOfficeChecker method),
327

simpleplurals() (trans-
late.filters.checks.ReducedChecker method),
333

simpleplurals() (trans-
late.filters.checks.StandardChecker method),
338

simpleplurals() (trans-
late.filters.checks.TermChecker method),
345

simplercode() (in module translate.lang.data), 363
simplify_to_common() (in module trans-

late.lang.data), 363
singlequoting() (trans-

late.filters.checks.CCLicenseChecker method),
275

singlequoting() (trans-
late.filters.checks.DrupalChecker method),
281

singlequoting() (trans-
late.filters.checks.GnomeChecker method),
287

singlequoting() (trans-
late.filters.checks.IOSChecker method), 293

singlequoting() (trans-
late.filters.checks.KdeChecker method),
298

singlequoting() (trans-
late.filters.checks.L20nChecker method),
304

singlequoting() (trans-
late.filters.checks.LibreOfficeChecker method),
310

singlequoting() (trans-
late.filters.checks.MinimalChecker method),
316

singlequoting() (trans-
late.filters.checks.MozillaChecker method),
321

singlequoting() (trans-
late.filters.checks.OpenOfficeChecker method),
327

singlequoting() (trans-
late.filters.checks.ReducedChecker method),

333
singlequoting() (trans-

late.filters.checks.StandardChecker method),
339

singlequoting() (trans-
late.filters.checks.TermChecker method),
346

source (translate.storage.dtd.dtdunit attribute), 424
source (translate.storage.pypo.pounit attribute), 608
source_wordcount() (trans-

late.storage.statistics.Statistics method),
625

sourcefiles (trans-
late.storage.bundleprojstore.BundleProjectStore
attribute), 407

sourcefiles (translate.storage.projstore.ProjectStore
attribute), 575

sourcelen() (in module translate.search.match), 400
SourceStoreClass (trans-

late.convert.ical2po.ical2po attribute), 244
SourceStoreClass (translate.convert.ini2po.ini2po

attribute), 245
SourceStoreClass (trans-

late.convert.mozlang2po.lang2po attribute),
246

SourceStoreClass (trans-
late.convert.php2po.php2po attribute), 248

SourceStoreClass (trans-
late.convert.po2ical.po2ical attribute), 249

SourceStoreClass (translate.convert.po2ini.po2ini
attribute), 249

SourceStoreClass (trans-
late.convert.po2mozlang.po2lang attribute),
250

SourceStoreClass (translate.convert.po2tiki.po2tiki
attribute), 255

SourceStoreClass (trans-
late.convert.po2yaml.po2yaml attribute),
265

SourceStoreClass (translate.convert.tiki2po.tiki2po
attribute), 268

SourceStoreClass (translate.convert.txt2po.txt2po
attribute), 269

SourceStoreClass (trans-
late.convert.yaml2po.yaml2po attribute),
270

spaceend() (in module translate.filters.decoration),
350

spacestart() (in module trans-
late.filters.decoration), 350

specialchars (translate.lang.common.Common at-
tribute), 361

spellcheck() (trans-
late.filters.checks.CCLicenseChecker method),

Index 833

Translate Toolkit Documentation, Release 3.0.0

275
spellcheck() (trans-

late.filters.checks.DrupalChecker method),
281

spellcheck() (trans-
late.filters.checks.GnomeChecker method),
287

spellcheck() (translate.filters.checks.IOSChecker
method), 293

spellcheck() (translate.filters.checks.KdeChecker
method), 298

spellcheck() (translate.filters.checks.L20nChecker
method), 304

spellcheck() (trans-
late.filters.checks.LibreOfficeChecker method),
310

spellcheck() (trans-
late.filters.checks.MinimalChecker method),
316

spellcheck() (trans-
late.filters.checks.MozillaChecker method),
322

spellcheck() (trans-
late.filters.checks.OpenOfficeChecker method),
327

spellcheck() (trans-
late.filters.checks.ReducedChecker method),
333

spellcheck() (trans-
late.filters.checks.StandardChecker method),
339

spellcheck() (translate.filters.checks.TermChecker
method), 346

split() (translate.misc.multistring.multistring
method), 391

splitext() (translate.convert.convert.ArchiveConvertOptionParser
method), 238

splitext() (translate.convert.convert.ConvertOptionParser
method), 242

splitext() (translate.convert.po2moz.MozConvertOptionParser
method), 254

splitext() (translate.convert.po2tmx.TmxOptionParser
method), 259

splitext() (translate.convert.po2wordfast.WfOptionParser
method), 264

splitext() (translate.filters.pofilter.FilterOptionParser
method), 353

splitext() (translate.misc.optrecurse.RecursiveOptionParser
method), 394

splitext() (translate.tools.poconflicts.ConflictOptionParser
method), 700

splitext() (translate.tools.pogrep.GrepOptionParser
method), 704

splitext() (translate.tools.porestructure.SplitOptionParser

method), 708
splitext() (translate.tools.poterminology.TerminologyOptionParser

method), 711
splitinputext() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

splitinputext() (trans-
late.convert.convert.ConvertOptionParser
method), 242

splitinputext() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 254

splitinputext() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

splitinputext() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

splitinputext() (trans-
late.filters.pofilter.FilterOptionParser method),
353

splitinputext() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

splitinputext() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

splitinputext() (trans-
late.tools.pogrep.GrepOptionParser method),
704

splitinputext() (trans-
late.tools.porestructure.SplitOptionParser
method), 708

splitinputext() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

splitlines() (in module translate.storage.pypo),
608

splitlines() (translate.misc.multistring.multistring
method), 391

SplitOptionParser (class in trans-
late.tools.porestructure), 705

splittemplateext() (trans-
late.convert.convert.ArchiveConvertOptionParser
method), 238

splittemplateext() (trans-
late.convert.convert.ConvertOptionParser
method), 242

splittemplateext() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 254

splittemplateext() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

834 Index

Translate Toolkit Documentation, Release 3.0.0

splittemplateext() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

splittemplateext() (trans-
late.filters.pofilter.FilterOptionParser method),
353

splittemplateext() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

splittemplateext() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 700

splittemplateext() (trans-
late.tools.pogrep.GrepOptionParser method),
704

splittemplateext() (trans-
late.tools.porestructure.SplitOptionParser
method), 708

splittemplateext() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

st (class in translate.lang.st), 379
StandardChecker (class in translate.filters.checks),

335
StandardUnitChecker (class in trans-

late.filters.checks), 340
start_namespace_decl_handler() (trans-

late.misc.ourdom.ExpatBuilderNS method),
395

startcaps() (trans-
late.filters.checks.CCLicenseChecker method),
275

startcaps() (translate.filters.checks.DrupalChecker
method), 281

startcaps() (translate.filters.checks.GnomeChecker
method), 287

startcaps() (translate.filters.checks.IOSChecker
method), 293

startcaps() (translate.filters.checks.KdeChecker
method), 299

startcaps() (translate.filters.checks.L20nChecker
method), 305

startcaps() (trans-
late.filters.checks.LibreOfficeChecker method),
310

startcaps() (trans-
late.filters.checks.MinimalChecker method),
316

startcaps() (translate.filters.checks.MozillaChecker
method), 322

startcaps() (trans-
late.filters.checks.OpenOfficeChecker method),
327

startcaps() (trans-

late.filters.checks.ReducedChecker method),
333

startcaps() (trans-
late.filters.checks.StandardChecker method),
339

startcaps() (translate.filters.checks.TermChecker
method), 346

startpunc() (trans-
late.filters.checks.CCLicenseChecker method),
276

startpunc() (translate.filters.checks.DrupalChecker
method), 282

startpunc() (translate.filters.checks.GnomeChecker
method), 287

startpunc() (translate.filters.checks.IOSChecker
method), 293

startpunc() (translate.filters.checks.KdeChecker
method), 299

startpunc() (translate.filters.checks.L20nChecker
method), 305

startpunc() (trans-
late.filters.checks.LibreOfficeChecker method),
310

startpunc() (trans-
late.filters.checks.MinimalChecker method),
316

startpunc() (translate.filters.checks.MozillaChecker
method), 322

startpunc() (trans-
late.filters.checks.OpenOfficeChecker method),
328

startpunc() (trans-
late.filters.checks.ReducedChecker method),
333

startpunc() (trans-
late.filters.checks.StandardChecker method),
339

startpunc() (translate.filters.checks.TermChecker
method), 346

startswith() (translate.misc.multistring.multistring
method), 391

startwhitespace() (trans-
late.filters.checks.CCLicenseChecker method),
276

startwhitespace() (trans-
late.filters.checks.DrupalChecker method),
282

startwhitespace() (trans-
late.filters.checks.GnomeChecker method),
288

startwhitespace() (trans-
late.filters.checks.IOSChecker method), 293

startwhitespace() (trans-
late.filters.checks.KdeChecker method),

Index 835

Translate Toolkit Documentation, Release 3.0.0

299
startwhitespace() (trans-

late.filters.checks.L20nChecker method),
305

startwhitespace() (trans-
late.filters.checks.LibreOfficeChecker method),
311

startwhitespace() (trans-
late.filters.checks.MinimalChecker method),
316

startwhitespace() (trans-
late.filters.checks.MozillaChecker method),
322

startwhitespace() (trans-
late.filters.checks.OpenOfficeChecker method),
328

startwhitespace() (trans-
late.filters.checks.ReducedChecker method),
333

startwhitespace() (trans-
late.filters.checks.StandardChecker method),
339

startwhitespace() (trans-
late.filters.checks.TermChecker method),
346

StateEnum (class in translate.storage.workflow), 687
statefordb() (in module translate.storage.statsdb),

626
statemap (translate.storage.ts2.tsunit attribute), 665
StateNotInWorkflowError, 687
Statistics (class in translate.storage.statistics), 625
StatsCache (class in translate.storage.statsdb), 626
str2bool() (in module translate.tools.pomerge), 705
string_xpath (in module trans-

late.misc.xml_helpers), 398
string_xpath_normalized (in module trans-

late.misc.xml_helpers), 398
StringElem (class in trans-

late.storage.placeables.strelem), 528
stringsfile (class in translate.storage.properties),

598
stringsutf8file (class in trans-

late.storage.properties), 600
strip() (translate.misc.multistring.multistring

method), 391
Sub (class in translate.storage.placeables.base), 512
Sub (class in translate.storage.placeables.xliff), 544
sub (translate.storage.placeables.strelem.StringElem at-

tribute), 530
SubflowPlaceable (class in trans-

late.storage.placeables.interfaces), 526
SubRipFile (class in translate.storage.subtitles), 630
SubStationAlphaFile (class in trans-

late.storage.subtitles), 632

SubtitleFile (class in translate.storage.subtitles),
633

SubtitleUnit (class in translate.storage.subtitles),
635

suggestions_in_format (trans-
late.storage.base.TranslationStore attribute),
403

suggestions_in_format (trans-
late.storage.xliff.xlifffile attribute), 689

summarize() (in module translate.tools.pocount), 701
supported_files() (in module trans-

late.storage.factory), 426
sv (class in translate.lang.sv), 380
svn (class in translate.storage.versioncontrol.svn), 679
swapcase() (translate.misc.multistring.multistring

method), 391
swapdir() (in module translate.tools.poswap), 709
switchfile() (translate.storage.poxliff.PoXliffFile

method), 569
switchfile() (translate.storage.xliff.xlifffile method),

689

T
ta (class in translate.lang.ta), 381
TAB_UTF16 (in module translate.storage.wordfast), 680
tabs() (translate.filters.checks.CCLicenseChecker

method), 276
tabs() (translate.filters.checks.DrupalChecker

method), 282
tabs() (translate.filters.checks.GnomeChecker

method), 288
tabs() (translate.filters.checks.IOSChecker method),

293
tabs() (translate.filters.checks.KdeChecker method),

299
tabs() (translate.filters.checks.L20nChecker method),

305
tabs() (translate.filters.checks.LibreOfficeChecker

method), 311
tabs() (translate.filters.checks.MinimalChecker

method), 316
tabs() (translate.filters.checks.MozillaChecker

method), 322
tabs() (translate.filters.checks.OpenOfficeChecker

method), 328
tabs() (translate.filters.checks.ReducedChecker

method), 333
tabs() (translate.filters.checks.StandardChecker

method), 339
tabs() (translate.filters.checks.TermChecker method),

346
tagname() (in module translate.filters.checks), 349
tagproperties() (in module trans-

late.filters.checks), 349

836 Index

Translate Toolkit Documentation, Release 3.0.0

take_action() (trans-
late.misc.optrecurse.ManPageOption method),
392

target (translate.storage.dtd.dtdunit attribute), 424
target (translate.storage.pypo.pounit attribute), 608
target (translate.storage.txt.TxtUnit attribute), 670
targetfiles (trans-

late.storage.bundleprojstore.BundleProjectStore
attribute), 407

targetfiles (translate.storage.projstore.ProjectStore
attribute), 575

TargetStoreClass (trans-
late.convert.ical2po.ical2po attribute), 244

TargetStoreClass (translate.convert.ini2po.ini2po
attribute), 245

TargetStoreClass (trans-
late.convert.mozlang2po.lang2po attribute),
246

TargetStoreClass (trans-
late.convert.php2po.php2po attribute), 248

TargetStoreClass (trans-
late.convert.po2ical.po2ical attribute), 249

TargetStoreClass (translate.convert.po2ini.po2ini
attribute), 250

TargetStoreClass (trans-
late.convert.po2mozlang.po2lang attribute),
250

TargetStoreClass (translate.convert.po2tiki.po2tiki
attribute), 255

TargetStoreClass (trans-
late.convert.po2yaml.po2yaml attribute),
265

TargetStoreClass (translate.convert.tiki2po.tiki2po
attribute), 268

TargetStoreClass (translate.convert.txt2po.txt2po
attribute), 269

TargetStoreClass (trans-
late.convert.yaml2po.yaml2po attribute),
270

TargetUnitClass (translate.convert.ical2po.ical2po
attribute), 244

TargetUnitClass (translate.convert.ini2po.ini2po
attribute), 245

TargetUnitClass (trans-
late.convert.mozlang2po.lang2po attribute),
246

TargetUnitClass (translate.convert.php2po.php2po
attribute), 248

TargetUnitClass (translate.convert.po2ical.po2ical
attribute), 249

TargetUnitClass (translate.convert.po2ini.po2ini
attribute), 250

TargetUnitClass (trans-
late.convert.po2mozlang.po2lang attribute),

250
TargetUnitClass (translate.convert.po2tiki.po2tiki

attribute), 256
TargetUnitClass (trans-

late.convert.po2yaml.po2yaml attribute),
265

TargetUnitClass (translate.convert.tiki2po.tiki2po
attribute), 268

TargetUnitClass (translate.convert.txt2po.txt2po
attribute), 269

TargetUnitClass (trans-
late.convert.yaml2po.yaml2po attribute),
270

tbxfile (class in translate.storage.tbx), 638
tbxunit (class in translate.storage.tbx), 640
te (class in translate.lang.te), 382
TeeChecker (class in translate.filters.checks), 341
templateexists() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 238

templateexists() (trans-
late.convert.convert.ConvertOptionParser
method), 242

templateexists() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 254

templateexists() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

templateexists() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

templateexists() (trans-
late.filters.pofilter.FilterOptionParser method),
353

templateexists() (trans-
late.misc.optrecurse.RecursiveOptionParser
method), 394

templateexists() (trans-
late.tools.poconflicts.ConflictOptionParser
method), 701

templateexists() (trans-
late.tools.pogrep.GrepOptionParser method),
704

templateexists() (trans-
late.tools.porestructure.SplitOptionParser
method), 708

templateexists() (trans-
late.tools.poterminology.TerminologyOptionParser
method), 711

TermChecker (class in translate.filters.checks), 342
terminologymatcher (class in trans-

late.search.match), 400
TerminologyOptionParser (class in trans-

Index 837

Translate Toolkit Documentation, Release 3.0.0

late.tools.poterminology), 709
TerminologyPlaceable (class in trans-

late.storage.placeables.terminology), 530
text (translate.storage.oo.ooline attribute), 498
th (class in translate.lang.th), 382
tiki2po (class in translate.convert.tiki2po), 268
TikiStore (class in translate.storage.tiki), 644
TikiUnit (class in translate.storage.tiki), 646
time (translate.storage.trados.TradosTxtDate attribute),

655
time (translate.storage.wordfast.WordfastTime at-

tribute), 683
timestring (translate.storage.trados.TradosTxtDate

attribute), 655
timestring (translate.storage.wordfast.WordfastTime

attribute), 683
title() (translate.misc.multistring.multistring

method), 391
TMServer (class in translate.services.tmserver), 401
tmxfile (class in translate.storage.tmx), 649
TmxOptionParser (class in trans-

late.convert.po2tmx), 256
tmxunit (class in translate.storage.tmx), 651
tr_lang() (in module translate.lang.data), 363
TRADOS_TIMEFORMAT (in module trans-

late.storage.trados), 654
TradosTxtDate (class in translate.storage.trados),

655
TradosTxtTmFile (class in translate.storage.trados),

658
TradosUnit (class in translate.storage.trados), 655
tranliterate_cyrillic() (in module trans-

late.lang.af), 355
transaction() (in module translate.storage.statsdb),

626
transfiles (translate.storage.bundleprojstore.BundleProjectStore

attribute), 407
transfiles (translate.storage.projstore.ProjectStore

attribute), 575
TransitionError, 687
Translatable (class in trans-

late.storage.xml_extract.extract), 693
TRANSLATABLE_ATTRIBUTES (trans-

late.storage.html.htmlfile attribute), 428
TRANSLATABLE_ELEMENTS (trans-

late.storage.html.htmlfile attribute), 428
TRANSLATABLE_METADATA (trans-

late.storage.html.htmlfile attribute), 428
translate() (translate.misc.multistring.multistring

method), 391
translate() (translate.storage.base.TranslationStore

method), 403
translate() (translate.storage.catkeys.CatkeysFile

method), 410

translate() (translate.storage.csvl10n.csvfile
method), 415

translate() (translate.storage.dtd.dtdfile method),
421

translate() (translate.storage.html.htmlfile method),
430

translate() (translate.storage.html.POHTMLParser
method), 428

translate() (translate.storage.ical.icalfile method),
435

translate() (translate.storage.ini.inifile method),
440

translate() (trans-
late.storage.jsonl10n.ARBJsonFile method),
446

translate() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 451

translate() (translate.storage.jsonl10n.I18NextFile
method), 456

translate() (translate.storage.jsonl10n.JsonFile
method), 460

translate() (trans-
late.storage.jsonl10n.JsonNestedFile method),
462

translate() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

translate() (translate.storage.lisa.LISAfile method),
475

translate() (translate.storage.mo.mofile method),
481

translate() (trans-
late.storage.mozilla_lang.LangStore method),
486

translate() (translate.storage.omegat.OmegaTFile
method), 491

translate() (trans-
late.storage.omegat.OmegaTFileTab method),
493

translate() (translate.storage.php.LaravelPHPFile
method), 551

translate() (translate.storage.php.phpfile method),
555

translate() (translate.storage.placeables.base.Bpt
method), 501

translate() (translate.storage.placeables.base.Bx
method), 509

translate() (translate.storage.placeables.base.Ept
method), 502

translate() (translate.storage.placeables.base.Ex
method), 510

translate() (translate.storage.placeables.base.G
method), 507

838 Index

Translate Toolkit Documentation, Release 3.0.0

translate() (translate.storage.placeables.base.It
method), 506

translate() (translate.storage.placeables.base.Ph
method), 504

translate() (translate.storage.placeables.base.Sub
method), 514

translate() (translate.storage.placeables.base.X
method), 512

translate() (trans-
late.storage.placeables.general.AltAttrPlaceable
method), 516

translate() (trans-
late.storage.placeables.general.XMLEntityPlaceable
method), 517

translate() (trans-
late.storage.placeables.general.XMLTagPlaceable
method), 519

translate() (trans-
late.storage.placeables.interfaces.BasePlaceable
method), 521

translate() (trans-
late.storage.placeables.interfaces.InvisiblePlaceable
method), 522

translate() (trans-
late.storage.placeables.interfaces.MaskingPlaceable
method), 524

translate() (trans-
late.storage.placeables.interfaces.ReplacementPlaceable
method), 526

translate() (trans-
late.storage.placeables.interfaces.SubflowPlaceable
method), 528

translate() (trans-
late.storage.placeables.strelem.StringElem
method), 530

translate() (trans-
late.storage.placeables.terminology.TerminologyPlaceable
method), 532

translate() (translate.storage.placeables.xliff.Bpt
method), 534

translate() (translate.storage.placeables.xliff.Bx
method), 539

translate() (translate.storage.placeables.xliff.Ept
method), 535

translate() (translate.storage.placeables.xliff.Ex
method), 540

translate() (translate.storage.placeables.xliff.G
method), 542

translate() (translate.storage.placeables.xliff.It
method), 543

translate() (translate.storage.placeables.xliff.Ph
method), 547

translate() (translate.storage.placeables.xliff.Sub
method), 545

translate() (trans-
late.storage.placeables.xliff.UnknownXML
method), 548

translate() (translate.storage.placeables.xliff.X
method), 537

translate() (translate.storage.pocommon.pofile
method), 561

translate() (translate.storage.poxliff.PoXliffFile
method), 570

translate() (translate.storage.properties.gwtfile
method), 583

translate() (translate.storage.properties.javafile
method), 586

translate() (trans-
late.storage.properties.javautf16file method),
587

translate() (translate.storage.properties.javautf8file
method), 589

translate() (translate.storage.properties.joomlafile
method), 591

translate() (translate.storage.properties.propfile
method), 592

translate() (translate.storage.properties.stringsfile
method), 600

translate() (trans-
late.storage.properties.stringsutf8file method),
602

translate() (translate.storage.pypo.pofile method),
605

translate() (translate.storage.qm.qmfile method),
611

translate() (translate.storage.qph.QphFile method),
616

translate() (translate.storage.rc.rcfile method), 622
translate() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 628

translate() (trans-
late.storage.subtitles.MicroDVDFile method),
630

translate() (translate.storage.subtitles.SubRipFile
method), 632

translate() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

translate() (translate.storage.subtitles.SubtitleFile
method), 635

translate() (translate.storage.tbx.tbxfile method),
640

translate() (translate.storage.tiki.TikiStore method),
646

translate() (translate.storage.tmx.tmxfile method),
651

translate() (trans-

Index 839

Translate Toolkit Documentation, Release 3.0.0

late.storage.trados.TradosTxtTmFile method),
659

translate() (translate.storage.ts2.tsfile method), 662
translate() (translate.storage.txt.TxtFile method),

667
translate() (translate.storage.utx.UtxFile method),

672
translate() (trans-

late.storage.wordfast.WordfastTMFile method),
682

translate() (translate.storage.xliff.xlifffile method),
690

translate.convert (module), 234
translate.convert.accesskey (module), 234
translate.convert.convert (module), 235
translate.convert.csv2po (module), 242
translate.convert.csv2tbx (module), 243
translate.convert.dtd2po (module), 243
translate.convert.factory (module), 244
translate.convert.html2po (module), 244
translate.convert.ical2po (module), 244
translate.convert.ini2po (module), 245
translate.convert.json2po (module), 245
translate.convert.moz2po (module), 246
translate.convert.mozfunny2prop (module),

246
translate.convert.mozlang2po (module), 246
translate.convert.odf2xliff (module), 247
translate.convert.oo2po (module), 247
translate.convert.oo2xliff (module), 247
translate.convert.php2po (module), 248
translate.convert.po2csv (module), 248
translate.convert.po2dtd (module), 248
translate.convert.po2html (module), 249
translate.convert.po2ical (module), 249
translate.convert.po2ini (module), 249
translate.convert.po2json (module), 250
translate.convert.po2moz (module), 251
translate.convert.po2mozlang (module), 250
translate.convert.po2oo (module), 254
translate.convert.po2php (module), 254
translate.convert.po2prop (module), 254
translate.convert.po2rc (module), 255
translate.convert.po2resx (module), 255
translate.convert.po2sub (module), 255
translate.convert.po2symb (module), 255
translate.convert.po2tiki (module), 255
translate.convert.po2tmx (module), 256
translate.convert.po2ts (module), 260
translate.convert.po2txt (module), 260
translate.convert.po2web2py (module), 260
translate.convert.po2wordfast (module),

261
translate.convert.po2xliff (module), 264

translate.convert.po2yaml (module), 264
translate.convert.pot2po (module), 265
translate.convert.prop2mozfunny (module),

265
translate.convert.prop2po (module), 266
translate.convert.rc2po (module), 267
translate.convert.resx2po (module), 267
translate.convert.sub2po (module), 267
translate.convert.symb2po (module), 268
translate.convert.tiki2po (module), 268
translate.convert.ts2po (module), 268
translate.convert.txt2po (module), 269
translate.convert.web2py2po (module), 269
translate.convert.xliff2odf (module), 269
translate.convert.xliff2oo (module), 270
translate.convert.xliff2po (module), 270
translate.convert.yaml2po (module), 270
translate.filters (module), 270
translate.filters.autocorrect (module),

271
translate.filters.checks (module), 271
translate.filters.decoration (module), 349
translate.filters.helpers (module), 350
translate.filters.pofilter (module), 350
translate.filters.prefilters (module), 353
translate.filters.spelling (module), 354
translate.lang (module), 354
translate.lang.af (module), 355
translate.lang.am (module), 356
translate.lang.ar (module), 356
translate.lang.bn (module), 357
translate.lang.code_or (module), 358
translate.lang.common (module), 359
translate.lang.data (module), 362
translate.lang.de (module), 363
translate.lang.el (module), 364
translate.lang.es (module), 365
translate.lang.fa (module), 366
translate.lang.factory (module), 366
translate.lang.fi (module), 367
translate.lang.fr (module), 367
translate.lang.gu (module), 368
translate.lang.he (module), 369
translate.lang.hi (module), 370
translate.lang.hy (module), 371
translate.lang.identify (module), 371
translate.lang.ja (module), 371
translate.lang.km (module), 372
translate.lang.kn (module), 373
translate.lang.ko (module), 374
translate.lang.ml (module), 375
translate.lang.mr (module), 375
translate.lang.ne (module), 376
translate.lang.ngram (module), 377

840 Index

Translate Toolkit Documentation, Release 3.0.0

translate.lang.pa (module), 377
translate.lang.poedit (module), 378
translate.lang.si (module), 378
translate.lang.st (module), 379
translate.lang.sv (module), 380
translate.lang.ta (module), 381
translate.lang.te (module), 382
translate.lang.team (module), 381
translate.lang.th (module), 382
translate.lang.ug (module), 383
translate.lang.ur (module), 384
translate.lang.vi (module), 385
translate.lang.zh (module), 386
translate.misc (module), 386
translate.misc.dictutils (module), 386
translate.misc.file_discovery (module),

387
translate.misc.multistring (module), 387
translate.misc.optrecurse (module), 391
translate.misc.ourdom (module), 395
translate.misc.progressbar (module), 396
translate.misc.quote (module), 397
translate.misc.wsgi (module), 398
translate.misc.xml_helpers (module), 398
translate.search (module), 399
translate.search.lshtein (module), 399
translate.search.match (module), 399
translate.search.terminology (module), 401
translate.services (module), 401
translate.services.tmserver (module), 401
translate.storage (module), 401
translate.storage._factory_classes (mod-

ule), 425
translate.storage.base (module), 401
translate.storage.benchmark (module), 407
translate.storage.bundleprojstore (mod-

ule), 407
translate.storage.catkeys (module), 408
translate.storage.csvl10n (module), 413
translate.storage.directory (module), 419
translate.storage.dtd (module), 419
translate.storage.factory (module), 425
translate.storage.html (module), 426
translate.storage.ical (module), 433
translate.storage.ini (module), 439
translate.storage.jsonl10n (module), 444
translate.storage.lisa (module), 473
translate.storage.mo (module), 479
translate.storage.mozilla_lang (module),

485
translate.storage.odf_io (module), 489
translate.storage.odf_shared (module), 489
translate.storage.omegat (module), 489
translate.storage.oo (module), 496

translate.storage.php (module), 549
translate.storage.placeables (module), 499
translate.storage.placeables.base (mod-

ule), 499
translate.storage.placeables.general

(module), 514
translate.storage.placeables.interfaces

(module), 519
translate.storage.placeables.lisa (mod-

ule), 528
translate.storage.placeables.parse (mod-

ule), 528
translate.storage.placeables.strelem

(module), 528
translate.storage.placeables.terminology

(module), 530
translate.storage.placeables.xliff (mod-

ule), 532
translate.storage.po (module), 566
translate.storage.pocommon (module), 559
translate.storage.poheader (module), 564
translate.storage.poparser (module), 566
translate.storage.poxliff (module), 566
translate.storage.project (module), 574
translate.storage.projstore (module), 574
translate.storage.properties (module), 575
translate.storage.pypo (module), 602
translate.storage.qm (module), 608
translate.storage.qph (module), 614
translate.storage.rc (module), 619
translate.storage.statistics (module), 625
translate.storage.statsdb (module), 626
translate.storage.subtitles (module), 627
translate.storage.symbian (module), 638
translate.storage.tbx (module), 638
translate.storage.tiki (module), 644
translate.storage.tmdb (module), 649
translate.storage.tmx (module), 649
translate.storage.trados (module), 654
translate.storage.ts (module), 665
translate.storage.ts2 (module), 660
translate.storage.txt (module), 665
translate.storage.utx (module), 670
translate.storage.versioncontrol (mod-

ule), 676
translate.storage.versioncontrol.bzr

(module), 677
translate.storage.versioncontrol.cvs

(module), 678
translate.storage.versioncontrol.darcs

(module), 678
translate.storage.versioncontrol.git

(module), 679

Index 841

Translate Toolkit Documentation, Release 3.0.0

translate.storage.versioncontrol.hg
(module), 679

translate.storage.versioncontrol.svn
(module), 679

translate.storage.wordfast (module), 680
translate.storage.workflow (module), 686
translate.storage.xliff (module), 687
translate.storage.xml_extract (module),

693
translate.storage.xml_extract.extract

(module), 693
translate.storage.xml_extract.generate

(module), 694
translate.storage.xml_extract.misc (mod-

ule), 695
translate.storage.xml_extract.unit_tree

(module), 695
translate.storage.xml_extract.xpath_breadcrumb

(module), 695
translate.storage.xml_name (module), 696
translate.storage.zip (module), 696
translate.tools (module), 697
translate.tools.build_tmdb (module), 697
translate.tools.phppo2pypo (module), 697
translate.tools.poclean (module), 697
translate.tools.pocompile (module), 697
translate.tools.poconflicts (module), 698
translate.tools.pocount (module), 701
translate.tools.podebug (module), 701
translate.tools.pogrep (module), 701
translate.tools.pomerge (module), 705
translate.tools.porestructure (module),

705
translate.tools.posegment (module), 708
translate.tools.poswap (module), 708
translate.tools.poterminology (module),

709
translate.tools.pretranslate (module), 712
translate.tools.pydiff (module), 712
translate.tools.pypo2phppo (module), 713
TranslateBenchmarker (class in trans-

late.storage.benchmark), 407
translated_unitcount() (trans-

late.storage.statistics.Statistics method),
625

translated_units() (trans-
late.storage.statistics.Statistics method),
625

translated_wordcount() (trans-
late.storage.statistics.Statistics method),
625

TranslationChecker (class in trans-
late.filters.checks), 347

translations (trans-

late.storage.placeables.terminology.TerminologyPlaceable
attribute), 532

TranslationStore (class in translate.storage.base),
401

TranslationUnit (class in translate.storage.base),
403

tsfile (class in translate.storage.ts2), 660
tsunit (class in translate.storage.ts2), 662
txt2po (class in translate.convert.txt2po), 269
TxtFile (class in translate.storage.txt), 666
TxtUnit (class in translate.storage.txt), 667
tzstring() (in module translate.storage.poheader),

566

U
ug (class in translate.lang.ug), 383
unchanged() (trans-

late.filters.checks.CCLicenseChecker method),
276

unchanged() (translate.filters.checks.DrupalChecker
method), 282

unchanged() (translate.filters.checks.GnomeChecker
method), 288

unchanged() (translate.filters.checks.IOSChecker
method), 293

unchanged() (translate.filters.checks.KdeChecker
method), 299

unchanged() (translate.filters.checks.L20nChecker
method), 305

unchanged() (trans-
late.filters.checks.LibreOfficeChecker method),
311

unchanged() (trans-
late.filters.checks.MinimalChecker method),
316

unchanged() (translate.filters.checks.MozillaChecker
method), 322

unchanged() (trans-
late.filters.checks.OpenOfficeChecker method),
328

unchanged() (trans-
late.filters.checks.ReducedChecker method),
334

unchanged() (trans-
late.filters.checks.StandardChecker method),
339

unchanged() (translate.filters.checks.TermChecker
method), 346

unescape() (in module translate.storage.pypo), 608
unescape() (in module translate.storage.trados), 654
unescape_help_text() (in module trans-

late.storage.oo), 498
unescape_text() (in module translate.storage.oo),

498

842 Index

Translate Toolkit Documentation, Release 3.0.0

unified_diff() (translate.tools.pydiff.FileDiffer
method), 713

unit2dict() (in module translate.search.match), 401
unit_iter() (translate.storage.base.TranslationStore

method), 403
unit_iter() (translate.storage.base.TranslationUnit

method), 406
unit_iter() (translate.storage.catkeys.CatkeysFile

method), 410
unit_iter() (translate.storage.catkeys.CatkeysUnit

method), 413
unit_iter() (translate.storage.csvl10n.csvfile

method), 415
unit_iter() (translate.storage.csvl10n.csvunit

method), 418
unit_iter() (translate.storage.directory.Directory

method), 419
unit_iter() (translate.storage.dtd.dtdfile method),

421
unit_iter() (translate.storage.dtd.dtdunit method),

425
unit_iter() (translate.storage.html.htmlfile method),

430
unit_iter() (translate.storage.html.htmlunit

method), 433
unit_iter() (translate.storage.html.POHTMLParser

method), 428
unit_iter() (translate.storage.ical.icalfile method),

435
unit_iter() (translate.storage.ical.icalunit method),

438
unit_iter() (translate.storage.ini.inifile method),

440
unit_iter() (translate.storage.ini.iniunit method),

443
unit_iter() (trans-

late.storage.jsonl10n.ARBJsonFile method),
446

unit_iter() (trans-
late.storage.jsonl10n.ARBJsonUnit method),
449

unit_iter() (trans-
late.storage.jsonl10n.GoI18NJsonFile
method), 451

unit_iter() (trans-
late.storage.jsonl10n.GoI18NJsonUnit
method), 454

unit_iter() (translate.storage.jsonl10n.I18NextFile
method), 456

unit_iter() (translate.storage.jsonl10n.I18NextUnit
method), 459

unit_iter() (translate.storage.jsonl10n.JsonFile
method), 460

unit_iter() (trans-

late.storage.jsonl10n.JsonNestedFile method),
462

unit_iter() (trans-
late.storage.jsonl10n.JsonNestedUnit method),
465

unit_iter() (translate.storage.jsonl10n.JsonUnit
method), 468

unit_iter() (trans-
late.storage.jsonl10n.WebExtensionJsonFile
method), 470

unit_iter() (trans-
late.storage.jsonl10n.WebExtensionJsonUnit
method), 473

unit_iter() (translate.storage.lisa.LISAfile method),
475

unit_iter() (translate.storage.lisa.LISAunit
method), 479

unit_iter() (translate.storage.mo.mofile method),
481

unit_iter() (translate.storage.mo.mounit method),
484

unit_iter() (trans-
late.storage.mozilla_lang.LangStore method),
486

unit_iter() (trans-
late.storage.mozilla_lang.LangUnit method),
489

unit_iter() (translate.storage.omegat.OmegaTFile
method), 491

unit_iter() (trans-
late.storage.omegat.OmegaTFileTab method),
493

unit_iter() (translate.storage.omegat.OmegaTUnit
method), 496

unit_iter() (translate.storage.php.LaravelPHPFile
method), 551

unit_iter() (translate.storage.php.LaravelPHPUnit
method), 554

unit_iter() (translate.storage.php.phpfile method),
556

unit_iter() (translate.storage.php.phpunit method),
558

unit_iter() (translate.storage.pocommon.pofile
method), 561

unit_iter() (translate.storage.pocommon.pounit
method), 564

unit_iter() (translate.storage.poxliff.PoXliffFile
method), 570

unit_iter() (translate.storage.poxliff.PoXliffUnit
method), 573

unit_iter() (translate.storage.properties.gwtfile
method), 583

unit_iter() (translate.storage.properties.javafile
method), 586

Index 843

Translate Toolkit Documentation, Release 3.0.0

unit_iter() (trans-
late.storage.properties.javautf16file method),
587

unit_iter() (translate.storage.properties.javautf8file
method), 589

unit_iter() (translate.storage.properties.joomlafile
method), 591

unit_iter() (translate.storage.properties.propfile
method), 592

unit_iter() (trans-
late.storage.properties.proppluralunit method),
595

unit_iter() (translate.storage.properties.propunit
method), 598

unit_iter() (translate.storage.properties.stringsfile
method), 600

unit_iter() (trans-
late.storage.properties.stringsutf8file method),
602

unit_iter() (translate.storage.pypo.pofile method),
605

unit_iter() (translate.storage.pypo.pounit method),
608

unit_iter() (translate.storage.qm.qmfile method),
611

unit_iter() (translate.storage.qm.qmunit method),
614

unit_iter() (translate.storage.qph.QphFile method),
616

unit_iter() (translate.storage.qph.QphUnit
method), 619

unit_iter() (translate.storage.rc.rcfile method), 622
unit_iter() (translate.storage.rc.rcunit method), 625
unit_iter() (trans-

late.storage.subtitles.AdvSubStationAlphaFile
method), 628

unit_iter() (trans-
late.storage.subtitles.MicroDVDFile method),
630

unit_iter() (translate.storage.subtitles.SubRipFile
method), 632

unit_iter() (trans-
late.storage.subtitles.SubStationAlphaFile
method), 633

unit_iter() (translate.storage.subtitles.SubtitleFile
method), 635

unit_iter() (translate.storage.subtitles.SubtitleUnit
method), 638

unit_iter() (translate.storage.tbx.tbxfile method),
640

unit_iter() (translate.storage.tbx.tbxunit method),
643

unit_iter() (translate.storage.tiki.TikiStore method),
646

unit_iter() (translate.storage.tiki.TikiUnit method),
649

unit_iter() (translate.storage.tmx.tmxfile method),
651

unit_iter() (translate.storage.tmx.tmxunit method),
654

unit_iter() (trans-
late.storage.trados.TradosTxtTmFile method),
660

unit_iter() (translate.storage.trados.TradosUnit
method), 658

unit_iter() (translate.storage.ts2.tsfile method), 662
unit_iter() (translate.storage.ts2.tsunit method),

665
unit_iter() (translate.storage.txt.TxtFile method),

667
unit_iter() (translate.storage.txt.TxtUnit method),

670
unit_iter() (translate.storage.utx.UtxFile method),

672
unit_iter() (translate.storage.utx.UtxUnit method),

676
unit_iter() (trans-

late.storage.wordfast.WordfastTMFile method),
683

unit_iter() (trans-
late.storage.wordfast.WordfastUnit method),
686

unit_iter() (translate.storage.xliff.xlifffile method),
690

unit_iter() (translate.storage.xliff.xliffunit method),
693

unit_iter() (translate.storage.zip.ZIPFile method),
696

UnitChecker (class in translate.filters.checks), 348
UnitClass (translate.storage.base.TranslationStore at-

tribute), 401
UnitClass (translate.storage.catkeys.CatkeysFile at-

tribute), 408
UnitClass (translate.storage.csvl10n.csvfile attribute),

414
UnitClass (translate.storage.dtd.dtdfile attribute), 420
UnitClass (translate.storage.html.htmlfile attribute),

428
UnitClass (translate.storage.html.POHTMLParser at-

tribute), 426
UnitClass (translate.storage.ical.icalfile attribute),

434
UnitClass (translate.storage.ini.inifile attribute), 439
UnitClass (translate.storage.jsonl10n.ARBJsonFile

attribute), 444
UnitClass (translate.storage.jsonl10n.GoI18NJsonFile

attribute), 449
UnitClass (translate.storage.jsonl10n.I18NextFile at-

844 Index

Translate Toolkit Documentation, Release 3.0.0

tribute), 454
UnitClass (translate.storage.jsonl10n.JsonFile at-

tribute), 459
UnitClass (translate.storage.jsonl10n.JsonNestedFile

attribute), 461
UnitClass (translate.storage.jsonl10n.WebExtensionJsonFile

attribute), 468
UnitClass (translate.storage.lisa.LISAfile attribute),

473
UnitClass (translate.storage.mo.mofile attribute), 479
UnitClass (translate.storage.mozilla_lang.LangStore

attribute), 485
UnitClass (translate.storage.omegat.OmegaTFile at-

tribute), 490
UnitClass (translate.storage.omegat.OmegaTFileTab

attribute), 491
UnitClass (translate.storage.oo.oofile attribute), 497
UnitClass (translate.storage.php.LaravelPHPFile at-

tribute), 549
UnitClass (translate.storage.php.phpfile attribute),

554
UnitClass (translate.storage.pocommon.pofile at-

tribute), 559
UnitClass (translate.storage.poxliff.PoXliffFile at-

tribute), 567
UnitClass (translate.storage.properties.gwtfile at-

tribute), 582
UnitClass (translate.storage.properties.javafile

attribute), 584
UnitClass (translate.storage.properties.javautf16file

attribute), 586
UnitClass (translate.storage.properties.javautf8file

attribute), 587
UnitClass (translate.storage.properties.joomlafile at-

tribute), 589
UnitClass (translate.storage.properties.propfile at-

tribute), 591
UnitClass (translate.storage.properties.stringsfile at-

tribute), 598
UnitClass (translate.storage.properties.stringsutf8file

attribute), 600
UnitClass (translate.storage.pypo.pofile attribute),

602
UnitClass (translate.storage.qm.qmfile attribute), 609
UnitClass (translate.storage.qph.QphFile attribute),

614
UnitClass (translate.storage.rc.rcfile attribute), 620
UnitClass (translate.storage.subtitles.AdvSubStationAlphaFile

attribute), 627
UnitClass (translate.storage.subtitles.MicroDVDFile

attribute), 628
UnitClass (translate.storage.subtitles.SubRipFile at-

tribute), 630
UnitClass (translate.storage.subtitles.SubStationAlphaFile

attribute), 632
UnitClass (translate.storage.subtitles.SubtitleFile at-

tribute), 633
UnitClass (translate.storage.tbx.tbxfile attribute), 638
UnitClass (translate.storage.tiki.TikiStore attribute),

644
UnitClass (translate.storage.tmx.tmxfile attribute),

649
UnitClass (translate.storage.trados.TradosTxtTmFile

attribute), 658
UnitClass (translate.storage.ts2.tsfile attribute), 660
UnitClass (translate.storage.txt.TxtFile attribute), 666
UnitClass (translate.storage.utx.UtxFile attribute),

671
UnitClass (translate.storage.wordfast.WordfastTMFile

attribute), 681
UnitClass (translate.storage.xliff.xlifffile attribute),

687
UnitMixer (class in translate.convert.accesskey), 234
unitstats() (translate.storage.statsdb.StatsCache

method), 626
UnknownExtensionError, 244
UnknownXML (class in trans-

late.storage.placeables.xliff), 547
unormalizechar (class in translate.storage.oo), 498
unquote_plus() (in module trans-

late.storage.pocommon), 564
unquotefromandroid() (in module trans-

late.storage.dtd), 425
unquotefromdtd() (in module trans-

late.storage.dtd), 425
UnsupportedConversionError, 244
untranslated() (trans-

late.filters.checks.CCLicenseChecker method),
276

untranslated() (trans-
late.filters.checks.DrupalChecker method),
282

untranslated() (trans-
late.filters.checks.GnomeChecker method),
288

untranslated() (translate.filters.checks.IOSChecker
method), 293

untranslated() (trans-
late.filters.checks.KdeChecker method),
299

untranslated() (trans-
late.filters.checks.L20nChecker method),
305

untranslated() (trans-
late.filters.checks.LibreOfficeChecker method),
311

untranslated() (trans-
late.filters.checks.MinimalChecker method),

Index 845

Translate Toolkit Documentation, Release 3.0.0

316
untranslated() (trans-

late.filters.checks.MozillaChecker method),
322

untranslated() (trans-
late.filters.checks.OpenOfficeChecker method),
328

untranslated() (trans-
late.filters.checks.ReducedChecker method),
334

untranslated() (trans-
late.filters.checks.StandardChecker method),
339

untranslated() (trans-
late.filters.checks.TermChecker method),
347

untranslated_unitcount() (trans-
late.storage.statistics.Statistics method),
626

untranslated_units() (trans-
late.storage.statistics.Statistics method),
626

untranslated_wordcount() (trans-
late.storage.statistics.Statistics method),
626

update() (in module translate.storage.poheader), 566
update() (translate.filters.checks.CheckerConfig

method), 277
update() (translate.misc.dictutils.cidict method), 387
update() (translate.storage.oo.unormalizechar

method), 499
update() (translate.storage.versioncontrol.bzr.bzr

method), 678
update() (translate.storage.versioncontrol.cvs.cvs

method), 678
update() (translate.storage.versioncontrol.darcs.darcs

method), 678
update() (translate.storage.versioncontrol.GenericRevisionControlSystem

method), 677
update() (translate.storage.versioncontrol.git.git

method), 679
update() (translate.storage.versioncontrol.hg.hg

method), 679
update() (translate.storage.versioncontrol.svn.svn

method), 680
update_file() (trans-

late.storage.bundleprojstore.BundleProjectStore
method), 408

update_file() (translate.storage.project.Project
method), 574

update_file() (trans-
late.storage.projstore.ProjectStore method),
575

updatecontributor() (translate.storage.mo.mofile

method), 481
updatecontributor() (trans-

late.storage.pocommon.pofile method), 561
updatecontributor() (trans-

late.storage.poheader.poheader method),
566

updatecontributor() (trans-
late.storage.poxliff.PoXliffFile method), 570

updatecontributor() (trans-
late.storage.pypo.pofile method), 605

updatedirectory() (in module trans-
late.storage.versioncontrol), 677

updateheader() (translate.storage.mo.mofile
method), 481

updateheader() (translate.storage.pocommon.pofile
method), 561

updateheader() (trans-
late.storage.poheader.poheader method),
566

updateheader() (translate.storage.poxliff.PoXliffFile
method), 570

updateheader() (translate.storage.pypo.pofile
method), 605

updateheaderplural() (trans-
late.storage.mo.mofile method), 481

updateheaderplural() (trans-
late.storage.pocommon.pofile method), 561

updateheaderplural() (trans-
late.storage.poheader.poheader method),
566

updateheaderplural() (trans-
late.storage.poxliff.PoXliffFile method), 570

updateheaderplural() (trans-
late.storage.pypo.pofile method), 605

updatetargetlanguage() (trans-
late.filters.checks.CheckerConfig method),
277

updatevalidchars() (trans-
late.filters.checks.CheckerConfig method),
277

upper() (translate.misc.multistring.multistring
method), 391

ur (class in translate.lang.ur), 384
urls() (translate.filters.checks.CCLicenseChecker

method), 276
urls() (translate.filters.checks.DrupalChecker

method), 282
urls() (translate.filters.checks.GnomeChecker

method), 288
urls() (translate.filters.checks.IOSChecker method),

294
urls() (translate.filters.checks.KdeChecker method),

299
urls() (translate.filters.checks.L20nChecker method),

846 Index

Translate Toolkit Documentation, Release 3.0.0

305
urls() (translate.filters.checks.LibreOfficeChecker

method), 311
urls() (translate.filters.checks.MinimalChecker

method), 317
urls() (translate.filters.checks.MozillaChecker

method), 322
urls() (translate.filters.checks.OpenOfficeChecker

method), 328
urls() (translate.filters.checks.ReducedChecker

method), 334
urls() (translate.filters.checks.StandardChecker

method), 340
urls() (translate.filters.checks.TermChecker method),

347
usable() (translate.search.match.matcher method),

400
usable() (translate.search.match.terminologymatcher

method), 401
UtxDialect (class in translate.storage.utx), 671
UtxFile (class in translate.storage.utx), 671
UtxHeader (class in translate.storage.utx), 672
UtxUnit (class in translate.storage.utx), 673

V
valid_fieldnames() (in module trans-

late.storage.csvl10n), 418
validaccel (translate.lang.common.Common at-

tribute), 362
validchars() (trans-

late.filters.checks.CCLicenseChecker method),
276

validchars() (trans-
late.filters.checks.DrupalChecker method),
282

validchars() (trans-
late.filters.checks.GnomeChecker method),
288

validchars() (translate.filters.checks.IOSChecker
method), 294

validchars() (translate.filters.checks.KdeChecker
method), 299

validchars() (translate.filters.checks.L20nChecker
method), 305

validchars() (trans-
late.filters.checks.LibreOfficeChecker method),
311

validchars() (trans-
late.filters.checks.MinimalChecker method),
317

validchars() (trans-
late.filters.checks.MozillaChecker method),
323

validchars() (trans-
late.filters.checks.OpenOfficeChecker method),
328

validchars() (trans-
late.filters.checks.ReducedChecker method),
334

validchars() (trans-
late.filters.checks.StandardChecker method),
340

validchars() (translate.filters.checks.TermChecker
method), 347

validdoublewords (trans-
late.lang.common.Common attribute), 362

validxml() (translate.filters.checks.LibreOfficeChecker
method), 311

value_strip() (translate.storage.properties.Dialect
class method), 577

value_strip() (trans-
late.storage.properties.DialectFlex class
method), 577

value_strip() (trans-
late.storage.properties.DialectGaia class
method), 578

value_strip() (trans-
late.storage.properties.DialectGwt class
method), 578

value_strip() (trans-
late.storage.properties.DialectJava class
method), 579

value_strip() (trans-
late.storage.properties.DialectJavaUtf16
class method), 579

value_strip() (trans-
late.storage.properties.DialectJavaUtf8 class
method), 580

value_strip() (trans-
late.storage.properties.DialectJoomla class
method), 580

value_strip() (trans-
late.storage.properties.DialectMozilla class
method), 580

value_strip() (trans-
late.storage.properties.DialectSkype class
method), 581

value_strip() (trans-
late.storage.properties.DialectStrings class
method), 581

value_strip() (trans-
late.storage.properties.DialectStringsUtf8
class method), 582

values() (translate.misc.dictutils.cidict method), 387
values() (translate.storage.oo.unormalizechar

method), 499
variables() (trans-

Index 847

Translate Toolkit Documentation, Release 3.0.0

late.filters.checks.CCLicenseChecker method),
276

variables() (translate.filters.checks.DrupalChecker
method), 282

variables() (translate.filters.checks.GnomeChecker
method), 288

variables() (translate.filters.checks.IOSChecker
method), 294

variables() (translate.filters.checks.KdeChecker
method), 300

variables() (translate.filters.checks.L20nChecker
method), 305

variables() (trans-
late.filters.checks.LibreOfficeChecker method),
311

variables() (trans-
late.filters.checks.MinimalChecker method),
317

variables() (translate.filters.checks.MozillaChecker
method), 323

variables() (trans-
late.filters.checks.OpenOfficeChecker method),
328

variables() (trans-
late.filters.checks.ReducedChecker method),
334

variables() (trans-
late.filters.checks.StandardChecker method),
340

variables() (translate.filters.checks.TermChecker
method), 347

varname() (in module translate.filters.prefilters), 354
varnone() (in module translate.filters.prefilters), 354
VerboseProgressBar (class in trans-

late.misc.progressbar), 396
verifyoptions() (in module trans-

late.convert.oo2po), 247
verifyoptions() (in module trans-

late.convert.oo2xliff), 247
verifyoptions() (trans-

late.convert.convert.ArchiveConvertOptionParser
method), 239

verifyoptions() (trans-
late.convert.convert.ConvertOptionParser
method), 242

verifyoptions() (trans-
late.convert.po2moz.MozConvertOptionParser
method), 254

verifyoptions() (trans-
late.convert.po2tmx.TmxOptionParser
method), 259

verifyoptions() (trans-
late.convert.po2wordfast.WfOptionParser
method), 264

vi (class in translate.lang.vi), 385

W
warning() (translate.convert.convert.ArchiveConvertOptionParser

method), 239
warning() (translate.convert.convert.ConvertOptionParser

method), 242
warning() (translate.convert.po2moz.MozConvertOptionParser

method), 254
warning() (translate.convert.po2tmx.TmxOptionParser

method), 259
warning() (translate.convert.po2wordfast.WfOptionParser

method), 264
warning() (translate.filters.pofilter.FilterOptionParser

method), 353
warning() (translate.misc.optrecurse.RecursiveOptionParser

method), 394
warning() (translate.tools.poconflicts.ConflictOptionParser

method), 701
warning() (translate.tools.pogrep.GrepOptionParser

method), 704
warning() (translate.tools.porestructure.SplitOptionParser

method), 708
warning() (translate.tools.poterminology.TerminologyOptionParser

method), 712
WebExtensionJsonFile (class in trans-

late.storage.jsonl10n), 468
WebExtensionJsonUnit (class in trans-

late.storage.jsonl10n), 470
WF_ESCAPE_MAP (in module trans-

late.storage.wordfast), 680
WF_FIELDNAMES (in module trans-

late.storage.wordfast), 680
WF_FIELDNAMES_HEADER (in module trans-

late.storage.wordfast), 681
WF_FIELDNAMES_HEADER_DEFAULTS (in module

translate.storage.wordfast), 681
WF_TIMEFORMAT (in module trans-

late.storage.wordfast), 681
WfOptionParser (class in trans-

late.convert.po2wordfast), 261
with_traceback() (trans-

late.convert.factory.UnknownExtensionError
method), 244

with_traceback() (trans-
late.convert.factory.UnsupportedConversionError
method), 244

with_traceback() (trans-
late.convert.prop2po.DiscardUnit method),
266

with_traceback() (trans-
late.filters.checks.FilterFailure method),
283

848 Index

Translate Toolkit Documentation, Release 3.0.0

with_traceback() (trans-
late.filters.checks.SeriousFilterFailure
method), 334

with_traceback() (trans-
late.storage.base.ParseError method), 401

with_traceback() (trans-
late.storage.bundleprojstore.InvalidBundleError
method), 408

with_traceback() (trans-
late.storage.placeables.strelem.ElementNotFoundError
method), 528

with_traceback() (trans-
late.storage.projstore.FileExistsInProjectError
method), 574

with_traceback() (trans-
late.storage.projstore.FileNotInProjectError
method), 574

with_traceback() (trans-
late.storage.tmdb.LanguageError method),
649

with_traceback() (trans-
late.storage.workflow.InvalidStateObjectError
method), 686

with_traceback() (trans-
late.storage.workflow.NoInitialStateError
method), 686

with_traceback() (trans-
late.storage.workflow.StateNotInWorkflowError
method), 687

with_traceback() (trans-
late.storage.workflow.TransitionError method),
687

with_traceback() (trans-
late.storage.workflow.WorkflowError method),
687

word_iter() (translate.lang.af.af class method), 355
word_iter() (translate.lang.am.am class method),

356
word_iter() (translate.lang.ar.ar class method), 357
word_iter() (translate.lang.bn.bn class method), 358
word_iter() (translate.lang.code_or.code_or class

method), 358
word_iter() (translate.lang.common.Common class

method), 362
word_iter() (translate.lang.de.de class method), 364
word_iter() (translate.lang.el.el class method), 365
word_iter() (translate.lang.es.es class method), 365
word_iter() (translate.lang.fa.fa class method), 366
word_iter() (translate.lang.fi.fi class method), 367
word_iter() (translate.lang.fr.fr class method), 368
word_iter() (translate.lang.gu.gu class method), 369
word_iter() (translate.lang.he.he class method), 370
word_iter() (translate.lang.hi.hi class method), 370
word_iter() (translate.lang.hy.hy class method), 371

word_iter() (translate.lang.ja.ja class method), 372
word_iter() (translate.lang.km.km class method),

373
word_iter() (translate.lang.kn.kn class method), 374
word_iter() (translate.lang.ko.ko class method), 374
word_iter() (translate.lang.ml.ml class method), 375
word_iter() (translate.lang.mr.mr class method), 376
word_iter() (translate.lang.ne.ne class method), 377
word_iter() (translate.lang.pa.pa class method), 378
word_iter() (translate.lang.si.si class method), 379
word_iter() (translate.lang.st.st class method), 380
word_iter() (translate.lang.sv.sv class method), 381
word_iter() (translate.lang.ta.ta class method), 381
word_iter() (translate.lang.te.te class method), 382
word_iter() (translate.lang.th.th class method), 383
word_iter() (translate.lang.ug.ug class method), 384
word_iter() (translate.lang.ur.ur class method), 385
word_iter() (translate.lang.vi.vi class method), 385
word_iter() (translate.lang.zh.zh class method), 386
wordcount() (translate.storage.statistics.Statistics

method), 626
WordfastDialect (class in trans-

late.storage.wordfast), 681
WordfastHeader (class in trans-

late.storage.wordfast), 681
WordfastTime (class in translate.storage.wordfast),

683
WordfastTMFile (class in trans-

late.storage.wordfast), 681
WordfastUnit (class in translate.storage.wordfast),

683
words() (translate.lang.af.af class method), 355
words() (translate.lang.am.am class method), 356
words() (translate.lang.ar.ar class method), 357
words() (translate.lang.bn.bn class method), 358
words() (translate.lang.code_or.code_or class

method), 358
words() (translate.lang.common.Common class

method), 362
words() (translate.lang.de.de class method), 364
words() (translate.lang.el.el class method), 365
words() (translate.lang.es.es class method), 366
words() (translate.lang.fa.fa class method), 367
words() (translate.lang.fi.fi class method), 367
words() (translate.lang.fr.fr class method), 368
words() (translate.lang.gu.gu class method), 369
words() (translate.lang.he.he class method), 370
words() (translate.lang.hi.hi class method), 370
words() (translate.lang.hy.hy class method), 371
words() (translate.lang.ja.ja class method), 372
words() (translate.lang.km.km class method), 373
words() (translate.lang.kn.kn class method), 374
words() (translate.lang.ko.ko class method), 374
words() (translate.lang.ml.ml class method), 375

Index 849

Translate Toolkit Documentation, Release 3.0.0

words() (translate.lang.mr.mr class method), 376
words() (translate.lang.ne.ne class method), 377
words() (translate.lang.pa.pa class method), 378
words() (translate.lang.si.si class method), 379
words() (translate.lang.st.st class method), 380
words() (translate.lang.sv.sv class method), 381
words() (translate.lang.ta.ta class method), 381
words() (translate.lang.te.te class method), 382
words() (translate.lang.th.th class method), 383
words() (translate.lang.ug.ug class method), 384
words() (translate.lang.ur.ur class method), 385
words() (translate.lang.vi.vi class method), 385
words() (translate.lang.zh.zh class method), 386
wordsinunit() (in module translate.storage.statsdb),

626
WorkflowError, 687
wrap() (translate.storage.pypo.PoWrapper method),

602
wrap_production() (in module trans-

late.storage.php), 559
wrapmessage() (translate.convert.po2txt.po2txt

method), 260
write_odf() (in module translate.convert.xliff2odf),

269
writediff() (translate.tools.pydiff.DirDiffer

method), 713
writediff() (translate.tools.pydiff.FileDiffer

method), 713
writexml_helper() (in module trans-

late.misc.ourdom), 396

X
X (class in translate.storage.placeables.base), 511
X (class in translate.storage.placeables.xliff), 535
xlifffile (class in translate.storage.xliff), 687
xliffunit (class in translate.storage.xliff), 690
xml_preserve_ancestors (in module trans-

late.misc.xml_helpers), 398
xml_space_ancestors (in module trans-

late.misc.xml_helpers), 399
XMLEntityPlaceable (class in trans-

late.storage.placeables.general), 516
XmlNamer (class in translate.storage.xml_name), 696
XMLTagPlaceable (class in trans-

late.storage.placeables.general), 517
xmltags() (translate.filters.checks.CCLicenseChecker

method), 276
xmltags() (translate.filters.checks.DrupalChecker

method), 282
xmltags() (translate.filters.checks.GnomeChecker

method), 288
xmltags() (translate.filters.checks.IOSChecker

method), 294

xmltags() (translate.filters.checks.KdeChecker
method), 300

xmltags() (translate.filters.checks.L20nChecker
method), 306

xmltags() (translate.filters.checks.LibreOfficeChecker
method), 311

xmltags() (translate.filters.checks.MinimalChecker
method), 317

xmltags() (translate.filters.checks.MozillaChecker
method), 323

xmltags() (translate.filters.checks.OpenOfficeChecker
method), 329

xmltags() (translate.filters.checks.ReducedChecker
method), 334

xmltags() (translate.filters.checks.StandardChecker
method), 340

xmltags() (translate.filters.checks.TermChecker
method), 347

XPathBreadcrumb (class in trans-
late.storage.xml_extract.xpath_breadcrumb),
695

Y
yaml2po (class in translate.convert.yaml2po), 270

Z
zfill() (translate.misc.multistring.multistring

method), 391
zh (class in translate.lang.zh), 386
ZIPFile (class in translate.storage.zip), 696

850 Index

	User’s Guide
	Features
	Installation
	Converters
	Tools
	Scripts
	Use Cases
	Translation Related File Formats

	Developer’s Guide
	Translate Styleguide
	Documentation
	Building
	Testing
	Command Line Functional Testing
	Contributing
	Translate Toolkit Developers Guide
	Making a Translate Toolkit Release
	Deprecation of Features

	Additional Notes
	Release Notes
	History of the Translate Toolkit
	License

	API Reference
	API

	Python Module Index
	Index

